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ABSTRACT

FFTLog is a set of fortran subroutines that ompute the fast Fourier or Hankel (=

Fourier-Bessel) transform of a periodi sequene of logarithmially spaed points. FFT-

Log an be regarded as a natural analogue to the standard Fast Fourier Transform

(FFT), in the sense that, just as the normal FFT gives the exat (to mahine preision)

Fourier transform of a linearly spaed periodi sequene, so also FFTLog gives the exat

Fourier or Hankel transform, of arbitrary order �, of a logarithmially spaed period-

i sequene. FFTLog shares with the normal FFT the problems of ringing (response

to sudden steps) and aliasing (periodi folding of frequenies), but under appropriate

irumstanes FFTLog may approximate the results of a ontinuous Fourier or Hankel

transform. The FFTLog algorithm was originally proposed by Talman (1978).

1 INTRODUCTION

This is a PostSript printable version of the webpage

http:==asa.olorado.edu/�ajsh/FFTLog/ , from whih

the FFTLog fortran ode may be downloaded. That web-

page was adapted in turn from Appendix B of a paper by

Hamilton (2000). If you wish to refer to the present dou-

ment, please refer to Hamilton (2000) and/or to the website.

The FFTLog algorithm was originally proposed by Tal-

man (1978).

Consider the ontinuous Hankel (= Fourier-Bessel)

transform pair

~a(k) =

Z

1

0

a(r) (kr)

q

J

�

(kr) k dr ;

a(r) =

Z

1

0

~a(k) (kr)

�q

J

�

(kr) r dk : (1)

If the substitution

a(r) = A(r) r

�q

and ~a(k) =

~

A(k) k

q

(2)

is made, then the Hankel transform pair (1) beomes equiv-

alent to the transform pair

~

A(k) =

Z

1

0

A(r)J

�

(kr)k dr ;

A(r) =

Z

1

0

~

A(k) J

�

(kr) r dk : (3)

Although the Hankel transform (1) with a power law bias

(kr)

�q

is thus equivalent in the ontinuous ase to the un-

biased Hankel transform (3), the transforms are di�erent

when they are disretized and made periodi; for if a(r) is

periodi, then A(r) = a(r) r

q

is not periodi. FFTLog eval-

uates disrete Hankel transforms (1) with arbitrary power

law bias.

Fourier sine and osine transforms an be regarded as

speial ases of Hankel transforms with � = �1=2, sine

J

1=2

(x) = (2=�x)

1=2

sin(x) ;

J

�1=2

(x) = (2=�x)

1=2

os(x) : (4)

As �rst noted by Siegman (1977), if the produt kr in

the Hankel transform is written as e

ln k+ln r

, then the trans-

form beomes a onvolution integral in the integration vari-

able ln r or ln k. Convolution is equivalent to multipliation

in the orresponding Fourier transform spae. Thus the Han-

kel transform an be omputed numerially by the algorith-

m: FFT ! multiply by a funtion ! FFT bak. This is the

idea behind a number of Fast Hankel Transform (FHT) algo-

rithms (Candel 1981; Anderson 1982; Hansen 1985; Fanning

1996) inluding FFTLog (Talman 1978).

An advantage of FFTLog, emphasized by Talman

(1978), is that the order � of the Bessel funtion may be

any arbitrary real number. In partiular, FFTLog works for

1=2-integral �, so inludes the ases of Fourier sine and o-

sine transforms, and spherial Hankel transforms involving

the spherial Bessel funtions j

�

(x) � (�=2x)

1=2

J

�+1=2

(x).

2 MOTIVATION AND EXAMPLE

FFTLog emerged from a problem in osmology (Hamilton

2000). The problem required Fourier transforming a fun-

tion that extended over many orders of magnitude, and was

`smooth' in logarithmi spae. Atually, it was neessary to

transform whole matries of suh funtions, so a fast trans-

form method was desirable.

