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Dipolar collisions of polar molecules in the quantum
regime
K.-K. Ni1*, S. Ospelkaus1{*, D. Wang1, G. Quéméner1, B. Neyenhuis1, M. H. G. de Miranda1, J. L. Bohn1, J. Ye1

& D. S. Jin1

Ultracold polar molecules offer the possibility of exploring
quantum gases with interparticle interactions that are strong,
long-range and spatially anisotropic. This is in stark contrast to
the much studied dilute gases of ultracold atoms, which have iso-
tropic and extremely short-range (or ‘contact’) interactions.
Furthermore, the large electric dipole moment of polar molecules
can be tuned using an external electric field; this has a range of
applications such as the control of ultracold chemical reactions1,
the design of a platform for quantum information processing2–4

and the realization of novel quantum many-body systems5–8.
Despite intense experimental efforts aimed at observing the influ-
ence of dipoles on ultracold molecules9, only recently have suffi-
ciently high densities been achieved10. Here we report the
experimental observation of dipolar collisions in an ultracold
molecular gas prepared close to quantum degeneracy. For modest
values of an applied electric field, we observe a pronounced
increase in the loss rate of fermionic potassium–rubidium mole-
cules due to ultracold chemical reactions. We find that the loss rate
has a steep power-law dependence on the induced electric dipole
moment, and we show that this dependence can be understood in a
relatively simple model based on quantum threshold laws for the
scattering of fermionic polar molecules. In addition, we directly
observe the spatial anisotropy of the dipolar interaction through
measurements of the thermodynamics of the dipolar gas. These
results demonstrate how the long-range dipolar interaction can be
used for electric-field control of chemical reaction rates in an
ultracold gas of polar molecules. Furthermore, the large loss rates
in an applied electric field suggest that creating a long-lived
ensemble of ultracold polar molecules may require confinement
in a two-dimensional trap geometry to suppress the influence of
the attractive, ‘head-to-tail’, dipolar interactions11–14.

Dipolar interactions have been explored in several atom-gas
experiments using the magnetic dipole moments of atoms15,16; how-
ever, this interaction is intrinsically orders of magnitude weaker than
the dipolar interaction between typical polar molecules. Ultracold
gases of polar molecules thus allow the possibility of realizing strong
and, therefore, relatively long-range interactions. For example, polar
molecules confined in optical lattice potentials could be used to
create a system in which the interactions between particles at neigh-
bouring sites is as strong as the on-site interactions now commonly
realized with atoms. This longer-range interaction for polar mole-
cules will allow access to a new regime of strongly correlated quantum
gases with quantum phase transitions, such as to supersolid phases
for bosons17–19 and to topological superfluid phases for fermions20.
Another important difference between magnetic and electric dipolar
interactions is that the strength of the effective electric dipole

moment can be tuned using an applied electric field. In addition to
its obvious utility in controlling the interaction strength in dipolar
quantum gases, the electric-field dependence could be exploited in
the development of new quantum computing schemes or in the
control of ultracold chemical reactions.

We perform our experiments with an ultracold gas of 40K87Rb
molecules prepared in a single nuclear hyperfine state within the
rovibronic (rotational–vibrational–electronic) ground state,1S1

(refs 10, 21). The gas is confined in a pancake-shaped optical dipole
trap, which is formed by overlapping two horizontally propagating,
elliptically shaped laser beams with wavelengths of l 5 1,064 nm.
Typical harmonic trapping frequencies are vx 5 2p3 40 Hz and
vz 5 2p3 280 Hz in the horizontal and vertical directions, respec-
tively. The 40K87Rb molecules have a permanent electric dipole
moment of 0.57 Debye (D)10, where 1 D 5 3.336 3 10230 C m.
However, the effective molecular dipole moment in the laboratory
frame is zero in the absence of an external electric field. When an
external electric field is applied, the molecules begin to align with the
field and have an induced dipole moment, d, that increases as shown
in the inset of Fig. 1b. This figure covers the range of applied electric
field that we currently access experimentally, which corresponds to
an accessible dipole moment range of 0–0.22 D. In our set-up, the
external electric field points up (in the z direction), parallel to the
tight axis of the optical trap. Thus, the spatially anisotropic dipolar
interactions will be predominantly repulsive for molecules colliding
in the horizontal direction (side by side) and predominantly attract-
ive for molecules approaching each other along the vertical direction
(head to tail).

