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Using a recently developed extension of the time-dependent variational principle for matrix product
states, we evaluate the dynamics of 2D power-law interacting XXZ models, implementable in a variety of
state-of-the-art experimental platforms. We compute the spin squeezing as a measure of correlations in the
system, and compare to semiclassical phase-space calculations utilizing the discrete truncated Wigner
approximation (DTWA). We find the latter efficiently and accurately captures the scaling of entanglement
with system size in these systems, despite the comparatively resource-intensive tensor network
representation of the dynamics. We also compare the steady-state behavior of DTWA to thermal ensemble
calculations with tensor networks. Our results open a way to benchmark dynamical calculations for two-
dimensional quantum systems, and allow us to rigorously validate recent predictions for the generation of
scalable entangled resources for metrology in these systems.
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The understanding of how quantum correlations develop
and propagate during time evolution in interacting many-
body systems is a fundamental requirement for next-
generation quantum technologies. While considerable work
has been devoted to studying such behavior in short-ranged
systems, the relatively recent experimental realization of
controllable spin systems exhibiting long-ranged inter-
actions, e.g., trapped ions [1–3], polar molecules [4,5],
magnetic dipoles [6], and Rydberg atoms [7], has increas-
ingly galvanized efforts to explore and characterize their
utility as a quantum resource.
Despite these great opportunities, progress has been slow

largely due to the lack of theoretical and numerical tools
suited to faithfully characterize long-range interactions,
especially in higher dimensions. The exponential growth of
the size of Hilbert space with particle number typically
excludes exact solutions beyond a few dozen spins.
Perturbative techniques are generally restricted to short
times [8] or near equilibrium systems, while quasiexact
methods based on tensor network techniques have tradi-
tionally been limited to short-ranged, one-dimensional
systems [9]. A host of approximate methods have been
developed for this purpose, with varying ranges of appli-
cability, including clusterization methods [10,11], varia-
tional ansatzes [12,13], and efficiently solved phase-space
methods [14–18], but the involved approximations are
typically uncontrolled, and thus ultimately remain to be
validated by other theoretical techniques or experiments.

Here, we demonstrate the utility of both tensor network
methods and approximate discrete phase-space methods for
studying the far-from-equilibrium collective dynamics of
two-dimensional (2D) spin models with a varying range of
interactions. We use a recently developed tensor network
scheme based on the time-dependent variational principle
(TDVP) [19] to solve for the collective spin dynamics of the
2DXXZmodel exhibiting power-law decaying interactions.
We demonstrate that the discrete truncated Wigner approxi-
mation (DTWA) [15,18] efficiently and accurately captures
the collective spin dynamics and buildup of entanglement
across a wide range of parameter space, in many cases even
yielding improving agreement for larger system sizes.While
the large dynamical growth of entanglement eventually
limits the system sizes and time accessible by TDVP,
DTWA accurately captures the many-body dynamics at
comparatively no computational cost, paving the way
for its reliable use in theoretical calculations for experi-
mentally relevant system sizes and timescales [20]. Our
results directly corroborate a host of recent theoretical
predictions relating to the generation of entanglement for
metrological applications in power-law interacting spin
arrays [12,21–24], which have been experimentally realized
in a variety of atomic platforms [25–27].
We further investigate the scrambling and relaxation

behavior, computing the entanglement dynamics and
expected thermalization temperature for this system.
Though DTWA appears to capture the initial relaxation
for all the investigated models, it diverges from exact
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calculations at long timescales for sufficiently local sys-
tems. This observation indicates the breakdown of this
method for capturing thermalization in short-range inter-
acting models. Nevertheless, our results validate the utility
of DTWA for studying far-from-equilibrium dynamics of
long-range, higher-dimensional spin models.
Model.—We consider a system of N spin-1=2 particles,

with dynamics governed by the 2D power-law interacting
XXZ Hamiltonian

ĤXXZ ¼ −J⊥
XN

i<j

ŝi · ŝj þ Δŝz;iŝz;j
jri − rjjα

: ð1Þ

ŝμ;i with μ ¼ x, y, z are spin-1=2 operators for the spin at
position ri, and we assume a square lattice with open
boundary conditions. We also define collective spin oper-
ators Ŝμ ¼