In osmology, utuations in the matter density of the

Universe are thought to have been laid down during an in-

ationary epoh in the �rst few moments following the Big

Bang (Turner 1997). Vauum utuations in the �eld that

drives ination should produe a Gaussian distribution of
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Figure 1. Cosmologial power spetrum P (k) of matter utu-

ations predited by the so-alled �CDM model, a at (
 = 1)

Universe dominated by a osmologial onstant (


�

= 0:7), and

Cold Dark Matter (


m

= 0:3) inluding a sprinkling of baryons

(


b

= 0:05). The �CDM power spetrum was omputed from the

formulae of Eisenstein & Hu (1998), nonlinearly evolved aord-

ing to the formula of Peaok & Dodds (1996). The spetrum

is normalized to the amplitude of utuations observed by the

COBE satellite.

density utuations with a near sale-invariant power spe-

trum P (k) / k. That primordial spetrum was proessed

prior to Reombination by the ation of gravity modulated

by the pressure of radiation. Following Reombination, when

the Universe was about 300,000 years old, the matter power

spetrum was further proessed by nonlinear gravitational

lustering, up to the present time.

The osmologial power spetrum P (k), a funtion of

wavenumber k, is the 3-dimensional Fourier transform of the

osmologial orrelation funtion �(r), a funtion of spatial

separation r. With the onventional normalization used by

osmologists,

P (k) =

Z

1

0

�(r)

sin(kr)

kr

4�r

2

dr ;

�(r) =

Z

1

0

P (k)

sin(kr)

kr

4�k

2

dk

(2�)

3

: (5)

Figures 1 and 2 show the osmologial power spetrum P (k)

of matter utuations, and the orresponding orrelation

funtion �(r), predited for a at (
 = 1) Cold Dark Matter

Universe dominated by a osmologial onstant (


�

= 0:7).

The power spetrum here was omputed from the formulae

of Eisenstein & Hu (1998), nonlinearly evolved aording to

the formula of Peaok & Dodds (1996).

In this partiular instane, FFTLog outperforms the

normal FFT on all ounts: it is more aurate, with fewer

points, over a larger range, and it shows no signs of ring-

ing. This does not mean that FFTLog is always better than

FFT. Rather, FFTLog is well mathed to the problem at

hand: the osmologial power spetrum extends over many

orders of magnitude in wavenumber k, and varies smoothly

in lnk.
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Figure 2. Cosmologial orrelation funtion �(r) orresponding

to the �CDM power spetrum shown in Figure 1.

The top panel shows the orrelation funtions omputed with

FFTLog at two di�erent resolutions, plotted on top of eah other:

(red, low resolution) with 96 points over the range r = 10

�3

to

10

3

h

�1

Mp, and (blue, high resolution) with 768 points over the

range r = 10

�6

to 10

6

h

�1

Mp. The lines are dashed where the

orrelation funtion is negative, at separations r > 119h

�1

Mp.

The low and high resolution urves are almost indistinguishable

exept at r

>

�

200h

�1

Mp, where the low resolution urve goes

to a onstant, while the high resolution urve delines as a power

law � r

�4

. The disagreement is aused by aliasing (see x8) of

small and large separations in the low resolution ase. Aliasing is

almost eliminated in the high resolution ase beause the range

r = 10

�6

to 10

6

h

�1

Mp over whih the transform was omputed

is muh broader than the range plotted. The straight dashed line

shows the anonial power law (r=5 h

�1

Mp)

�1:8

for referene.

Both low and high resolution ases used an unbiased (q = 0)

transform, x7, and a low-ringing value of k

0

r

0

, x6 (atually the

hoie of k

0

r

0

made little di�erene here).

The middle panel shows the ratio �

low

=�

high

of the low to high

resolution orrelation funtions.

The bottom panel of Figure 2 shows the ratio �

FFT

=�

FFTLog

of the orrelation funtion �

FFT

omputed with a normal FFT

(sine transform) with 1023 points over the range r = 0:125 to

128h

�1

Mp, to the high resolution orrelation funtion �

FFTLog

omputed with FFTLog. The FFT'd orrelation funtion �

FFT

rings at the �5 perent level.
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3 NORMAL DISCRETE FOURIER

TRANSFORM

First, reall the essential properties of the standard dis-

rete Fourier transform of a periodi sequene of linearly

spaed points. Suppose that a(r) is a ontinuous, in general

omplex-valued, funtion that is periodi with period R,

a(r +R) = a(r) : (6)

Without loss of generality, take the fundamental interval to

be [�R=2; R=2℄, entred at zero. Sine a(r) is periodi, its

ontinuous Fourier transform ontains only disrete Fourier

modes e

2�imr=R

with integral wavenumbers m. Suppose fur-

ther that the funtion a(r) is `smooth' in the spei� sense

that it is some linear ombination only of the N lowest fre-

queny Fourier modes, m = 0, �1, :::, �[N=2℄, where [N=2℄

denotes the largest integer greater than or equal to N=2,

a(r) =

X

m

0



m

e

2�imr=R

(7)

the outermost Fourier oeÆients being equal, 

�N=2

=



N=2

, in the ase of even N . The primed sum in equation (7)

signi�es a sum over integral m from �[N=2℄ to [N=2℄, with

the proviso that for even N the outermost elements of the

sum reeive only half weight:

X

n

0

x

n

�

[N=2℄

X

n=�[N=2℄

w

n

x

n

(8)

with w

n

= 1 exept that w

�N=2

= w

N=2

= 1=2 if N is even.

