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Abstract
We propose protocols for the creation of useful entangled states in a system of spins collectively
coupled to a bosonic mode, directly applicable to trapped-ion and cavity QED setups. The
protocols use coherent manipulations of the resonant spin-boson interactions naturally arising in
these systems to prepare spin squeezed states exponentially fast in time. The resonance condition
harnesses the full spin-boson coupling and thus avoids the slower timescales when operating in the
off-resonance regime. We demonstrate the robustness of the protocols by analyzing the effects of
natural sources of decoherence in these systems and show their advantage compared to more
standard slower approaches where entanglement is generated with off-resonant spin-boson
interactions.

1. Introduction

Spin squeezed states [1–4] are a robust example of simple entangled states that can overcome the so called
standard quantum limit (SQL) or fundamental noise floor achievable with N uncorrelated particles.
Consequently, they have become an important resource for quantum-enhanced sensing and their
preparation is a target of intensive research in many different state-of-the-art quantum platforms [5–14].
While spin squeezing can be generated by diverse mechanisms, a common dynamical approach is one-axis
twisting (OAT) [1], involving an infinite range Ising interaction between a collection of two level systems.
Many schemes to engineer OAT make use of long-range interactions realized in atom-boson platforms,
which typically operate in a far-detuned regime where the bosonic degree of freedom only mediates
interactions between the spins [7, 12, 15]. Consequently, the generated spin–spin interactions are slow
compared to the original atom-boson coupling, making any generated squeezing susceptible to decoherence.

Here, we propose to generate spin squeezing through a scheme that resonantly couples spins to a bosonic
degree of freedom and fully leverages the available atom-boson coupling. This is achieved by implementing
various spin-boson models that can be concatenated together to prepare a desired final quantum state. We
describe a pair of simple protocols to create metrologically useful entanglement exponentially fast, in line
with existing proposals and implementations in spin models [1, 15–17], but with the beneficial short
timescales associated with the resonant interactions. Furthermore, we characterize the fundamentally
achievable phase sensitivity of the protocols as a function of particle number.

In the simplest case, we predict that states with noise variance squeezed by a factor of∼N−1/2 below the
SQL can be realized, but we also show that this can be enhanced to near the Heisenberg limit (∼N−1) [18,
19] by using a time-reversal readout protocol to access entanglement beyond the paradigm of squeezed
states. We complement the analysis by assessing the performance of both protocols in the presence of
decoherence and determine under what conditions they may outperform standard OAT.
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Our results are relevant for a range of platforms that use spin-boson couplings or pairs of collective spin
ensembles for entanglement generation [20]. Here, we explicitly demonstrate their utility in 2D arrays of
trapped ions and cavity QED systems [12], where previous attempts at spin squeezing using OAT had been
constrained by decoherence.

2. Model

Our proposal utilizes the TC [21] and anti-TC (ATC) Hamiltonians for N spin-1/2 particles,

ĤTC =− iG√
N

(
âŜ+ − â†Ŝ−

)
, (1)

ĤATC =− iG√
N

(
â†Ŝ+ − âŜ−

)
, (2)

where Ŝα = 1/2
∑N

j=1 σ̂
α
j are collective spin operators for α= x,y,z, the σ̂α

j are Pauli matrices acting on the
jth spin, and G is a coupling constant whose value and N scaling depend on the specific experimental
platform. The bosonic degree of freedom is described by the annihilation (creation) operator, â (â†), while
Ŝ± are spin raising (lowering) operators, traditionally defined as Ŝ± = Ŝx ± iŜy.