P
N
i¼1 ŝμ;i, and total spin Ŝ2 ¼ P

μ¼x;y;z Ŝ
2
μ. The

Hamiltonian consists of spin-aligning terms ŝi · ŝj, as well
as Ising interactions ŝz;iŝz;j of relative strength Δ. This
canonical model of quantum magnetism with power-law
couplings plays a key role in describing the relevant physics
for many quantum simulation platforms, including trapped
ion arrays (0 ≤ α ≤ 3) [3], Rydberg atoms (α ¼ 3, 6) [7],
magnetic dipoles [6] and polar molecules (α ¼ 3) [4], and
arrays of neutral atoms (α ¼ ∞) [28].
We consider the spin dynamics under Eq. (1) for an

initial coherent spin state jψ0i ¼ j → … →i, consisting of
all spins polarized along þx. In the case of all-to-all
interactions with α ¼ 0 or in the limit Δ ¼ 0, Eq. (1)
conserves the total spin, and the state remains in the
collective manifold of permutation-symmetric states. For
α ¼ 0, the dynamics of our initial state can be described by
the canonical, fully collective one-axis-twisting (OAT)
model, ĤOAT ¼ χŜ2z [29]. Additionally, in the Ising limits
of Δ → �∞, the local magnetization is conserved, ena-
bling an analytic solution for the dynamics of arbitrary two-
body correlators [30]. However, away from these solvable
limits, the dynamics generically involve the larger space of
noncollective states.
Methods.—An efficient approximation to the dynamics

of Eq. (1) is afforded by the DTWA [15,18,31], which
provides a way to simulate the dynamics of large, interact-
ing spin systems with a complexity polynomial in N. This
semiclassical phase-space method relies on the classical
evolution of independent phase-space trajectories, whose
initial conditions are sampled in such a way as to exactly
reproduce, within sampling error, the quantum noise
distribution of an initial product state, as shown in the
Supplemental Material [32]. This method, and closely
related variations, have been increasingly utilized in recent
years for studies ranging from the universal properties of
quantum systems [38,39] to predictions for entanglement-
based sensing protocols [21–24]. Ultimately however, the
involved approximations remain strictly valid only at short

times, and the resulting predictions remain to be verified by
alternative methods or experiments [31,40].
As a more controlled yet intensive approach to solving

the quantum dynamics, one can employ the TDVP [41–43],
which time evolves a matrix product state (MPS) [9] by
variationally minimizing the distance kĤjψi − iðd=dtÞjψik
at each time within the tangent space of the MPS jψi.
Compared with other MPS time-evolution methods in the
presence of long-range interactions, TDVP can retain a
smaller time step error [19] but may accumulate large errors
from projecting into the tangent space of a compressed
MPS, whose number of variational parameters may be
insufficient to accurately describe the evolution. To resolve
this issue, we utilize a global subspace expansion (GSE)
method [19], which extends the bond basis of the MPS at
the current time with MPS representations of state vectors
in the order-k Krylov subspace,

KkðĤ; jψiÞ ¼ spanfjψi; Ĥjψi;…; Ĥkjψig: ð2Þ

This basis expansion enables us to more efficiently and
accurately capture the relevant, developing correlations
between spatially distant spins in Eq. (1). Nonetheless,
as with any MPS method, it remains challenging to reliably
evolve to long times owing to the fast bond dimension
growth resulting from entanglement generation, parti-
cularly in higher spatial dimensions, as shown in the
Supplemental Material [32].
Collective spin dynamics.—To examine the development

of collective correlations in the dynamics, including
the symmetrized off diagonal correlators, we study the
Wineland spin squeezing parameter [44–46], defined as