The sampling theorem (e.g. Press et al. 1986 x12.1) as-

serts that, given a funtion a(r) satisfying equation (7), the

Fourier oeÆients 

m

an be expressed in terms of the val-

ues a

n

� a(r

n

) of the funtion a(r) at the N disrete points

r

n

= nR=N for n = 0, �1, :::, �[N=2℄. For even N , the

periodiity of a(r) ensures that a

�N=2

= a

N=2

. Spei�ally,

the sampling theorem asserts that the Fourier oeÆients in

the expansion (7) satisfy



m

=

1

N

X

n

0

a

n

e

�2�imn=N

(9)

the disrete points a

n

themselves satisfying

a

n

=

X

m

0



m

e

2�imn=N

(10)

in aordane with equation (7).

Equations (9) and (10) onstitute a disrete Fourier

transform pair relating two periodi, linearly spaed se-

quenes a

n

and 

m

of lengthN . The standard FFT evaluates

the disrete Fourier transform exatly (that is, to mahine

preision).

4 DISCRETE HANKEL TRANSFORM

Now suppose that the funtion a(r), instead of being period-

i in ordinary spae r, is periodi in logarithmi spae ln r,

with logarithmi period L,

a(re

L

) = a(r) : (11)

Take the fundamental interval to be [ln r

0

�L=2; ln r

0

+L=2℄,

entred at ln r

0

. As in x3, the periodiity of a(r) implies that

its Fourier transform with respet to ln r ontains only dis-

rete Fourier modes e

2�im ln(r=r

0

)=L

with integral wavenum-

bers m. Suppose further, as in x3 eq. (7), that a(r) ontains

only the N lowest frequeny Fourier modes

a(r) =

X

m

0



m

e

2�im ln(r=r

0

)=L

(12)

with 

�N=2

= 

N=2

for even N . The sampling theorem as-

serts that the Fourier oeÆients 

m

are given by



m

=

1

N

X

n

0

a

n

e

�2�imn=N

(13)

where a

n

� a(r

n

) are the values of the funtion a(r) at the

N disrete points r

n

= r

0

e

nL=N

for n = 0, �1, :::, �[N=2℄,

a

n

=

X

m

0



m

e

2�imn=N

: (14)

The ontinuous Hankel transform ~a(k), equation (1), of

a funtion a(r) of the form (12) is

~a(k) =

X

m

0



m

Z

1

0

e

2�im ln(r=r

0

)=L

(kr)

q

J

�

(kr)k dr : (15)

The integrals on the right hand side of equation (15) an be

done analytially, in terms of

U

�

(x) �

Z

1

0

t

x

J

�

(t) dt = 2

x

�[(�+ 1 + x)=2℄

�[(�+ 1� x)=2℄

(16)

where �(z) is the usual Gamma-funtion. Thus equa-

tion (15) redues to

~a(k) =

X

m

0



m

u

m

e

�2�im ln(k=k

0

)=L

(17)

where u

m

is

u

m

(�; q) � (k

0

r

0

)

�2�im=L

U

�

�

q +

2�im

L

�

: (18)

Notie that u

�

m

= u

�m

, whih ensures that ~a(k) is real if a(r)

is real. Equation (17) gives the (exat) ontinuous Hankel

transform ~a(k) of a funtion a(r) of the form (7). Like a(r),

the Hankel transform ~a(k) is periodi in logarithmi spae

ln k, with period L. The fundamental interval is [ln k

0

�L=2;

ln k

0

+L=2℄, entred at lnk

0

, whih may be hosen arbitrarily

(but see x6 below).

The sampling theorem requires that u

�N=2

= u

N=2

for

even N , whih is not neessarily satis�ed by equation (18).