In an ultracold gas, the quantum statistics of the particles has an
essential role in the interactions. Our 40K87Rb molecules are fermions
prepared in a single internal quantum state at a temperature equal to
1.4 times the Fermi temperature. Therefore, the quantum statistics
requires that the wave function for two colliding molecules be anti-
symmetric with respect to molecule exchange. Considering the rela-
tive angular momentum of two colliding molecules, this means that
scattering can only proceed via partial waves with odd l, the angular
momentum quantum number, and will be dominated by p-wave
scattering (l 5 1) at ultralow temperature. Previous work at zero
electric field (without long-range dipolar interactions) showed that
the lifetime of the trapped 40K87Rb molecules is limited by atom-
exchange chemical reactions that proceed by means of p-wave scat-
tering22. In our experiments, the typical translational temperature of
the molecular gas is 300 nK and the energy height of the p-wave
barrier for 40K87Rb molecules corresponds to a temperature of
approximately 24 mK (ref. 30). As the barrier height is much larger
than the typical collision energies, scattering rates in the molecular
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cloud are determined by the tunnelling rate through the centrifugal
barrier and the molecule-gas lifetime is relatively long (on the order
of 1 s)22.

In this Letter, we investigate the effect of electric dipolar interac-
tions on collisions and find an unexpectedly large effect even for our
relatively modest range of applied electric fields. We measure the
molecular loss rate by monitoring the time evolution of the average
number density of trapped molecules, n (Fig. 1a). We fit the data to
the solution of

dn

dt
~{bn2{an ð1Þ

shown as solid lines in Fig. 1a.
The first term on the right-hand side of equation (1) accounts for

number loss, and we extract the measured two-molecule inelastic loss
rate coefficient, b (which is twice the collisional event rate), from the
fit. The second term describes the density decrease arising from heat-
ing of the trapped gas during the measurement, which is such that
n / T23/2. In a single measurement, we observe an increase in tem-
perature that is at most 50%. In subsequent analysis, we fit a straight
line to the measured temperature as a function of time and obtain the
slope, c. In equation (1), we then use a 5 (3/2)c/(T0 1 ct), where T0 is
the initial temperature of the gas (see also ref. 22).

Figure 1b shows a summary of our experimental data in a plot of
b/T0 as a function of d. We plot the ratio b/T0 because the Wigner
threshold law for p-wave scattering predicts that b scales linearly with
T, a temperature dependence that we previously verified at d 5 0 D
(ref. 22). For the data in Fig. 1, T0 ranged from 250 nK to 500 nK. In
Fig. 1b, we see that dipolar interactions have a pronounced effect on

the inelastic collision rate. At low electric field, where d , 0.1 D, we
observe no significant modification to the loss rate at zero electric
field (which is plotted at d 5 0.01 D for inclusion on the logarithmic
scale). However, for higher electric fields, we observe a rapidly
increasing loss rate, with an increase in b/T0 of well over an order
of magnitude by d 5 0.2 D. Fitting the data for d . 0.1 D, we find that
the inelastic loss rate coefficient has a power-law dependence on d:
b/T0 / dp, where p 5 6.1 6 0.8.

To understand this strong dependence of the inelastic loss rate on
the electric field, we consider a relatively simple quantum threshold
model in which the loss is assumed to be due to collisions between
fermionic molecules that proceed by means of tunnelling through a
p-wave centrifugal barrier followed by loss with unit probability at
short range14. The fact that we do not observe any resonant oscilla-
tions as a function of electric field (Fig. 1b) is consistent with there
being a very high loss probability for molecules reaching short range.
In an applied electric field, the long-range dipole–dipole interaction,
which is proportional to R23, R being the intermolecular separation,
significantly modifies the height of the p-wave barrier and thus
changes the inelastic collision rate. Moreover, the fact that the
dipole–dipole interaction is spatially anisotropic means that the
p-wave barrier height will be different for ml 5 0 and ml 5 61 scat-
tering, where the quantum number ml describes the projection of the
relative orbital angular momentum (quantum number l) onto the
electric field direction. In particular, the attractive nature of dipole–
dipole interactions for polar molecules colliding head to tail lowers
the barrier for ml 5 0 collisions, whereas the repulsive dipole–dipole
interaction for polar molecules colliding side by side raises the barrier
for ml 5 61 collisions. In Fig. 2a, b we show these effects schematic-
ally, and in Fig. 2c we show the calculated maximum heights of the
respective ml 5 0 and ml 5 61 collisional barriers, V0 and V1, as
functions of d.

In our simple model, we assume that the collision rate follows
the Wigner threshold law for p-wave inelastic collisions, that is,
b / T/V3/2 (V 5 V0, V1). For large values of d, V0 is significantly
smaller than V1 and the loss will proceed predominantly through
head-to-tail attractive collisions of the polar molecules. In this
regime, V0 scales as d24 and the model predicts that b/T0 will increase
with a characteristic dependence on the sixth power of d for d . 0.1 D
(ref. 14). This prediction is in excellent agreement with our measured
dependence of the loss rate on d for d . 0.1 D (Fig. 1b).