ξ2 ≡minn̂
NhðΔŜn̂Þ2i

jhŜij2 : ð3Þ

Here, hðΔŜn̂Þ2i ¼ hðŜn̂ − hŜn̂iÞ2i is the transverse spin
variance, with Ŝn̂ ¼ n̂ · Ŝ, minimized over all axes n̂
perpendicular to the collective Bloch vector hŜi. ξ2 < 1
implies the presence of multipartite entanglement [47], and
the scaling of the achievable spin squeezing with system
size provides an indicator of collective behavior [12,24]. In
addition, the spin squeezing quantifies the gain in angular
resolution relative to its value for an uncorrelated coherent
spin state. The sensitivity of the latter is bounded by the
so-called standard quantum or shot-noise limit, given by
ξ2SQL ¼ 1. A state with ξ2 < 1 is thus a potential resource
for improved precision measurements [48].
In Fig. 1, we compare the performance of DTWA and

GSE-TDVP in computing the spin squeezing dynamics for
select values of Δ and the power-law coupling α for a 6 × 6
and a 10 × 10 system. Given the generic difficulty of
simulating large system sizes, we only time evolve with
GSE-TDVP until a local minimum in the spin squeezing is
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reached, when possible. We also rescale the time axis by
jΔjJ̄, where J̄ ¼ J⊥

P
i≠j jri − rjj−α=½NðN − 1Þ� is the

average interaction over all spin pairs. While this provides
a convenient collapse of the dynamics at early times across
our parameter space, we emphasize that “short” timescales
under this rescaling generally do not correspond to short
times in terms of the underlying Hamiltonian parameters, as
can be observed from the magnitude of J̄ in Fig. 1(i).
Overall, we find that DTWA excellently captures the spin

squeezing dynamics. While small numerical discrepancies
≲0.5 dB are observed in the minimum squeezing for larger
αwhenΔ ¼ −1.8, this offset appears to be constant for both
system sizes in consideration. Furthermore, for smaller α
where we generally observe even better agreement, we find
that any lingering discrepancies are somewhat smaller for
the 10 × 10 lattice, suggesting an improvement in accuracy
as the size of the system is increased even beyond the reach
of GSE-TDVP. In Figs. 1(c), 1(d), 1(g), and 1(h), we also
compare the dynamics of the total collective spin length,
hŜ2i, normalized by its initial value hŜ2

0i¼ðN=2ÞðN=2þ1Þ,
finding the dynamics are well captured by DTWA for all
parameters and simulated times.
To make systematic comparisons over a wider swath of

parameter space for Eq. (1), we utilize the optimal value of
the spin squeezing (minimized over t) as a figure of merit
for the performance of DTWA relative to GSE-TDVP. In
Figs. 2(a)–2(c), we plot the minimum squeezing over a
range of Δ and α for lattice sizes up to 10 × 10. We
continue to find that the general agreement of DTWAwith
GSE-TDVP persists across all parameters considered,
including a slight improvement in agreement for small α
as the system size increases and a small, constant offset for
larger α and jΔj. For the region −2≲ Δ < 0, relatively

longer times are required to reach the minimum squeezing
compared with other Δ, and we also encounter a much
larger bond dimension in this regime, particularly as α is
increased, as shown in the Supplemental Material [32].
Owing to the resource-intensive TDVP calculations for the
large bond dimension, we only provide results when
available.
Given the demonstrated correspondence between the

spin squeezing dynamics for DTWA and GSE-TDVP, as
well as the rare availability of exact results for a range of 2D
system sizes beyond the capabilities of exact diagonaliza-
tion, we examine the ability of DTWA to capture finite-size
scaling trends. Of key importance for assessing the col-
lective nature of the dynamics, as well as the achievable
utility of these states for metrology, is the exponent ν
governing the system size dependence of the spin squeez-
ing parameter [12,24,49], ξ2 ∼ Nν. In Fig. 2(d), we plot the
values of this exponent as obtained from either DTWA or
exact results for the displayed system sizes. We find good
correspondence between these methods, which both cap-
ture the emergence of a quasicollective regime with
enhanced jνj for α < 4 and small negative Δ.
Thermalization.—To explore connections between the