However, at the disrete points k

n

= k

0

e

nL=N

onsidered

by the sampling theorem, the ontributions at m = �N=2

to the sum on the right hand side of equation (17) are

(�)

n



N=2

(u

N=2

+ u

�

N=2

)=2 = (�)

n



N=2

Reu

N=2

. Thus the e-

quality (17) remains true at the disrete points k

n

if u

�N=2

are replaed by their real parts,

u

�N=2

! Reu

N=2

: (19)

With the replaement (19), the sampling theorem asserts

that the oeÆients 

m

u

m

in the sum (17) are determined

by the values ~a

n

� ~a(k

n

) of the Hankel transform at the N

disrete points k

n

= k

0

e

nL=N

for n = 0, �1, :::, �[N=2℄



m

u

m

=

1

N

X

n

0

~a

n

e

2�imn=N

(20)
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~a

n

=

X

m

0



m

u

m

e

�2�imn=N

: (21)

Putting together equations (13), (14), (20) and (21)

yields the disrete Hankel transform pair

~a

n

=

X

m

0

a

m

v

+

m+n

(�; q) (22)

a

m

=

X

n

0

~a

n

v

�

m+n

(�; q) (23)

in whih the forward disrete Hankel mode v

+

n

(�; q) is the

disrete Fourier transform of u

m

(�; q) given by equation-

s (18) and (19),

v

+

n

(�; q) =

1

N

X

m

0

u

m

(�; q) e

�2�imn=N

(24)

while the inverse disrete Hankel mode v

�

n

(�; q) is the dis-

rete Fourier transform of the reiproal 1=u

�m

(�; q),

v

�

n

(�; q) =

1

N

X

m

0

1

u

�m

(�; q)

e

�2�imn=N

: (25)

The Hankel transform matries v

+

m+n

(�; q) and v

�

m+n

(�; q)

are mutually inverse

X

l

0

v

+

m+l

(�; q) v

�

l+n

(�; q) = Æ

mn

(26)

where Æ

mn

denotes the Kroneker delta. The forward and

inverse Hankel modes have the interesting property of being

self-similar; that is, Hankel modes v

+

m+n

(�; q) [or v

�

m+n

(�; q)℄

with di�erent indies m onsist of the same periodi se-

quene v

+

n

(�; q) [or v

�

n

(�; q)℄ ylially shifted bym nothes.

FFTLog evaluates the forward and inverse disrete Han-

kel transforms given by equations (22), (23), exatly (to ma-

hine preision).

The reiproal 1=u

�m

(�; q) in equation (25) is equal to

u

m

(�;�q), aording to equations (16) and (18),

1

u

�m

(�; q)

= u

m

(�;�q) (m 6= N=2) (27)

exept in the ase m = �N=2 for even N , when the re-

plaement (19) generally invalidates equation (27). Howev-

er, in the speial ase where u

�N=2

are already real, then

equation (19) leaves u

�N=2

unhanged, and equation (27)

remains valid also at m = �N=2. This speial ase is of

partiular interest, and is disussed further in x6 below.

In the ontinuous ase, the inverse Hankel transform is

equal to the forward transform with q ! �q, equations (1).

In the disrete ase this remains true for odd N , but it is

not generally true for even N (the usual hoie) exept in

the important speial ase disussed in x6.

In the general disrete ase (i.e. if the ondition [28℄

in x6 is not satis�ed), the inverse disrete Hankel mod-

e v

�

n

(�; q), equation (25), di�ers from the forward Hankel

mode v

+

n

(�;�q), equation (24), only for even N and only

in the oeÆient of the highest frequeny Fourier ompo-

nent, 1=u

�m

(�; q) versus u

m

(�;�q) for m = �N=2. To the

extent that the highest frequeny Fourier oeÆient 

�N=2

of a sequene a

n

is small, the di�erene between its inverse

disrete Hankel transform and its forward transform with

q ! �q should be small.

It is possible for the inverse disrete Hankel transform

to be singular, if u

�N=2

is purely imaginary, so that its real

part vanishes, making v

�

n

(�; q) singular. As disussed in x6,

this singularity an be avoided by hoosing a low-ringing

value of k

0

r

0

, equation (30).

The forward (inverse) disrete Hankel transforms are

also singular at speial values of � and q, namely where

�+1+ q (or �+1� q in the inverse ase) vanishes, beause

u

0

(�; q) = U

�

(q) is singular at these points. This singular-

ity reets a real singularity in the orresponding ontinu-

ous Hankel transform (unlike the singularity of the previous

paragraph, whih is an avoidable artefat of disreteness).