For a quantitative description of the inelastic collisional rate over
our full range of experimentally accessible dipole moments, we
include contributions from both ml 5 0 and ml 5 61 collisions, and
we calculate the barrier heights using adiabatic potential curves that
include mixing with higher-l partial waves (Fig. 2c). We fit the pre-
diction of this quantum threshold model to our data using two fit
parameters: a scaling factor, c, that can be interpreted as the loss
probability when the collision energy equals the height of the barrier;
and a factor, b, that multiplies the coefficient of the van der Waals
interaction, C6. The resulting theoretical prediction (Fig. 1b, dashed
line) agrees very well with our experimental data (Fig. 1b, open
circles); the fit yields c 5 0.35 6 0.08 and b 5 2.4 6 0.9. For comparison
with the simple quantum threshold model, Fig. 1b also shows (solid
line) the result of a more complete quantum scattering calculation. This
calculation employs a strong absorptive potential at short range but
captures the long-range physics and uses C6 as the single fit parameter.
This fit also agrees well with the experimental data, and gives
C6 5 21,000 6 7,000 a.u. (1 a.u. 5 Eha0

6, where Eh 5 4.36 3 10218 J
and a0 5 0.529 Å), which is consistent with the predicted value of
C6 5 16,130 a.u. (ref. 30).

Accompanying the increased inelastic loss rates for increasing d,
we observe an increased heating rate for the polar-molecule gas. In
Fig. 3, we plot the fractional heating rate, _TT /T0, normalized by the
initial n and T0, as a function of d. The heating rate _TT 5 c is extracted
using a linear fit to the temperature of the molecular cloud measured
as a function of time over a period sufficiently long to allow T to
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Figure 1 | Two-body inelastic loss for fermionic polar molecules. a, We
extract the inelastic loss rate coefficient, b, from a fit (solid lines) to the
measured time evolution of the trapped molecular gas density. Data are
shown here for induced dipole moments of d 5 0.08 D (open triangles) and
d 5 0.19 D (filled circles), and T0 5 300 nK. b, Data points show b/T0 plotted
as a function of d. The dashed line shows a fit to a simple model based on the
quantum threshold behaviour for tunnelling through a dipolar-interaction-
modified p-wave barrier (see text). The solid line shows the result of a more
complete quantum scattering calculation. Inset, the calculated dependence
of d on the applied electric field, E. Error bars, 1 s.d.
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increase by approximately 20–30%. We have developed a simple
thermodynamic model for heating that is directly caused by the
inelastic loss. We consider the energy lost from the gas when mole-
cules are removed in inelastic collisions, and assume that the gas stays
in thermal equilibrium. In this model (Supplementary Information),
the heating arises solely from density-dependent loss of particles
from the trap23, where the particles removed by inelastic collisions
have, on average, lower energies than typical particles in the gas. One
way to understand this heating mechanism is to note that inelastic
collisions preferentially remove particles from the centre of the trap,
where the number density is the highest and the particles have the
lowest potential energy from the trap. We also include in our calcula-
tions a competing, ‘cooling’, effect that comes from the fact that the
p-wave inelastic collision rate increases linearly with the collision
energy. Including these two competing effects, we obtain _TT /
T 2

0 n 5 (b/T0)/12 (Supplementary Information). Remarkably, this
simple prediction (Fig. 3, solid line), made using the b/T0 values
from the fit to our loss rate data in Fig. 1 with no additional free
parameter, agrees very well with the independently measured heating
rates of the molecular gas.

The anisotropy of the dipole–dipole interaction is shown directly
in an anisotropic distribution of molecules in the trap. The average
energy per particle, which we measure from the expansion of the gas
following a sudden release from the trap, can be different in the

vertical and horizontal directions. In the following, we present mea-
surements of the time evolution of the expansion energy in these two
directions for different values of d. To probe the spatial anisotropy of
dipolar collisions, we start by adding energy along one direction of
the cylindrically symmetric trap using parametric heating. Here we
modulate the power of both optical trapping beams at twice the
relevant harmonic trapping frequency, for 50 ms (z direction) or
100 ms (x and y directions). We then wait 100 ms before quickly
increasing the electric field (in less than 1 ms) to the desired final value
and measuring the time dependence of the vertical and horizontal
‘temperatures’ of the cloud, respectively denoted Tz and Tx. These
quantities simply correspond to the measured expansion energies in
the two directions. We note that this type of measurement is com-
monly used in experiments on ultracold atom gases to measure the
elastic collision cross-section24.