collective dynamics and the equilibrium physics of the
XXZ model, we compare the long-time relaxation dynam-
ics of Eq. (1) to the thermal ensemble at the same mean
energy. Given the generic difficulty of both simulating
long-time dynamics and accessing the low-temperature
physics of the system, we employ a combination of phase
space and MPS methods to explore this regime.
We can apply DTWA to efficiently compute the long-

time dynamics of this system, though owing to the large
growth of entanglement as the system approaches equilib-
rium, we are unable to make comparisons with equivalent

FIG. 1. Dynamics of (a),(b) the spin squeezing ξ2 (shown in decibels) and (c),(d) total spin hŜ2i generated by Eq. (1), shown for select
interaction ranges α and Δ ¼ −1.8, −0.2 on a 6 × 6 lattice. The total spin is normalized by its initial value, hŜ2i0 ¼ ðN=2ÞðN=2þ 1Þ,
and the time axis is scaled by the average spin interaction J̄ and jΔj. Solid lines are obtained by GSE-TDVP (longest evolved times
denoted with vertical bars for visibility), while the dashed lines are obtained by DTWA. We show exact results for the collective case
with α ¼ 0 for comparison (black, dashed). (e)–(h) Analogous results for a 10 × 10 lattice. (i) We also plot J̄=J⊥ for various 2D square
lattices of side length L, with expected power laws shown for comparison.
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MPS methods, even with the GSE variant of TDVP. We
thus resort to comparisons with the corresponding thermal
ensemble, computed via various MPS techniques: purifi-
cation [50] and minimally entangled typical thermal states
(METTS) [51,52]. Owing to the global conservation of Ŝz
by Eq. (1), we include an associated Lagrange multiplier in
our thermal ensemble that properly accounts for local
fluctuations of this quantity, and which should be adequate
to describe the thermalized values of local observables.
However, for the consideration of global correlators of the
closed system, where Ŝz is not allowed to fluctuate, we
further modify our ensemble with an additional Lagrange
multiplier to enforce conservation of the variance ðΔŜzÞ2,
as shown in the Supplemental Material [32].
In Fig. 3, we plot the value of the transverse magneti-

zation hŜ2⊥i for various scaled times as computed via
DTWA, where Ŝ⊥ ¼ ðŜx; Ŝy; 0Þ, and compare this to the
value in the associated thermal ensemble, obtained from
MPS. We find that hŜ2⊥i at the rescaled time t=t�OAT ¼ 1,
where t�OAT is the optimal squeezing time for an OATmodel
with coupling χ ¼ J̄jΔj=2, appears to align closely with the
thermal value when Δ < 0. However, at later times, we
observe that the value of hŜ2⊥i, as computed via DTWA,
continues to slowly decay for α > 2 and −2≲ Δ < 0,
significantly deviating from the thermal expectation.
We attribute this artifact to a breakdown of DTWA at

long times when thermalizing to the expected long-range or
quasi-long-range ordered state—the XY ferromagnet char-
acterized by a macroscopic transverse magnetization—for
α > 2 and small negative Δ, as opposed to any physical
effect present in the actual system. Indeed, as Δ approaches
0, the initial spin-polarized state tends to an eigenstate of
the system, and should not undergo any spurious relaxa-
tion. Overall however, we find that DTWA at least plateaus
to the expected thermal value initially, before exhibiting
this further decay. For Δ > 0 and Δ≲ −2, the relaxation at
late times of DTWA agrees well with METTS and
purification calculations.