To elucidate the utility of the TC and ATC Hamiltonians for rapid entanglement generation and
manipulation, we consider a scenario where an initial spin state is polarized along+z on the collective Bloch
sphere. When N is very large, the collective spin operators can be represented by an auxiliary bosonic system
with annihilation operator b̂, using the lowest-order approximation in a Holstein–Primakoff
transformation [22]

Ŝ+ ≈ i
√
Nb̂, Ŝ− ≈−i

√
Nb̂†, Ŝz = N/2− b̂†b̂ (3)

such that the coherent spin state pointing along+z corresponds to the bosonic vacuum, |(N/2)z⟩= |0⟩b.
The TC and ATC spin-boson models in equations (1) and (2) then give rise to bosonic two-mode squeezing
and beam splitter Hamiltonians

ĤTMS = G
(
âb̂+ â†b̂†

)
, ĤBS = G

(
â†b̂+ âb̂†

)
, (4)

respectively. In terms of the hybrid modes ĉ± = (â± b̂)/
√
2 and their associated quadratures

x̂± = (̂c± + ĉ†±)/
√
2, p̂± = (̂c± − ĉ†±)/(i

√
2), the dynamics created by ĤTMS and ĤBS decouple. These modes

appear in ĤTMS in the form of a classically unstable inverted parabolic potential (p2± − x̂2±), which amplifies
quantum fluctuations in a coherent fashion (see figure 1(b)). Conversely, ĤBS has the form of a stable
parabolic potential (p2± + x̂2±), which facilitates the perfect transfer of quantum states between spin and
boson degrees of freedom. For later convenience, we also define the canonically conjugate quadrature
operators x̂a = (â+ â†)/

√
2 and p̂a =−i(â− â†)/

√
2.

2.1. Squeeze and transfer protocol (SnT)
Using the TMS and BS Hamiltonians, we describe a protocol that we refer to as SnT (squeeze and transfer),
which creates squeezing in the spin and boson subsystems simultaneously (see figure 1(b)). We begin by (1)
preparing the spins polarized along+z and the bosons in vacuum |ψ(0)⟩= |(N/2)z⟩⊗ |0⟩, and let ĤTC act
so that ĤTMS is active. (2) We let the system evolve in this configuration for a time Tsq and then (3) quench
ĤTC →−ĤATC so that now the BS interaction ĤBS acts for a time Ttr. These steps are illustrated in figure 1(b)
using phase space representations of the spin and boson states at different stages of the protocol.

The initial state of the system is shown in figure 1(b) as two independent isotropic Gaussian distributions
in phase space. According to the effective description of ĤTMS, squeezing is created independently in the
hybrid modes (x+,p+) and (x−,p−). The final BS step, when run for a time GTtr = π/4, decouples these
hybrid modes such that spins and bosons end up independently squeezed. For this configuration, the
resultant spin squeezing is quantified by [23]

ξ2 ≡min
θ

N

⟨(
∆Ŝθ

)2
⟩

⟨
Ŝz
⟩2 ≈ e−2GTsq , (5)

where the variance of the transverse spin Ŝθ = cos(θ)Ŝx + sin(θ)Ŝy is minimized over all angles θ, and all
expectation values are calculated at the end of the protocol. When ξ2 < 1 we say the state is spin squeezed,
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Figure 1. (a) Conceptual schematic of the systems we describe. There is a collection of two-level systems that interacts uniformly
with a single harmonic mode. (b) Squeeze and transfer protocol: (i) We begin with a spin state pointing along+z and the bosonic
mode in vaccuum, represented as phase space distributions. (ii) This initial state is an unstable point of the classical Tavis
Cummings Hamiltonian (equation (1)) and hence exponentially amplifies the quantum fluctuations of the state in a way
analogous to spontaneous parametric down conversion (shown in the figure). Near this point, the dynamics are governed by
ĤTMS and create squeezing at 45◦ and−45◦ in the hybrid x+/p+ and x−/p− planes, respectively. (iii) In contrast, for the
anti-Tavis–Cummings (TC) Hamiltonian (equation (1)), the formerly unstable point is now stable and the dynamics are now
governed by ĤBS (represented by the beam splitter figure). After applying the BS step for a time Ttr, the squeezed directions are
rotated in the x+/p+ and x−/p− planes and the spin/boson subsystems end up decoupled. In the final state, the squeezed
directions align with the Sx and pa directions.