Figure 4 shows the experimental data from these rethermalization
experiments for three values of d and under two initial conditions:
Tz . Tx (Fig. 4a–c) and Tz , Tx (Fig. 4d–f). For d 5 0 D (Fig. 4a, d),
Tz and Tx equilibrate very slowly, on a timescale of approximately 4 s.
Because d 5 0 D, there are no dipolar interactions and the data agree
with our expectation of very slow equilibration for spin-polarized
fermions. Indeed, this is the longest rethermalization time we
observed in our trap, and therefore the data are consistent with there
being no elastic collisions and only technical imperfections such as a
small cross-dimensional coupling in the trapping potential.

In an applied electric field, the elastic collision cross-section due to
long-range dipolar interactions is predicted to increase in proportion
to d4 (ref. 25). For the case in which initially Tz . Tx (Fig. 4b, c), our
data show that Tz and Tx approach each other in what seems on casual
inspection to be cross-dimensional rethermalization. The timescale
for this apparent rethermalization even decreases steeply as d
increases, as might be expected. However, we note that in Fig. 4c
the temperatures cross each other, which is inconsistent with rether-
malization driven by elastic collisions. Even more striking is the fact
that the thermodynamic behaviour of the gas is completely different
when the gas initially has Tz , Tx. In this case, Tz and Tx do not
equilibrate during the measurement time (Fig. 4e, f).

The explanation for these surprising observations comes from the
spatially anisotropic nature of inelastic dipole–dipole collisions and
the fact that the molecular gas undergoes number loss. We have seen
(Fig. 3) that loss due to inelastic collisions heats the gas, and we can
quantitatively understand this heating rate by considering the effect
of molecule loss on the average energy per particle. We can adapt the
model of heating and inelastic collisions described above to allow the
average energy per particle, or ‘temperature’, to be different in the

10

1

0.1

0.01
0.01 0.1

Dipole moment, d (D)

T/
T

02 n
 (1

0–
5  

cm
3  

s–
1  

K
–1

)

·

Figure 3 | Normalized fractional heating rate, _TT/T2
0n, as a function of
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ranges from 0.1 mK s21 at zero electric field to 2 mK s21 at our highest electric
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Figure 2 | A p-wave centrifugal barrier for dipolar collisions between
fermionic polar molecules. a, The effective intermolecular potential for
fermionic molecules at zero electric field. At intermediate intermolecular
separation, two colliding molecules are repelled by a large centrifugal barrier
for p-wave collisions. b, For a relatively small applied electric field, the
spatially anisotropic dipolar interactions reduce the barrier for head-to-tail
collisions and increase the barrier for side-by-side collisions. c, Height of the
p-wave barrier as a function of dipole moment. Dipolar interactions lower
the centrifugal barrier for ml 5 0 collisions (V0) and raise the barrier for
ml 5 61 collisions (V1). The lowering of the ml 5 61 barrier at very large
dipole moments is due to mixing with higher-l partial waves (l 5 3, 5, 7, …).
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two trap directions. The model then predicts that the dominant
head-to-tail collisions (ml 5 0) will lead to heating in the x and y
directions but cooling in the z direction. Side-by-side collisions
(ml 5 61), however, should contribute to heating in the z direction
but produce no temperature change in the x and y directions
(Methods and Supplementary Information). To compare this model
with our rethermalization-type data, we fix the d-dependent b using
the fit to our data in Fig. 1 (solid line). This fixes both the time
evolution of the molecule number as well as the heating rates in
the two trap directions. We then accommodate possible elastic col-
lision effects in the model by adding a term that would exponentially
drive the energy difference between the two directions to zero.
Figure 4 shows a comparison between the results of the model (solid
lines) and our experimental data. Although the model uses few free
parameters (only the elastic collision cross-section in addition to the
initial values of n, Tx and Tz), it provides excellent agreement with the
experimental data.

Our observations provide clear evidence of the anisotropic nature
of the dipole–dipole interactions through the observed anisotropy in
the apparent rethermalization. From the agreement of the data with
the model, we conclude that the rethermalization behaviour is actually
dominated by the anisotropic nature of the inelastic collisions. This
raises the question of what then can be concluded about the elastic
collisions. The best-fit value for the elastic collision cross-section is
finite and increases as d increases. This is consistent with the predic-
tion that the elastic collision rate for polar molecules will scale as d4

(ref. 25); furthermore, the best-fit values agree with the prediction of
cross-sections on the order of sel 5 7 3 1028 cm2 s21 D24 (ref. 25).
However, the presence of inelastic loss and the resulting anisotropic
heating make it difficult to accurately extract a measured value of the
elastic cross-section for a more precise comparison with theory.

