
 

Switchable X-Ray Orbital Angular Momentum from an Artificial Spin Ice
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Artificial spin ices (ASI) have been widely investigated as magnetic metamaterials with exotic properties
governed by their geometries. In parallel, interest in x-ray photon orbital angular momentum (OAM) has
been rapidly growing. Here we show that a square ASI with a patterned topological defect, a double edge
dislocation, imparts OAM to scattered x rays. Unlike single dislocations, a double dislocation does not
introduce magnetic frustration, and the ASI equilibrates to its antiferromagnetic (AFM) ground state. The
topological charge of the defect differs with respect to the structural and magnetic order; thus, x-ray
diffraction from the ASI produces photons with even and odd OAM quantum numbers at the structural and
AFM Bragg conditions, respectively. The magnetic transitions of the ASI allow the AFM OAM beams to
be switched on and off by modest variations of temperature and applied magnetic field. These results
demonstrate ASIs can serve as metasurfaces for reconfigurable x-ray optics that could enable selective
probes of electronic and magnetic properties.
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Artificial spin ices (ASI) consist of patterned arrays of
nanomagnets whose properties can be tuned based on
geometry and competing interactions. As a result, ASIs
are often designed to realize systems not readily accessible
in nature [1,2] such as geometrically frustrated magnetic
lattices [3–5]. Frustration arising from topological defects,
such as a single edge dislocation in a a square ASI [6], has
also been studied. ASIs have the advantage that they can be
reconfigured through a variety of field [7,8], temperature
[9,10], and direct writing approaches [11,12]. Applications
of ASIs have recently begun to emerge with a primary focus
on computing [13–17]. Here we consider a square ASI with
a previously unstudied topological defect, a double edge
dislocation, shown in Fig. 1(a). Double edge dislocations
are extremely rare defects in natural materials; however,
they can be easily patterned into artificial systems. We
demonstrate that such a modified ASI can impart OAM to
x rays in a controlled manner.

OAM is a topological property of light for which the
photon phase has a helical structure around its propagation
axis [18–20]. Interest in optical OAM is increasing in the
x-ray regime where it could provide a selective probe of
electronic and magnetic systems [21–29]. Recently, x-ray
OAMwas generated by gratings with structural topological
defects [30]. However, the phase properties of coherently
scattered photons from a 2D-magnetic lattice with a topo-
logical defect, as shown in Fig. 1(a), have not been studied
in any detail. In fact, there are only very limited reports of
magneto-optic effects associated with OAM beams at any
wavelength [31,32]. Here we employ tunable, coherent,
x-ray sources to exploit the resonant enhancement of the
spin-photon interaction cross section and observe soft x-ray
OAM from ASIs.
To create an ASI with an edge dislocation one can

displace the lattice points along one of the structural lattice
vectors [33,34], taken as ⃗x̂ in Fig. 1(a), by a factor
proportional to the azimuthal angle [35]. The Burgers
vector that describes the double dislocation is ⃗t ¼ 2a ⃗x̂,
where a is the lattice constant. Thus, two additional
structural periods are acquired over the course of a
Burgers circuit; consequently, the defect has structural
topological charge Zs ¼ 2, and we refer to this system
as a “Z2-ASI.” Equivalently, the structural lattice acquires a
geometric, or Pancharatnam-Berry, phase of 4π around a
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Burgers circuit [36,37]. It is known that square ASIs
without edge dislocations can equilibrate into the anti-
ferromagnetic (AFM) ground state near room temperature
if the nanomagnets have sufficiently small volume and
appropriate spacing [7,10,38]. We adopted dimensions
similar to those used in Ref. [10] under the assumption
that the edge dislocation would not dramatically alter the
equilibration process. The AFM lattice has twice the lattice

constant of the structural lattice. Thus, the magnetic
topological charge of the defect would be Zm ¼ 1, and
the AFM lattice would acquire a geometric phase of 2π
around the Burgers circuit.
X-ray diffraction from the Z2-ASI yields charge-

scattered beams at integer reciprocal lattice points from
the structural lattice and at half-integer reciprocal lattice
points from the AFM lattice. For a structural topological
charge of 2, the charge- and magnetic-scattered beams are
expected to carry even and odd OAM quantum numbers,
respectively, as illustrated in Fig. 1(c). These beams can
also be orthogonally polarized; thus, the Z2-ASI can create
spatially separated beams of differing polarization and
OAM quantum number as discussed in more detail below.
Beams carrying OAM will form regardless of in-plane
rotation of the ASI because the phase-singularity is fixed
and there are always nanomagnets whose magnetization
has a component along the beam direction. Moreover,
square ASIs exhibit antiferromagnetic-to-paramagnetic
(AFM-to-PM) transitions with temperature [9,10,39] and
antiferromagnetic-to-ferromagnetic (AFM-to-FM) transi-
tions under applied fields [7]. The critical temperatures
and reversal fields are governed by the size of and
interactions among the nanomagnets along with the proper-
ties of the constituent material. As a result, we predicted
that the magnetically scattered OAM beams should be
sensitive to temperature and applied magnetic field.
To confirm these predictions, we fabricated the Z2-ASI

