Click HERE!
home | news | sports | buffzone | business | opinion | entertainment | lifestyles | recreation | community

buffzone

News

» Hill riots
» Recruiting scandal
»Pledge death
Football
Soccer
Golf
Skiing
Tennis
Track and field
Mens basketball
Womens basketball

CU forums

- About CU

buffzone

- News
» Hill riots
» Recruiting scandal
» Pledge death
- Football
- Soccer
- Golf
- Skiing
- Tennis
- Track and field
- Mens basketball
- Womens basketball
- CU forums
- About CU
e-mail updates

Have CU news and sports headlines delivered to your inbox. Sign up here.
special reports

- Title IX
- CU communist report
- 2003 CW A

PRINT THIS STORY | E-MAIL THIS STORY

Quantum leap at CU-NIST lab

Supercold, ultrafast techniques advance atomic physics

By Todd Neff, Camera Staff Writer November 19, 2004

Any good high-school chemistry student can tell you: The key to understanding atoms is knowing how their electrons behave.

Protons and neutrons provide the bulk, but it's the electrons that tell us what sorts of molecules an atom might consider joining, and in what conditions.
Advertisement

Using a combination of supercold and ultrafast laser techniques, a team led by Boulder researcher Jun Ye has come up with a faster and more efficient way of understanding - and influencing - electron behavior. The team's work, published Thursday in the online edition of the journal Science, promises to benefit applications as diverse as chemical analysis, chemical synthesis and quantum computing.

Ye is a research fellow with the National Institute of Standards and Technology and JILA, an institute operated jointly by the NIST and the University of Colorado. The paper is the result of a four-year effort in Ye's crowded basement lab in CU's JILA tower.

Adela Marian, a CU doctoral student in physics, began in 2000 to grind and polish what would become hundreds of mirrors and lenses now arranged across two tables in ways that would befuddle a
pinball-machine designer. When she leaves, physics doctoral student Matt Stowe will carry the torch.

Asked how equipment on two tables can function as a single system, Marian pointed upward. Mounted above was a lone mirror about the size of a quarter, which directed an invisible laser beam across the 15 -foot gap to a matching mirror over the second table.

Why not just do it all on one table?
"We have some space problems," Marian said.
It all accomplishes two key things. One set of lasers isolates and drastically slows a gas of rubidium atoms. The atoms' temperature hovers just above absolute zero, at which point molecular motion
search site for:

search help »

- classifieds
- hot jobs
- personals
- special sections
- print ads online
- subscriber services
- place a classified ad
- advertising opportunities

Marketplace

- classifieds
- hot jobs
- personals
- special sections
- print ads online
- subscriber services
- place a classified ad
- advertising opportunities

Wonder what CU looks like from above? Fly over the University with a satellite image.
virtual folsom

Get the 360° view from the stands at Folsom Field.
cwa 2004

The 56th annual
Conference on World
Affairs takes place April 5-
9 on the CU campus.

- Schedule of events
- Participant biographies

Previous News

- Thursday, Nov 18
- Wednesday, Nov 17
- Tuesday, Nov 16
- Monday, Nov 15
- Sunday, Nov 14
- Saturday, Nov 13
- Friday, Nov 12

The Daily Camera: News
theoretically ceases.
The second laser - the one shooting between the tables - is the engine behind a technique called laser spectroscopy. The spectroscopic laser excites the captured atoms' electrons, and detectors measure the light the electrons give off as they fall to lower quantum orbits when the laser leaves them alone again.

Both are established techniques in analyzing the properties of atoms. The JILA team broke new ground with its use of a laser that fires ultrafast femtosecond, or quadrillionths of a second pulses of light, each pulse packed with 100,000 different colors.

The chilled atoms' lethargy allows this laser "frequency comb" to influence and measure atomic behavior over long periods of time, exciting electrons with a wash of colors and monitoring their many reactions.

Existing techniques, in contrast, would hit atoms one frequency at a time, monitor the result, and move on sequentially to the next color - like tuning a piano one key at a time.
"This technique is like a hammer that tunes the entire piano at once," Ye said.
H. Jeff Kimble, a California Institute of Technology physicist and an authority on quantum information science, said in an e-mail that the Boulder group's work represented "a pioneering advance beyond traditional laser spectroscopy."

Leo Hollberg, a physicist and group leader in NIST's Time and Frequency Division in Boulder, said the approach would let researchers obtain detailed, precise information about atoms quickly and in parallel.
"I think that's a powerful direction for the future of atomic physics and precision instruments," Hollberg said.

Ye said his goal is to use the technique to enable the chemical synthesis of matter using "quantum control" of atoms and molecules, a feat that Hollberg said was "the holy grail of laser spectroscopy" since the 1970s.

Ye's goal is to achieve it within 10 years.
"We are no longer satisfied with knowing how matter works, but want to control the process for the benefit
of mankind," Ye said.
Contact Camera Staff Writer Todd Neff at (303) 4731327 or neff!@dailycamera.com.

Click on a job title below to see an ad

INNKEEPERS John Odde

FLIGHT ASSURA NCE
MA NA GER
University of Colorado

TEACHER

Sunset Academy

DRIVERS

 DriversCLICK HERE FOR MORE