which also indicates the presence of entanglement [2]. The right hand side of equation (5) is obtained in the
limit of large N. Simultaneously, we find that noise in the boson quadrature p̂a is similarly squeezed by an
amount e−2GTsq [24]. Under ideal conditions, this exponential growth will only be constrained by curvature
effects arising from finite N, which are caused by higher order corrections in the Holstein–Primakoff
expansion of equation (3) and set in when the initial state becomes moderately depleted. This generically
prevents the squeezing from reaching the Heisenberg limit (ξ2H = 1/N).

2.2. Time-reversal
The limitations arising from curvature can typically be countered by applying the entangling interaction
(ĤTMS in our case) within a time-reversal scheme [9, 25–33]. This protocol begins with the same initial state
|N/2z⟩⊗ |0⟩b and proceeds by letting the TMS interaction act for a time T1. The resulting spin-boson
entangled state (same as in figure 1(b), middle column) constitutes our quantum-enhanced metrological
resource, and can be directly perturbed by the infinitesimal rotation exp(−iϕŜx) that we seek to
characterize5. The readout process then consists of applying the TMS Hamiltonian an amount of time T2

(typically taken to be equal to T1), but with the opposite sign (g→−g), and a final measurement of Ŝθ for an
appropriately selected θ.

The choice of Ŝθ as a measurement observable defines the sensitivity to small rotations

δϕ2 ≡

⟨(
∆Ŝθ

)2
⟩

|∂ϕ
⟨
Ŝθ
⟩
|2

≈ 1

Ncosh(GT/2)2
, (6)

5 The axis of rotation can be chosen to be along any direction in the XY plane for a Bloch vector pointing along+z. Sensitivity with respect
to more general axes can be attained by applying single particle rotations before and after the perturbation.
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where we minimize over θ, generically assuming ϕ→ 0, and the expectation values and variances are
calculated at the end of the protocol. To obtain the right-hand side of equation (6), we set T1 = T2 = T/2 (T
is total protocol time) and assume N→∞ [34]. Once again, the metrological enhancement over the SQL
(δϕ2SQL = 1/N) improves exponentially with time. In time-reversal schemes, this metrological enhancement

arises from an amplification of the signal (∂ϕ⟨Ŝθ⟩) as the total protocol time T grows, while the noise
[(∆Ŝθ)2] at the end of the protocol is independent of T and about the size of quantum projection noise. As
in SnT, the exponentially fast enhancement is a consequence of operating the system at the classically
unstable point described by ĤTMS. This is a generic feature that can be exploited to implement efficient
time-reversal in a diverse set of platforms [9, 25–33].

An important feature of this time-reversal protocol is that there is spin-boson entanglement during the

signal acquisition step (e−iϕŜx). In contrast, SnT only prepares the metrological resource, i.e. a spin squeezed
state decoupled from the bosons, after which signal acquisition would commence, commonly via a Ramsey
protocol. This distinction is of practical importance in the presence of decoherence: in time-reversal, both
boson and spin coherence need to be maintained throughout signal acquisition, which is typically the longest
part of the protocol. In SnT, only spin coherence is relevant during this stage since spins and bosons are
decoupled.

3. Trapped ion implementation

In trapped ion crystals, the TC and ATC models can be indirectly generated by operating at different
parameter regimes of the Dicke model [35–42], written in a spin rotated basis as

Ĥion
Dicke = δâ†â+ΩŜx +

2gion√
N

(
â+ â†

)
Ŝz. (7)