The singularity in u

0

leads to an additive in�nite onstant

in the disrete Hankel transform. In physial problems this

additive in�nite onstant may somehow anel out (for ex-

ample, in the di�erene between two Hankel transforms).

FFTLog's strategy in these singular ases is to evaluate the

disrete Hankel transform with the in�nite onstant set to

zero, and to issue a warning.

5 FFTLOG ALGORITHM

The FFTLog algorithm for taking the disrete Hankel trans-

form, equation (22), of a sequene a

n

of N logarithmially

spaed points is:

� FFT a

n

to obtain the Fourier oeÆients 

m

, equa-

tion (13);

� multiply by u

m

given by equations (18) and (19) to

obtain 

m

u

m

;

� FFT 

m

u

m

bak to obtain the disrete Hankel transfor-

m ~a

n

, equation (21).

A variant of the algorithm is to sandwih the above op-

erations with power law biasing and unbiasing operations.

For example, one way to take the unbiased ontinuous Han-

kel transform

~

A(k) of a funtion A(r), equation (3), is to

bias A(r) and

~

A(k) with power laws, equation (2), and take

a biased Hankel transform, equation (1). The disrete equiv-

alent of this is:

� Bias A

n

with a power law to obtain a

n

= A

n

r

�q

n

, equa-

tion (2);

� FFT a

n

to obtain the Fourier oeÆients 

m

, equa-

tion (13);

� multiply by u

m

given by equations (18) and (19) to

obtain 

m

u

m

;

� FFT 

m

u

m

bak to obtain the disrete Hankel transfor-

m ~a

n

, equation (21);

� Unbias ~a

n

with a power law to obtain

~

A

n

= ~a

n

k

�q

n

,

equation (2).

Although in the ontinuous limit the result would be iden-

tial to an unbiased Hankel transform, in the disrete ase

the result di�ers. With a simple unbiased disrete Hankel

transform, it is the sequene A

n

that is taken to be period-

i, whereas in the algorithm above it is not A

n

but rather

a

n

that is periodi.

The inverse disrete Hankel transform is aomplished

by the same series of steps, exept that 

m

is divided instead

of multiplied by u

m

.

The FFTLog ode is built on top of the NCAR suite of

FFT routines (Swarztrauber 1979), and a modi�ed version
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of an implementation of the omplex Gamma-funtion from

the gamerf pakage by Ooura (1996).

FFTLog inludes driver routines for the spei� ases

of the Fourier sine and osine transforms.

6 LOW-RINGING CONDITION ON k

0

r

0

The entral values ln r

0

and ln k

0

of the periodi intervals

in ln r and ln k may be hosen arbitrarily. However, ringing

of the disrete Hankel transform may be redued, for either

even or odd N , if the produt k

0

r

0

is hosen in suh a way

that the boundary points of the sequene u

m

, equation (18),

are equal

u

�N=2

= u

N=2

: (28)

Reall that the general proedure, for evenN , was to replae

u

�N=2

by their real part, equation (19). The ondition (28)

requires that u

�N=2

are already real. The ondition (28) re-

dues ringing beause it makes the periodi sequene u

m

fold smoothly aross the period boundary at m = �N=2.

In addition to reduing ringing, the ondition (28)

means that equation (27) remains true also at m = �N=2,

so is true for all m. In this ase the inverse Hankel mod-

e v

�

n

(�; q), equation (25), is equal to the forward Hankel

mode v

+

n

(�;�q) with q of the opposite sign

v

�

n

(�; q) = v

+

n

(�;�q) =

1

N

X

m

0

u

m

(�;�q) e

�2�imn=N

: (29)

In other words, if ondition (28) is satis�ed, then the in-

verse disrete Hankel transform equals the forward disrete

Hankel transform with q ! �q. This is like the ontinuous

Hankel transform, equations (1), where the inverse transfor-

m equals the forward transform with q ! �q.

The periodiity ondition (28) on u

�N=2

translates, for

real � and q, into a ondition on k

0

r

0

ln(k

0

r

0

) =

L

N

n

1

�

Arg

h

U

�

�

q +

�iN

L

�i

+ integer

o

(30)

where Argz � Im ln z denotes the argument of a omplex

number, and integer is any integer. In other words, to redue

ringing, it may help to hoose k

0

r

0

so as to satisfy the on-

dition (30). This is not too muh of a restrition, sine L=N

is the logarithmi spaing between points (= one noth), so

the low-ringing ondition (30) allows k

0

r

0

to be hosen to

lie within half a noth [= L=(2N)℄ of whatever number one

hooses, for example within half a noth of k

0

r

0

= 1.

