Research Highlights

Nanoscience
Imaging the Nanoworld
Thumbnail
Published: October 29, 2006

If you want to "see" physical objects whose dimensions are measured in nanometers and simultaneously probe the electronic structure of the atoms, molecules, and surfaces populating this nanoworld, you just might have to invent a new microscope. In fact, that's exactly what Fellow David Nesbitt's group recently accomplished.

PI: David Nesbitt
Read More
Chemical Physics
Bull's Eye!
Thumbnail
Published: July 28, 2006

"Chemistry is a highly improbable science," says Graduate Student Mike Deskevich, who adds "It's good for life on Earth that things are so unreactive." For instance, if chemical reactions happened easily and often, oxygen in the air would cause clothing and other flammable materials to burst into flame. In addition to making life difficult, high probability chemistry would render theoretical chemical physics much less interesting. As it is, theorists spend months determining the particular molecular shapes, vibrations, and energy states that make the simplest chemical reactions possible.

PI: David Nesbitt
Read More
Chemical Physics
Spectral Shapes
Thumbnail
Published: July 17, 2006

The breakdown of chlorofluorocarbons (CFCs) in the stratosphere has been implicated in the destruction of Earth's protective ozone layer. Consequently, scientists have undertaken studies to better understand the structure and behavior of highly reactive, but short-lived, free radicals produced during the breakdown process. The molecules, which contain either fluorine or chlorine, are an important source of atmospheric halogen atoms. Elucidating their 3D structure and dynamical behavior will help scientists better understand atmospheric chemistry as well as their fundamental molecular properties.

PI: David Nesbitt
Read More
Biophysics | Chemical Physics | Nanoscience
Molecular Secrets Revealed
Thumbnail
Published: February 09, 2006

Chemical physicists investigate the structure and behavior of atoms and molecules on the quantum level. Such research is particularly challenging when the molecule under investigation appears in small amounts and is rapidly transformed into something else, e.g., during combustion, chemical synthesis, or atmospheric chemical reactions. Happily, Research Associate Feng Dong, Fellow David Nesbitt, and former JILAn Scott Davis (now with Vescent Photonics in Denver) have developed an innovative method for studying such elusive chemicals.

PI: David Nesbitt
Read More
Chemical Physics | Nanoscience
Splash!
Thumbnail
Published: October 01, 2005

Brad Perkins and his thesis advisor Fellow David Nesbitt recently decided to explore what happens when fast, cold carbon dioxide molecules collide with the surface of an oily liquid (perfluoropolyether). Of course, you can only do these sorts of things in a vacuum chamber, where there are virtually no other gas molecules in the air to get in the way! The vacuum chamber itself creates an additional challenge: working with liquids at very low pressures.

PI: David Nesbitt
Read More
Biophysics | Chemical Physics | Nanoscience
Amazing Molecular Velcro
Thumbnail
Published: September 30, 2005

RNA molecules can perform amazing biological feats, including storing, transporting, and reading genetic blueprints as well as catalyzing chemical reactions inside living cells. To manage the latter feat, RNA molecules must rapidly fold into an exact three-dimensional (3D) shape. Understanding how RNA accomplishes this is a major scientific challenge. Former JILA postdoc Jose Hodak, Christopher Downey (doctoral candidate in Chemistry and Biochemistry), JILA graduate student Julie Fiore, Chemistry and Biochemistry Professor Arthur Pardi and Fellow David Nesbitt are meeting this challenge head on.

PI: David Nesbitt
Read More