The spin degree of freedom is encoded in the ion internal levels, while the boson corresponds to a motional
mode of the ion array, typically a center of mass mode. The Hamiltonian in equation (7) can be realized, for
example, in the Penning trap implementation described in [12, 32, 43], where the transverse center of mass
motional mode of a planar 2D crystal of N≈ 150 9Be+ ions is coupled to the two 2s 2S1/2 valence electron
spin states using optical dipole forces (ODF), engineered through a pair of detuned lasers. The electronic
states are split by a large magnetic field present in the experiment and can be coherently manipulated using
microwaves, which determine the sign and strength of the transverse field ΩŜx. The effective oscillator
frequency δ is controlled by the difference between the natural oscillation frequency of the center of mass
mode and the detuning between the ODF lasers, while the size and sign of theN-independent coupling g ion is
controlled by their intensity and relative phase, respectively. The dynamics of this system are then described
by equation (7) in a frame where the bosons are rotating at the beatnote frequency of the ODF lasers.

In the interaction picture induced by Ĥ0 = δâ†â+ΩŜx, the Dicke Hamiltonian equation (7) takes the
form

Ĥion
rot =− igion√

N

(
âe−iδt + â†eiδt

)(
Ŝ+ione

iΩt − Ŝ−ione
−iΩt

)
, (8)

where Ŝ±ion = Ŝy ± iŜz are raising and lowering operators along the+x direction. Assuming δ≫ gion and
setting δ =Ω or δ =−Ω we can then apply a rotating wave approximation to recover equation (1) or
equation (2), respectively, with Gion = gion. Owing to the rotated spin basis, the spins should be initialized
along+x instead of+z for step (1) of the protocol.

3.1. Squeeze and transfer (SnT)
The time profile of spin squeezing given by equation (5) for the SnT protocol is only strictly valid in the limit
N→∞, while the trapped ion implementation further requires that δ→∞. To benchmark our predictions
for finite N and δ, we numerically solve equation (7) for N= 250,1000 and constraining δ = 5gion. Given
that the result gionTtr = π/4 also depends on the previous approximations, in our simulations we optimize
over Ttr for each value of Tsq but find that the optimal transfer time remains close to the ideal, with larger
deviations occurring at small δ [34]. We show this optimized value of ξ2 in figure 2(a) and compare it against
equation (5). The numerical calculations match the expected exponential squeezing at short times, before
slowing and attaining a minimum value due to finite size effects. A systematic analysis of the achievable
minimum squeezing with N (see figure 2 inset) reveals a scaling ξ2 ∼ N−1/2 that is reached at
gionTsq ∼ (logN)/4. More sophisticated measurements [12, 18, 19, 44, 45], as well as time-reversal
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Figure 2. (a) Amount of spin squeezing (ξ2) as a function of total protocol time (T= Tsq +Ttr) for the ion implementation of the
SnT protocol. The N→∞, δ →∞ result is shown in dashed black and illustrates the exponential improvement of ξ2 with time,
starting with an offset corresponding to the transfer step. The dotted lines correspond to the results for finite δ = 5gion and
N= 250 (green dots), N= 1000 (red dots). For each fixed protocol time T, we also include the minimum attainable squeezing
parameter optimized over all stroboscopic OAT protocols for various δ (as described in the main text) and N= 1000 in blue. The
inset shows the values of the optimal squeezing of both OAT (∼N−2/3, x markers) and squeeze and transfer (SnT) protocols
(∼N−1/2, square markers) as a function of N and compare them against the Heisenberg limit (ξ2 = N−1). (b) SnT optimized
over Tsq and Ttr for N= 500 and δ = 5gion as a function of dissipation strength, obtained by solving equation (10). We consider
independently the effects of balanced spin flips (γ+) for both OAT (filled blue squares) and the SnT protocol (filled red circles)
and spin dephasing (γz), again for OAT (empty blue squares) and SnT (empty blue circles). Gray lines indicate decoherence levels
in [32], where spin dephasing (γz) and spin flips (γ±) are caused by Rayleigh and Raman scattering, respectively.

strategies [9, 25–31, 34] (as discussed below), can further improve the sensitivity closer to the Heisenberg
limit, though decoherence can impose serious limitations on this [46, 47].

