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Recently, remarkable advances have been made in coupling a num-
ber of high-Q modes of nano-mechanical systems to high-finesse
optical cavities, with the goal of reaching regimes in which quan-
tum behavior can be observed and leveraged toward new applica-
tions. To reach this regime, the coupling between these systems
and their thermal environments must be minimized. Here we pro-
pose a novel approach to this problem, in which optically levitating
a nano-mechanical system can greatly reduce its thermal contact,
while simultaneously eliminating dissipation arising from clamp-
ing. Through the long coherence times allowed, this approach
potentially opens the door to ground-state cooling and coherent
manipulation of a single mesoscopic mechanical system or entan-
glement generation between spatially separate systems, even in
room-temperature environments. As an example, we show that
these goals should be achievable when the mechanical mode
consists of the center-of-mass motion of a levitated nanosphere.

entanglement ∣ optical levitation ∣ quantum information

One of the most intriguing questions associated with quantum
theory is whether effects such as quantum coherence and

entanglement can be observed at mesoscopic or macroscopic
scales. As a first step toward resolving this question, recently
much effort has been directed toward quantum state preparation
of high-Q modes of nano- and micro-mechanical oscillators—in
particular, cooling such modes to their quantum ground state (1).
Reaching a regime in which quantum properties such as entan-
glement (2) emerge is not only of fundamental interest but could
lead to new applications in fields such as ultrasensitive detection
(3, 4) and quantum information science (5, 6). To reach this re-
gime, it is critical that the thermalization and decoherence rates
of these systems be minimized by reducing the coupling to their
thermal reservoirs. Thus far, this has necessitated the use of cryo-
genic operating environments. From an engineering standpoint, it
would also be desirable to reduce the dissipation and thermal-
ization rates of these systems through their clamping and material
supports (7), so that these rates might approach their fundamen-
tal material limits (8).

Here we propose a unique approach toward this problem,
wherein the material supports are completely eliminated by
optically levitating (9) a nano-mechanical system inside a Fabry–
Perot optical cavity. Indeed, since the pioneering work of Ashkin
on optical trapping of dielectric particles (9) (in the classical
domain), it has been realized that levitation under good vacuum
conditions can lead to extremely low mechanical damping rates
(10, 11). We show that such an approach should also facilitate
the emergence of quantum behavior even in room-temperature
environments, when the particles are of subwavelength scale such
that the effects of recoil heating due to scattered photons become
small. As a specific example, we show that the center-of-
mass (CM) motion of a levitated nanosphere can be optically
self-cooled (12–14) to the ground state starting from room
temperature. This system constitutes an extreme example of
environmental isolation because the CM motion is naturally

decoupled from the internal degrees of freedom in addition
to being mechanically isolated by levitation. In this case, the
decoherence and heating rates are fundamentally limited by the
momentum recoil of scattered photons and can be reduced
simply by using smaller spheres. The long coherence time allowed
by small spheres enables the preparation of more exotic states
through coherent quantum evolution. Here, we consider in detail
two examples. First, we describe a technique to prepare a
squeezed motional state, which can subsequently be mapped onto
light leaving the cavity using quantum state transfer protocols
(15–18). Under realistic conditions, the output light exhibits
up to ∼15 dB of squeezing relative to vacuum noise levels, poten-
tially making this system a viable alternative to traditional tech-
niques using nonlinear crystals (19, 20). Second, we show that
entanglement originally shared between two modes of light (21)
can be efficiently transferred onto the motion of two spheres trap-
ped in spatially separate cavities, creating well-known Einstein–
Podolsky–Rosen (EPR) correlations (22) between themechanical
systems. Our approach of optical levitation mirrors many suc-
cessful efforts to cool (23, 24), manipulate (25) and entangle
(26) the motion of atoms and ions in room-temperature envir-
onments. At the same time, our system has a number of po-
tential advantages, in that it enables direct imaging via strong
fluorescence, exhibits large trap depths, and has a relatively large
mass. We also note recent related experiments involving opto-
mechanical “fluids” (with a continuous excitation spectrum rather
thandiscretemodes) in the formof trapped, ultracold atomic gases
(27, 28).