from ferromagnetic permalloy (Ni0.80Fe0.20) using electron-
beam lithography and lift off [35]. The resulting structure
is shown in Fig. 2(a). The permalloy nanomagnets
mimic Ising spins due to their large shape anisotropy.
We chose the thickness of the permalloy to be between 2
and 3 nm so that the structure is thermally active and
undergoes an AFM-to-PM transition near room tempera-
ture (TN ≈ 300 K).
Similar structures without topological defects have been

studied, and are known to order into an AFM ground state
[7,38,40,41]. The addition of a single dislocation introdu-
ces topological frustration and prevents the lattice from
reaching a single-domain AFM state [6]. However, for the
double dislocation studied here, the magnetic lattice is not
frustrated at the nearest-neighbor level. Thus, thermal
fluctuations near the AFM-to-PM phase transition should
enable the sample to attain a single-domain AFM ground
state when slowly cooled below TN [10]. However, it was
not known a priori whether the lattice distortion around the
double edge dislocation would nucleate and/or pin super-
domain walls or introduce longer nanomagnets that may
not be thermally active [35]. These effects could prevent
long-range ground state ordering despite the absence of
direct magnetic frustration.
To resolve these questions, we used x-ray magnetic

circular dichroism photoemission electron microscopy
(XMCD-PEEM) to experimentally image the ground state

FIG. 1. Schematic of x-ray OAM from a topological defect in
an artificial spin ice. (a) A square lattice of nanomagnets with a
topological defect imparts orbital angular momentum to dif-
fracted x rays. The structural-lattice defect has topological charge
2 and generates even-order OAM in the charge-scattered x-ray
beams. The antiferromagnetic ground state defect has topological
charge 1 and produces odd-order OAM in the magnetically
scattered x-ray beams (four lowest-order beams are shown). The
magnetically scattered beams can be manipulated by varying
temperature or magnetic field. (b) Structural lattice and AFM
lattice. Red arrows show that the magnetic lattice is rotated 45°
with respect to the structural lattice. (c) Positions of charge (red)
and magnetic (blue) OAM peaks in reciprocal space labeled by
OAM quantum number. (d) Schematic of the intensity and phase
fronts of beams with OAM quantum number l ¼ 0, 1, 2, and 3.
Red and blue represent charge and magnetic scattered beams
carrying even- and odd-order OAM, respectively.

PHYSICAL REVIEW LETTERS 126, 117201 (2021)

117201-2



order as shown in Fig. 2(b). XMCD-PEEM is a magnetic
imaging technique that probes magnetization parallel or
antiparallel to the incident x-ray beam. Magnetic images
were recorded using the PEEM-3 microscope at beam line
11.0.1.1 of the Advanced Light Source. The incident x rays
were tuned to the Fe L3 absorption edge (∼708 eV), and
the difference between the right- and left-circularly polar-
ized x-ray images was taken to emphasize magnetic
contrast over chemical or topographic contrast.
The image in Fig. 2(b) was taken at T ¼ 110 K, well

below the AFM-to-PM transition temperature. The x-ray
beam was oriented along the ½−11� direction of the
structural lattice at 30° grazing incidence. This sample
orientation gives sensitivity to in-plane magnetic moments
for both [10] and [01] oriented islands in the lattice. The
white and black regions signify opposite magnetization
directions of the nanomagnets, and confirm that the sample
orders into an AFM ground state. A Burgers circuit drawn
around the defect, indicated in blue in Figs. 2(a) and 2(b),
shows that the structural lattice has two extra periods
(Zs ¼ 2) while the magnetic lattice has one extra period
(Zm ¼ 1) as discussed above. Thus, the engineered defect
provides the desired topological charge and does not
prevent single-domain ground state ordering.
With the antiferromagnetic ground state established, we

conducted coherent x-ray scattering experiments to study
the OAM of the diffracted beams. X-ray scattering was
conducted at the COSMIC-Scattering beam line at the
Advanced Light Source, Lawrence Berkeley National