For clarity, we compare our results for SnT against the typical squeezing generated by the OAT model in
the trapped ion setting

ĤOAT =−4g2ion
δN

(
Ŝz
)2
, (9)

which arises from equation (7) when Ω= 0. Strictly speaking, OAT only emerges from equation (7) in the
large detuning limit δ≫ gion where the bosons can be adiabatically eliminated. Nevertheless, the OAT
dynamics can still be reached in a stroboscopic protocol which only measures the spins at times T= 2πn/δ
with n an integer, when they fully decouple from the bosons [12, 48]. We adopt the latter approach,
numerically solving equation (7) for Ω= 0. For fairness we compare to the total protocol time
(T= Ttr +Tsq) at fixed values of g ion and N = 1000, and optimize the attainable squeezing at stroboscopic
times over all tunable parameters, such as δ/gion, for each time T. While the overall time duration of SnT
initially suffers from the fixed Ttr offset, this is eventually overwhelmed by the exponentially fast TMS
dynamics. If we take into account finite size effects, the absolute squeezing attainable with OAT has a more
favourable scaling (N−2/3 for OAT vs N−1/2 for our protocol, see inset of figure 2(a)), but is attained at
progressively longer times g2ionTopt/δ ∼ N1/3 as the number of particles grows, whereas the time required for
our protocol is essentially constant for all experimentally relevant particle numbers (gionTopt ∼ logN).

These shorter time scales can lead to a substantial net gain in spin squeezing in the presence of
experimentally relevant decoherence. During the preparation stage, relevant decoherence processes are
dephasing and spin flips, with jump operators

√
γzσ̂

i
z/2 and

√
γ±σ̂

±
i , respectively. For simplicity in our

following discussion we set γ+ = γ−. In the context of trapped ion simulators, e.g. such as [32], these spin
decoherence processes are a consequence of the applied ODF, and bosonic decay is not relevant.

In the presence of these decoherence sources, the evolution of the system is governed by the master
equation

∂tρ̂=−i

[
δâ†â+Ω(t) Ŝx +

2gion√
N

Ŝz
(
â† + â

)
, ρ̂

]
+
γz
4

N∑
i=1

(
σ̂i
zρ̂σ̂

i
z − ρ̂

)
+
γ+
2

N∑
i=1

(
σ̂i
xρ̂σ̂

i
x + σ̂i

yρ̂σ̂
i
y − 2ρ̂

)
, (10)

where we consider a time dependent Ω(t) to take into account the quench from Ω→−Ω necessary to toggle
between ĤTMS and ĤBS.
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Figure 3. (a) Time reversal protocol to measure a small rotation generated by e−iϕŜz . (b) Metrological gain as a function of total
protocol time T= T1 +T2. We show the ideal equal time T1 = T2, N, δ →∞ case (dashed black line), and the results for finite
δ = 5gion and N= 250 (green dots), N= 500 (red dots). We also include the sensitivity for an optimized version of the protocol
where T2 is slightly larger than T1 and saturates closer to the Heisenberg limit (blue line). Inset: Scaling of the optimal sensitivity
for both schemes as a function of N. (c) Time reversal for Ĥion

Dicke and OAT optimized over T1 and T2 for N= 500 and δ = 5gion
(3gion for OAT) as a function of dissipation strength. We consider independently the effects of balanced spin flips (γ+, filled
squares and circles) and dephasing (γz , empty squares and circles) for both OAT (blue squares) and our protocol (red circles).
Gray lines indicate decoherence levels in [32].

To efficiently investigate the impact of spin decoherence for moderate size systems we solve equation (10)
using a semiclassical numerical method [49], which has been shown to accurately capture the effects of
single-particle dissipation for similar spin-boson models and which we benchmark for equation (7) in [34].
The results are shown in figure 2(b), where we plot the squeezing of SnT as a function of dissipation strength
after optimization over Tsq and Ttr. We find that SnT is substantially more robust than OAT against spin flips
but less robust against dephasing. In the latter case, a large fraction of the discrepancy can be accounted for
by finite size effects. Using [32] as a state-of-the-art example, typical decoherence rates are
γz = 610s−1 ≈ 0.05gion and γ+ = 61 s−1 ≈ 0.005gion (gion = 2π × 2 kHz, Ω∼ 2π× 10–15 kHz). For this set
of parameters, figure 2(b) indicates that dephasing is slightly more relevant than spin flips, with an expected
squeezing of about 9 dB (see gray lines in figure 2(b)).