The low-ringing ondition (30) is a ondition on the

phasing of the disrete points rn and kn at whih the dis-

rete Hankel transform is spei�ed. The ondition is analo-

gous to, albeit more ompliated than, the ondition on the

usual FFT that disrete frequenies be phased so that their

wavenumbers are integers, equation (7).

FFTLog an be set to use automatially the low-ringing

value of k

0

r

0

nearest to any input value of k

0

r

0

.

Note that the low-ringing value of k

0

r

0

from ondi-

tion (30) di�ers for di�erent �, q, and L=N . For example, the

sine transform (� = 1=2) and osine transform (� = �1=2)

have di�erent low-ringing values of k

0

r

0

.

How else does the hoie of k

0

r

0

a�et the Hankel trans-

form? Inreasing the value of ln(k

0

r

0

) by one noth L=N

ylially shifts the disrete Hankel transform ~a

n

, equa-

tion (21), by one noth to the left, ~a

n

! ~a

n�1

. In other

words, hanging ln(k

0

r

0

) by an integral number of nothes

shifts the origin of the transform, but leaves the transform

otherwise unhanged, as might have been expeted.

In pratie, sine in most ases one is probably using the

disrete Hankel transform as an approximation to the on-

tinuous transform, one would probably want to use k

0

r

0

� 1

(or 2, or �, aording to taste).

7 UNITARY UNBIASED HANKEL

TRANSFORM

The disrete Hankel transform with both low-ringing k

0

r

0

and no power law bias, q = 0, is of partiular interest be-

ause it is unitary, like the Fourier transform. Indeed, being

also real, the low-ringing unbiased Hankel transform is or-

thogonal, i.e. self-inverse, like the Fourier sine and osine

transforms. This is like the ontinuous unbiased (q = 0)

Hankel transform, equations (1), whih is self-inverse.

The disrete Hankel modes v

m+n

(�; 0) = v

+

m+n

(�; 0) =

v

�

m+n

(�; 0) in the low-ringing unbiased (q = 0) ase are pe-

riodi, orthonormal, and self-similar, equation (26),

X

l

0

v

m+l

(�; 0) v

l+n

(�; 0) = Æ

mn

: (31)

Like any orthogonal transformation, the low-ringing un-

biased (q = 0) Hankel transform ommutes with the opera-

tions of matrix multipliation, inversion, and diagonalization

(for non-low-ringing or biased Hankel transforms, q 6= 0, the

operations do not ommute). That is, the Hankel transform

of the produt of two matries is equal to the produt of

their Hankel transforms, and so on.

All else being equal (whih it may not be), given a hoie

between applying an unbiased (q = 0) or biased (q 6= 0)

Hankel transform, and between a low-ringing k

0

r

0

, equa-

tion (30), or otherwise, one would be inlined to hoose the

low-ringing unbiased transform, beause of its orthogonality

property.

8 RINGING AND ALIASING

FFTLog su�ers from the same problems of ringing (response

to sudden steps) and aliasing (periodi folding of frequen-

ies) as the normal FFT.

Usually one is interested in the disrete Fourier or Han-

kel transform not for its own sake, but rather as an approx-

imation to the ontinuous transform. The usual proedure

would be to apply the disrete transform to a �nite segmen-

t of the funtion a(r) to be transformed. For FFTLog, the

proedure an be regarded as involving two steps: trunat-

ing the funtion to a �nite logarithmi interval, whih auses

ringing of the transform; followed by periodi repliation of

the funtion in logarithmi spae, whih auses aliasing.

Figure 3 illustrates these steps for the unbiased (q = 0)

Hankel transform, equation (1), of order � = �1=2 of a

funtion that is Gaussian in the log

a(r) = exp[�(ln r)

2

=2℄ : (32)
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Figure 3. Illustrating the ringing and aliasing that ours when

the ontinuous Hankel transform of a funtion is approximated

by the disrete Hankel transform of a �nite segment of the fun-

tion. Lines are dashed where values are negative. The funtion

a(r) is shown to the left, and its orresponding Hankel transform

~a(k) to the right. The panels from top to bottom are: (top) the

original funtion a(r) and its Hankel transform ~a(k); (middle)

the trunated funtion a(r) and its Hankel transform ~a(k), whih

rings at high frequenies k; and (bottom) the trunated, period-

ially repliated funtion a(r) and its orresponding periodially

repliated Hankel transform ~a(k), whih is aliased. Vertial lines

demarate periodi intervals.