In Fig. 3(c), we also plot the temperature of the thermal
state obtained via purification or METTS, which we scale
by J̄ to account for the possible superextensive scaling of

FIG. 2. (a)–(c) Optimal spin squeezing ξ2 (in decibels) computed via GSE-TDVP (squares) and DTWA (faded lines) for various 2D
lattice sizes, interaction ranges α, and Δ. The dotted horizontal lines denote the expected results for the OAT model (α ¼ 0), while the
vertical dashed lines correspond to Δ ¼ 0. Unfilled squares denote estimated values for parameters where the GSE-TDVP dynamics
approach close to, but do not achieve, a local minimum for the longest evolved times, as shown in the Supplemental Material [32].
(d) Fits for the power-law scaling of the optimal spin squeezing with the particle numberN, where ξ2 ∼ Nν. The associated fitting error is
denoted by error bars for exact results, or the shaded region for DTWA results. We supplement our data with exact and DTWA results for
a 4 × 4 lattice, and only provide fits when data for three or more system sizes are available.

FIG. 3. (a),(b) Comparison between the long-time values (lines)
and thermal ensemble averages (squares, same in each panel) of
the transverse magnetization hŜ2⊥i, normalized by its initial value
of hŜ2⊥i0 ¼ NðN þ 1Þ=4 for a 6 × 6 lattice. Dynamical results are
obtained via DTWA for various scaled times t=t�OAT. The thermal
averages are obtained viaMETTS forΔ > 0 and via a purification
method for Δ < 0. (c) We also show the temperature T of the
thermal state, scaled by J̄. (d),(e) Dynamical growth of the bipartite
entanglement entropy, SvN ¼ −Tr½ρ̂A ln ρ̂A�, where ρ̂A is the
reduced density matrix for a bipartition of the lattice about the
center. We showGSE-TDVP results on an 8 × 8 lattice for various
values of Δ and α, scaling the time axis by J̄jΔj. We also provide
the results for the OAT model (black, dashed) for comparison.
(f) From the available short-time data, we estimate the growth rate
of the entropy by fitting SvN ≈ r × t, and plot the resulting
coefficient r, scaled by J̄jΔj. The resulting fit for the OAT model
over the range tJ̄jΔj≲ 0.3 is also shown (black, dotted).
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Eq. (1). We can see that the onset of a large total spin in the
late-time dynamics and corresponding thermal ensemble is
linked closely with a reduction in temperature, as well as an
enhanced scalability of the attainable spin squeezing in
Fig. 2(d), suggesting the continuous-symmetry-broken low
energy structure plays a critical role in the onset of
collective squeezing behavior [12,21,24].
Finally, in Figs. 3(d)–3(f), we estimate the growth of the

bipartite entanglement entropy over the 2D lattice from
available GSE-TDVP dynamics, which is a quantity that
remains inaccessible to DTWA. Close to Δ ¼ 0, we find
that the entropy growth rate is similar for all α, and
collapses close to the expected entropy growth for the
all-to-all case in our scaled time. This is consistent with the
scrambling of the dynamics within the limited set of
collective states. Away from Δ ¼ 0, we observe faster
entanglement growth for shorter-ranged interactions, where
the dynamics spreads beyond the collective manifold to the
larger space of noncollective states. This regime coincides
with an observed reduction in the scalability of the
attainable spin squeezing, as well as with an increase in
the size of the bond dimensions required to represent the
state, as shown in the Supplemental Material [32]. Overall,
we observe that an increased growth rate appears to be
roughly associated with a higher final temperature of the
corresponding thermal ensemble.
Conclusions.—We have demonstrated that DTWA pro-

vides efficient, accurate solutions for the dynamics of the
2D XXZ model with power-law decaying interactions
through benchmarks with an extended TDVP algorithm,
on lattice sizes of up to 10 × 10. These system sizes are
directly relevant for current experiments utilizing trapped
ions [25] or optical tweezer arrays of Rydberg atoms
[26,27]. We have also probed the long-time relaxation of
DTWA with MPS calculations of the expected thermal
ensemble, finding good agreement at intermediate times
and the ability to capture the onset of long-range or quasi-
long-range order, while also demonstrating the continued
utility of MPS methods for probing quantities inaccessible
to DTWA, such as the entanglement growth.
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