The results presented here demonstrate that modest applied electric
fields can drastically alter the interactions of fermionic polar mole-
cules in the quantum regime. In future efforts aimed at advancing the
study of many-body phenomena in dipolar molecular quantum sys-
tems, it will be necessary to protect the gas from strong inelastic loss
and heating11,12,26. This could be accomplished by finding a molecular
system without two-body inelastic loss channels, but the demonstra-
tion here of strong spatial anisotropy in inelastic collisions of polar
molecules suggests that, alternatively, studying a two-dimensional
trapped gas will be a promising route to realizing a long-lived
quantum gas of polar molecules with dipole–dipole interactions.
This could be achieved with, for example, polar molecules confined

in an array of pancake-shaped dipole traps in a one-dimensional
optical lattice configuration11,12. Even when short-range inelastic loss
processes are suppressed, the attractive part of the long-range dipole–
dipole interaction could still give rise to correlations between neigh-
bouring pancake-shaped dipole traps in the one-dimensional optical
lattice27,28.

METHODS SUMMARY

For the fit to a quantum threshold model14 in Fig. 1b, we write the inelastic loss

rate coefficient as b 5 K0Tz 1 2K1Tx, the sum of two terms corresponding

respectively to ml 5 0 and ml 5 61 scattering, and we assume that

Tz 5 Tx 5 T. The d-dependent coefficients, K0 and K1, are obtained using

K~c
3pB2

ffiffiffiffiffiffiffi
2m3

p
V 3=2

kB

where K and V respectively equal K0 and V0 or K1 and V1, m is the reduced mass of

the colliding molecules, B is Planck’s constant divided by 2p and kB is

Boltzmann’s constant. The barrier heights, V0 and V1, are taken to be the respec-

tive maximum energies of the long-range adiabatic potential, V(R), evaluated in

a basis set of partial waves, jlmlæ (ref. 14), for ml 5 0 and ml 5 61. The potential

V(R) includes a repulsive centrifugal term, B2l(l 1 1)/(2mR2), an attractive iso-

tropic van der Waals interaction, 2bC6/R6, and the dipolar interaction. We use
only two fit parameters, b and c, when fitting this model to the measurements of

b/T0 versus d.

The solid lines in Fig. 4 are a fit of the measured time evolution of n, Tz and Tx

to the numerical solution of the following three differential equations

(Supplementary Information):

dn

dt
~{(K0Tzz2K1Tx)n2{

n

2Tz

dTz

dt
{

n

Tx

dTx

dt

dTz

dt
~

n

4
({K0Tzz2K1Tx)Tz{

2Cel

3
(Tz{Tx)zcbg ð2Þ

dTx

dt
~

n

4
K0Tz Txz

Cel

3
(Tz{Tx)zcbg ð3Þ

Here we have allowed for a difference in the average energies per particle in the

two trap directions, Tz and Tx, such that b 5 K0Tz 1 2K1Tx. For the fits, we fix the

d-dependent coefficients K0 and K1 using the previous fit to the inelastic loss rate

data in Fig. 1. In addition to heating due to inelastic loss, we include a measured

background heating rate of cbg 5 0.01mK s21. The elastic collision rate in equa-

tions (2) and (3) is given by Cel 5 nselv/Ncoll, where the elastic collision cross-

section, sel, is a fit parameter, v 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8kB(Tzz2Tx)=3pm

p
and the constant Ncoll

can be thought of as the mean number of collisions per particle required for

rethermalization. We use Ncoll 5 4.1, which was computed for p-wave colli-

sions29; however, we note that Ncoll depends on the angular dependence of the

scattering and may be different for dipolar elastic collisions.
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7. Pupillo, G., Micheli, A., Büchler, H. P. & Zoller, P. in Cold Molecules: Theory,
Experiment, Applications (eds Krems, R. V., Stwalley, W. C. & Friedrich, B.)
421–469 (CRC, 2009).

8. Baranov, M. Theoretical progress in many-body physics with ultracold dipolar
gases. Phys. Rep. 464, 71–111 (2008).

9. Carr, L. D., DeMille, D., Krems, R. V., &. Ye. J. Cold and ultracold molecules:
science, technology and applications. N. J. Phys. 11, 055049 (2009).

10. Ni, K.-K. et al. A high-phase-space-density gas of polar molecules. Science 322,
231–235 (2008).

11. Micheli, A. et al. Cold polar molecules in two-dimensional traps: tailoring
interactions with external fields for novel quantum phases. Phys. Rev. A 76,
043604 (2007).
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