Laboratory, and at the Coherent Soft X-ray (CSX) beam
line at the National Sychrotron Light Source II,
Brookhaven National Laboratory. The diffracted photons
were detected using a Timepix [42–44] based soft x-ray
detector at ALS and fast CCD detector at CSX. The
diffraction experiment was performed in a reflection
geometry as shown in Fig. 1(a). A coherent beam of
x rays was incident on the sample at θ ¼ 9°.
To obtain magnetic sensitivity, we employed resonant

magnetic scattering by tuning the energy of the incident x ray
to Fe L3 edge (708 eV). Figures 2(c) and 2(d) show the
diffraction patterns from the Z2-ASI with x rays tuned away
from (690 eV) and on (708 eV) the Fe L3 absorption edge,
respectively. Vortex beams, bright rings with zero intensity at
the center, appear at the structural Bragg condition,
integral values of ðH;KÞ ¼ ½Qx=ð2π=aÞ; Qy=ð2π=aÞ�, for
both off- and on-resonant x-ray illumination. On resonance,
additional vortex beams become visible due to magnetic
scattering at the charge-forbidden (half-integer) AFM
Bragg condition [Fig. 2(d)]. Magnetic peaks have been
previously observed from the AFM ground state of square
lattices without topological defects [10,45], but here the
topological defect yields vortex beams at the AFM Bragg
condition.
The detailed characteristics, and especially the inten-

sities, of these diffracted x-ray beams are determined by the
structure and form factors of the system, which are
determined by the size, shape, and composition of the
nanomagnets. However, the photon OAM quantum

FIG. 2. Experimental realization of a single-domain AFM ground state in the Z2-ASI and resulting x-ray diffraction. (a) Scanning
electron micrograph of a permalloy lattice of nanomagnets with a topological defect consisting of a double edge dislocation. (b) X-ray
magnetic circular dichroism PEEM micrograph revealing the AFM ground state order. The blue boxes trace out a Burgers circuit.
(c) Off-resonance diffraction produces x-ray vortex beams carrying even order orbital angular momentum at the structural Bragg
conditions. (d) Diffraction at the resonance condition dramatically enhances vortex beams at the AFM Bragg conditions (half-integer
values of H and K) carrying odd-order OAM.
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numbers and basic vortex nature of the beams can be found
simply from the lattice sum, which, for a 2D square lattice
with an edge dislocation, is given by

L ¼
X

m

exp

�
iQ⃗ · R⃗m þ iQ⃗ · ⃗t

ψm

2π

�
; ð1Þ

where R⃗m are the lattice vectors of the undistorted lattice, ⃗t
is the Burgers vector for the structural lattice, and ψm is the
azimuthal angle for the mth lattice vector [33]. Near
a reciprocal lattice point Q⃗0, this sum can be approximated
as [35]

L0ðρ0;ϕ0Þ ¼ il expðilϕ0ÞUðl; ρ0Þ: ð2Þ

The diffracted beam resulting from the lattice sum in
Eq. (2) is described by a phase factor expðilϕ0Þ and a
purely real amplitude Uðl; ρ0Þ. The phase factor reveals
that any beam with l ≠ 0 carries an orbital angular
momentum of ℏl [18], where the integer l is given by

l ¼ Q⃗0 · ⃗t
2π

: ð3Þ

As noted above, charge-scattered beams occur at
integral valued reciprocal lattice vectors. For the case
of ⃗t ¼ 2a ⃗x̂ considered here, Eq. (3) yields l ¼ 2H,
where H ¼ Qx=2π ¼ 1; 2; 3;… and l is always even.
Antiferromagnetically scattered beams occur at half-
integer reciprocal lattice vectors where H ¼ Qx=2π ¼
1=2; 3=2; 5=2;…, and l is odd. Thus, the diffracted beams
from the structural lattice carry even-order angular momen-
tum (i.e., 0ℏ, 2ℏ, 4ℏ,…) consistent with Zs ¼ N ¼ 2. The
magnetically diffracted beams carry odd-order angular
momentum (i.e., 1ℏ, 3ℏ, 5ℏ;…). This is consistent with
Zm ¼ 1 because scattering with even-order angular
momentum is forbidden by the symmetry of the AFM
structure factor. The amplitude in Eq. (2), Uðl; ρ0Þ, reveals
that the beams that carry OAM (l ≠ 0) will exhibit a vortex
structure. The amplitude also indicates that the vortex
radius will increase with l [35]. All of these results are
consistent with the diffraction patterns shown in Figs. 2(c)
and 2(d).
The polarization sensitivity of x-ray scattering [46] also

enables direct determination of the phase progression of the
OAM beams and thus the OAM quantum numbers.
Specifically, σ-polarized incident x rays yield charge
scattered beams carrying even OAM with σ polarization
and magnetically scattered beams carrying odd OAM with
π polarization [35]. For circularly polarized incident light,
there is interference between the charge and magnetically
scattered components. These interference effects are most
easily observed in the difference in scattered intensity
between left- and right- (Icþ and Ic−) circularly polarized
illumination, as shown in Fig. 3. The circular-polarization