Trunation of the funtion a(r) leads to ringing of its

transform ~a(k) at high frequenies k, as seen in the middle

right panel of Figure 3. The osillations at large k are atu-

ally uniformly spaed in k, but appear bunhed up beause

of the logarithmi plotting.

Periodi repliation means taking a sum of opies shift-

ed by integral periods. From the de�nition (1) of the on-

tinuous Hankel transform, it an be seen that periodial-

ly repliating a funtion a(r) in logarithmi spae ln r and

then taking its ontinuous Hankel transform is equivalent

to Hankel transforming the funtion a(r) and then period-

ially repliating the transform ~a(k) in ln k. But trunat-

ing a funtion does not trunate its transform. So whereas

a trunated, periodially repliated funtion a(r) ontains

ontributions from only one period at eah point r, the pe-

riodially repliated transform ontains overlapping ontri-

butions from many periods at eah point k. This is aliasing.

In Figure 3 aliasing is visible as an enhanement of the peri-

odially repliated transform ~a(k) on the high k side of the

periodi interval.

Ringing and aliasing an be redued by taking suitable

preautions.

The ringing that results from taking the disrete trans-

form of a �nite segment of a funtion an be redued by

arranging that the funtion folds smoothly from large to s-

mall sales. It may help to bias the funtion with a power

law before transforming it, as in the seond algorithm in x5.

It may also help to use a low-ringing value of k

0

r

0

, x6.

Aliasing an be redued by enlarging the periodi inter-

val. Aliasing an be eliminated (to mahine preision) if the

interval an be enlarged to the point where the transform

~a(k) goes sensibly to zero at the boundaries of the period.

Note that it is not suÆient to enlarge the interval to the

point where a(r) is sensibly zero at the period boundaries:

what is important is that the transform ~a(k) goes to zero at

the boundaries.

9 TROUBLESHOOTING

FFTLog does not work well with my funtion. What should

I do?

� Diagnose the problem. Is there ringing and aliasing?

Read x8. Is your funtion `smooth' (ontains only low fre-

quenies) in logarithmi spae? If not, then FFTLog may

not be appropriate to your problem.

� Use a low-ringing value of k

0

r

0

, x6.

� Experiment with di�erent values of the bias index q.

� Enlarge the periodi interval over whih you speify y-

our funtion. Extrapolate your funtion sensibly: padding

with zeros may not be enough.

� Inrease the resolution, by reduing the logarithmi s-

paing of points. If your funtion is adequately `smooth',

then inreasing the resolution should, eventually, have no

e�et. If ontinuing to inrease the resolution ontinues to

have an e�et, then your funtion is not `smooth'.

� Use another ode.

REFERENCES

Anderson W. L., 1982, ACM-Trans. Math. Software, 8, no. 4,

344. Hankel transform ode at http:==www.am.org/algo/

ontents/588.gz

Candel S. M. 1981, IEEE Trans. ASSP, 29, 963

Fanning G., 1996, Hankel transform ode at http:==www.stanford

.edu/�fanning/hankel/hankel.html

Eisenstein D. J., Hu W., 1998, ApJ, 496, 605

Hamilton A. J. S., 2000, MNRAS, 312, 257 http:==xxx.lanl.gov/

abs/astro-ph/9905191

Hansen E. W., 1985, IEEE Trans. ASSP, 33, 666

Ooura T., 1996, http:==momonga.t.u-tokyo.a.jp/�ooura/

gamerf.html

Peaok J. A., Dodds S. J., 1996, MNRAS, 280, L19

Siegman A. E., 1977, Quasi fast Hankel transform, Opt. Lett., 1,

13

Swarztrauber P. N., 1979, NCAR FFT routines at http:==

www.netlib.org/bihar/

Talman J. D., 1978, J. Comp. Phys., 29, 35

Turner M. S., 1997, in Shramm D. N., Galeotti P., eds, Gen-

eration of Cosmologial Large-Sale Struture, Kluwer, Dor-

dreht, p. 153 http:==xxx.lanl.gov/abs/astro-ph/9704062