It is important to point out that the current laser configuration used in the Penning trap has been
optimized assuming a target Hamiltonian of the form of equation (9), i.e. a Hamiltonian that scales as g2ion.
Nevertheless, as pointed out in recent studies [50], for the case when the Hamiltonian dynamics scales
linearly with gion, as in our resonant approach, it should be possible to use an ODF configuration that
features a more favorable scaling of gion/γz and thus a significantly reduced impact from decoherence.

3.2. Time-reversal
In the trapped ion implementation, time reversal of the Hamiltonian in equation (7) requires that
(δ,Ω,gion)→−(δ,Ω,gion) halfway through the protocol. Furthermore, because of the rotated spin basis in

which we are operating, the perturbation that we are trying to characterize is generated by e−iϕŜz (or any axis

of rotation in the YZ plane) instead of e−iϕŜx (see figure 3(a)).
As in the case of SnT, the time profile of the sensitivity shown in equation (6) is only valid in the limits

N, δ→∞, so we numerically test our predictions by solving equation (7) for N = 250 and N = 500 with
Ω= δ = 5gion. The results, shown in figure 3(b), indicate that the metrological enhancement follows the
expected cosh(gionT/2) behaviour at short times, but then reaches a minimum that depends on the system
size N. In contrast to SnT, this minimum shows Heisenberg scaling (Nδϕ2 ∼ N−1, see figure 3(b) inset).
Intriguingly, further enhancement can be obtained by operating with unequal forward and backward
interaction times, allowing for an additional gain of up to 3 dB (see figure 3(b) inset) [34].

The effects of dephasing γz and balanced spin flips γ± are shown in figure 3(b), where we compare the
results of our protocol against time-reversed OAT, obtained by setting Ω= 0 and δ = 3gion in equation (7).
The results are similar to those of SnT: time-reversed OAT is somewhat more robust than our protocol at
small γz for the considered system sizes, but fares worse in the presence of spin flips γ±. Again using [32] as
an example with γ± ≈ 0.005gion and γz ≈ 0.05gion, we find that our protocol is limited by γz and can provide

6
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about 11 dB of metrological enhancement (see gray lines in figure 3(c)). By modifying the configuration of
the ODF lasers, it should be possible to further reduce the effect of decoherence.

4. Cavity QED implementation

In cavity QED systems, the TC model (equation (1)) arises as the natural interaction between two-level
atoms and an electromagnetic cavity mode. In the rotating frame of the atoms, the coupling between these
degrees of freedom is described by

Ĥ cav
TC =−∆cavâ

†â− igcav
(
âŜ+ − â†Ŝ−

)
(11)

where∆cav is the detuning of the cavity with respect to the atomic transition frequency, 2gcav is the single
photon Rabi frequency, and ĤTC (equation (1)) is recovered when∆cav = 0. A direct comparison between
equations (1) and (11) highlights a very important feature of cavity systems: the effective coupling constant
G is N-dependent, i.e. Gcav = gcav

√
N. For concreteness, we now consider the cavity implementation

discussed in [20, 51], where 88Sr atoms are trapped and cooled in a 1D optical lattice, and a high-finesse
optical cavity is collectively coupled to the 1S0 → 3P1 optical transition.