sensitivity arises from the phase difference in the π
component of left- and right-circularly polarized incident
light. The interference patterns in Fig. 3 exhibit modulation
of the intensity in the azimuthal direction about the axis of
propagation. This is a result of the azimuthal phase
progression of the primary beam with respect to the slow
(or zero) phase progression in the tails of nearby charge-
scattered beams. The increasing number of fringes with
diffracted order is consistent with increasing OAM and thus
an increasing number of phase windings [47,48]. Plotting
Icþ − Ic− vs azimuthal angle for the first three AFM beams
gives the number of fringes as l ¼ 1, 3, and 5 which is the
same as the predicted OAM quantum number from Eq. (3).
Finally, the temperature and magnetic field dependence

of the AFM order provides control of the AFM-scattered
OAM beams. Similar permalloy square lattices without
topological defects undergo AFM-to-PM phase transitions

FIG. 3. Determination of the AFM OAM quantum number
from interference between charge and magnetically scattered x
rays. The sum and difference of diffracted intensities (arb. units)
from left- (Icþ) and right- (Ic−) circularly polarized illumination
are plotted for magnetic beams with l ¼ þ1, l ¼ þ3, and
l ¼ þ5 OAM quantum numbers. The first column, Icþ þ Ic−,
shows the vortex structure of the beams. The second column,
Icþ − Ic−, reveals the interference pattern between charge and
magnetically scattered x rays. Dashed lines serve as a guide and
the scale bar applies to all panels. Within the vortex ring, the
number of interference fringes corresponds to the OAM quantum
number as it would for interference with a plane wave. The third
column plots Icþ − Ic−=Icþ þ Ic− versus azimuthal angle which
reveals an approximately sinusoidal oscillation consistent with
the OAM phase progression.
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near room temperature [10] and AFM-to-FM transitions
under applied magnetic field [7]. As temperature increases
toward the AFM-to-PM transition of our Z2-ASI, the
intensities of the OAM beams at the AFM Bragg condition
weaken until they are extinguished above TN ≈ 380 K as
shown in Fig. 4(a). This result was replicated using a
sample with lower TN [35].
If we apply an in-plane magnetic field to the sample,

instituting an AFM-to-FM transition, the AFM OAM
beams are also extinguished, as shown in the first frame
of Fig. 4(b). In this case, we applied the field along the ½1 0�
direction which was orthogonal to the beam axis. If we
maintain the sample temperature close to TN and remove
the magnetic field, the sample relaxes into disordered AFM
superdomains within seconds as evidenced by the speckle
patterns at short timescales of Fig. 4(b). In the future, these
speckle patterns could be employed to characterize the out-
of-equilibrium dynamics of ASIs with topological defects.
The sample relaxes to the AFM ground state over several
minutes, as shown in the last frame of Fig. 4(b). A video of
the fluctuation and relaxation processes is available in the
Supplemental Material [35]. At the timescales measured
here, relaxation is dominated by domain wall nucleation,

annihilation, and transport which could be jammed or
pinned. However, the relative contributions of these mech-
anisms is yet to be established. Regardless, the AFM OAM
beams can clearly be switched on and off with small
changes in temperature and applied field. ASIs with ground
states that naturally contain phase progressions, such as
finite-sized pinwheel tilings, will also be responsive to
temperature and field and could be considered for control-
lable OAM generation.
We have shown that introducing a double edge

dislocation in a square artificial spin ice does not prevent
equilibration to a single-domain antiferromagnetic ground
state. Thus, the patterned topological defect exhibits a
structural charge of two and a magnetic charge of one.
As a result, the ASI imparts even- and odd-order orbital
angular momentum to charge- and magnetically scattered
x-ray photons, respectively. We determined the OAM quan-
tum numbers of the magnetically scattered beams using a
novel self-interference technique which exploits the polari-
zation dependence of the resonant x-ray scattering. Finally,
the ASI’s AFM-to-FM and AFM-to-PM transitions allowed
the AFM OAM beams to be switched on- and off- with
modest changes in field and temperature, respectively. These
findings represent a first step toward realizing reconfigurable
optics for the generation and analysis of soft x-ray orbital
angular momentum. More broadly, these studies show that
engineering defects in nanoscale magnetic lattices offers a
powerful tool for designing x-ray metasurfaces.
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temperature (TN ≈ 380 K) of the artificial lattice, the integrated
intensity near the AFM Bragg condition decreases. (b) Time
dependence of intensity after the beams are switched off using a
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is held at 320 K. The intensity for t < 0 is labeled in (a). The
speckle pattern at early time points indicates that disordered AFM
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AFM ground state and the OAM vortex beam is restored.
Indicated times are in minutes.
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