For the SnT protocol we set∆cav = 0. The totally inverted initial spin state along+z (see figure 1(b)) can
be prepared by optical pumping (step (1)). Step (2) (application of ĤTMS for a time Tsq) of the squeeze and
transfer protocol then proceeds automatically because equation (11) is already of the TC form when∆cav =
0. To perform the quench ĤTC → ĤATC, a rapid π pulse along x can be applied just before step (3), so that
Ŝ± → Ŝ∓. We also note that no external drive is present during the entangling stage of the protocol (step
(1)), in a similar spirit to other proposals [15]. The ideal (decoherence-free) scheme is limited only by finite
size effects and follows the results for the ideal (decoherence-free) ion implementation (figure 2(a)).
However, the cavity system is vulnerable to different sources of decoherence and technical noise, so we now
focus on analyzing their impact on the achievable spin squeezing.

Relevant decoherence processes affecting the protocol come from leakage of photons through the cavity
mirrors [36, 39–42] and spontaneous emission, modelled with respective jump operators

√
κâ and

√
γσ̂−

j .
The master equation that takes into account these effects, as well as the consequences of a finite π pulse
duration, is

∂tρ̂=−i
[
gcav

(
âŜ+ + â†Ŝ−

)
+ωRabi (t) Ŝy, ρ̂

]
+κ

(
âρ̂â† − 1

2

{
â†â, ρ̂

})
+ γ

N∑
i=1

(
σ̂−
i ρ̂σ̂

+
i − 1

2

{
σ̂+
i σ̂

−
i , ρ̂

})
, (12)

where the Hamiltonian term ωRabi(t)Ŝy models the π pulse.
We first consider the effects of the finite π pulse and assume γ= 0, which allows us to use the

Holstein–Primakoff approximation to obtain analytic expressions [34]. The dynamics of the system can be
subdivided into three stages—squeezing, π pulse, and transfer—that are characterized by the following time
profile for ωRabi(t):

ωRabi(t) =


0, 0< t< Tsq Squeezing (duration Tsq)

ωRabi, Tsq < t< Tsq +Tdrive π pulse (duration Tdrive)

0, Tsq +Tdrive < t< Tsq +Tdrive +Ttr Transfer (duration Ttr).

(13)

Under ideal conditions the Rabi pulse is instantaneous, i.e. ωRabi ≫ gcav
√
N, in which case

Tdrive ≈ π/ωRabi ≡ Tπ and Ttr ≈ π/(4gcav
√
N)≡ T∗

tr, where Tπ and T∗
tr are the ideal Rabi pulse and transfer

times, respectively. However, when ωdrive is finite compared to gcav
√
N, the atom-light dynamics in the cavity

can impact the quality of the π pulse, reducing the amount of spin squeezing obtained at the end of the
protocol. This can be mitigated by modifying Tdrive and Ttr with respect to the ideal values Tπ and T∗

tr. This is
shown in figure 4, where the final spin squeezing is plotted as a function of∆Tdrive = Tdrive −Tπ and
∆Ttr = Ttr −T∗

tr for two values of ωRabi/(gcav
√
N) = 14.3, 5 and fixed gcav

√
NTsq = 2.2, κ= 0.046gcav

√
N.

Even for ωRabi as low as 5gcav
√
N, a large amount of squeezing can be recovered by appropriately modifying

Tdrive and Tsq. Physically, this is the result of photons being coherently emitted into the cavity via the TC
interaction as the spins are rotated from+z to−z, which can then induce additional rotation of the Bloch
vector and corresponding noise profile. This modifies the optimal duration of the π pulse and transfer steps.
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Figure 4. Color map of squeezing as a function of Ttr and Tdrive for fixed gcav
√
NTsq = 2.2 and ωRabi ≈ 15gcav

√
N (left) and

ωRabi = 5gcav
√
N (right). The horizontal axes are the deviation∆Ttr = Ttr −T∗

tr of the optimal transfer time from the ideal result
g
√
NT∗

tr = π/4, normalized by Ttr. The vertical axis is the deviation∆Tdrive = Tdrive −Tπ of the optimal π pulse time from the
ideal result Tπ = π/ωRabi, normalized by Tπ . Gray regions correspond to oversqueezed states.

Figure 5. (a) Optimal squeezing for various protocols: squeeze and transfer (SnT, solid green), one axis twisting (OAT, solid
purple), twist and turn (TnT, dashed black) as a function ofN for fixed (gcav,γ,κ) = 2π× (10.9,7.5,153) kHz. We also include a
modified curve for TnT that takes into account its regime of validity (TnT ′, dashed gray). (b) Optimal evolution time for the
same set of protocols.

We now analyze the effect of a finite γ, assuming an instantaneous π pulse for simplicity. Because of the
single particle nature of spontaneous emission we can no longer use the Holstein–Primakoff approximation.
However, the large N approximation can still be implemented directly on the equations of motion. This is
done by first solving the mean field dynamics, and then computing the fluctuations about these mean field
values [34], which are generically smaller by a factor of

√
N. The achievable squeezing depends

independently on both κ/gcav, γ/gcav, so we keep these fixed and compute the squeezing parameter as a
function of N after optimization over Ttr and Tsq. We use the values
(gcav,γ,κ) = 2π× (10.9,7.5,153) kHz [20, 51], and vary N in the range (103,106). The results are shown in
figure 5(a), which indicate that the optimal squeezing scales as N−1/2.

It is possible to obtain analytical formulas when κ≫ γ. Then the achievable spin squeezing is [34]

ξ2opt =
πκ

8gcav
√
N

≈ 0.4κ

gcav
√
N
, (14)

obtained at gcav
√
NTtr = π/4+κ/(4gcav

√
N) and 2gcav

√
NTsq ≳ log

(
2.5gcav

√
N/κ

)
. This calculation is

consistent with the N−1/2 scaling of the optimal squeezing and optimal protocol time (up to logarithmic
corrections) that we observe in the numerical simulations shown in figure 5. For N≈ 105 particles, 15 dB of
squeezing are attainable. Equation (14) also indicates that this N dependence comes from the scaling of
Gcav = gcav

√
N and is not a consequence of curvature effects, which we expect to be irrelevant for the number

of atoms that can be typically loaded into these cavity setups.

8
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Finally, we also compare SnT against OAT and twist-and-turn (TnT) [17] protocols, both of which can
be engineered by operating the cavity in a far-detuned regime |∆cav| ≫ gcav

√
N [15]:

Ĥcav
OAT = χcavŜ

2
z , Ĥcav

TnT = χcav

(
Ŝ2z + Ŝx

)
, (15)

where χcav = 4g2∆cav/(4∆2
cav +κ2). In the presence of the same decoherence sources considered in SnT,

optimization of squeezing over∆cav/κ and evolution time leads to ξ2OAT = 6(CN)−1/3 [15, 52] and
ξ2TnT ≈ 4.6(CN)−1/2 [15, 34], where C= 4g2cav/(κγ) is the cooperativity parameter. These results are also
shown in figure 5(a) as a function of N for the same values of gcav,γ,κ as for SnT. However, with this set of
parameters the optimal detuning for TnT satisfies∆opt

cav ≈ 2.5gcav
√
N, which is beyond the regime of validity

for Ĥcav
TnT in equation (15). If we instead fix∆cav = 10gcav

√
N to guarantee the applicability of equation (15)

and optimize over evolution time, we obtain results denoted by the gray line labelled TnT ′ in figure 5. For
completeness, in figure 5(b) we show the total protocol times, measured in units of (gcav

√
N)−1, as a function

of N, and note that SnT yields the shortest protocol time.

5. Outlook

We have discussed protocols that take full advantage of the resonant spin-boson coupling and yield
exponentially fast generation of squeezing, which can mitigate the impact of decoherence. These protocols
are relevant for a range of spin-boson platforms at the cutting edge of quantum sensing applications.
Although we only examine deterministic protocols, an interesting future direction would be the investigation
of how dynamical evolution combined with non-demolition measurements can lead to further improvement.
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