Beyond the examples presented here, the use of a levitated
device as an opto-mechanical system could provide opportunities
on a diverse set of fronts. For instance, it should allow mechanical
damping to approach fundamental material limits, potentially
enabling the exploration of nanoscale material properties. By
levitating systems with internal vibrational modes, multiple
modes could be optically addressed and cooled. In addition, the
CM oscillation frequency can be tuned through the trapping in-
tensity, allowing for adiabatic state transfer (29) with other modes
or matching spatially separate systems for optical linking and
entanglement generation (30). Furthermore, this paradigm inte-
grates nano-mechanics with many techniques for atomic trapping
and manipulation, which can be further extended by levitating
systems containing an internal electronic transition (e.g., a color
center within a nano-crystal) (31). Finally, as illustrated by
squeezed light generation, engineering mechanical nonlinearities
in conjunction with quantum state transfer yields a unique means
to realize nonlinear optical processes.
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Optical Forces and Noise Acting on a Dielectric Sphere
To illustrate our idea, we consider a subwavelength dielectric
sphere interacting with two standing-wave optical modes of a
Fabry–Perot cavity (Fig. 1A). One resonantly driven mode pro-
vides an optical dipole trap for the sphere. The second mode
is driven by a weaker “cooling” beam, assumed to have a nonzero
intensity gradient at the trap center, which provides a radiation
pressure cooling force (12–14). We discuss the cooling mechan-
ism in the next section, whereas here we focus on the trapping
potential and the noise forces acting on the sphere.

The trapping beam provides a gradient force similar to that
used to “optically tweeze” small dielectric particles (9). Consid-
ering a sphere whose radius is much smaller than the optical
wavelength, r ≪ λ, its optical response is like that of a point
dipole with induced dipole moment pind ¼ αindEðxÞ and optical
potential UoptðxÞ ¼ −ð1∕4ÞðRe αindÞjEðxÞj2 (SI Text). Here x is
the CM position of the sphere along the cavity axis, αind ¼
3ϵ0V ðϵ−1ϵþ2

Þ is its polarizability, V is the sphere volume, and ϵ is the
electric permittivity. Taking a standing wave EðxÞ ¼ E0 cos kx
(k≡ 2π∕λ), to lowest order near an antinode the potential corre-
sponds to a harmonic oscillator with mechanical frequency

ωm ¼
�
6k2I0
ρc

Re
ϵ − 1

ϵþ 2

�
1∕2

; [1]

where I0 is the field intensity and ρ is the mass density of the
sphere. The total trap depth is U0 ¼ ð3I0V∕cÞRe ϵ−1

ϵþ2
. Typical trap

depths and oscillation frequencies are plotted in Fig. 1C and D.
For all numerical examples, we take material properties ϵ ¼ 2,
ρ ¼ 2 g∕cm3 corresponding to fused silica and an operating wa-
velength λ ¼ 1 μm. Frequencies of ωm∕2π ∼ 0.5 MHz are achiev-
able using an intracavity intensity of I0 ∼ 0.1 W∕μm2. The
imaginary component of ϵ characterizes optical absorption, which
contributes to an increaseΔT int in the internal temperature of the
sphere. Assuming a value corresponding to ∼10 dB∕km propaga-
tion losses in bulk, intensities of I0 ∼ 10 W∕μm2 can be sustained
without melting the sphere, due to blackbody reradiation of the

absorbed energy (SI Text). We believe that this loss value is
realistic, given that even lower values around these wavelengths
have been observed in fused silica (32).

The dominant noise forces acting on the sphere are collisions
with a background gas and momentum recoil kicks due to scat-
tered photons. In SI Text, we show that the contributions from
shot noise, blackbody radiation, and sphere anisotropy are
negligible. Furthermore, the CM is decoupled from the internal
degrees of freedom and the sphere effectively has no internal
structure (as opposed to molecules, where the internal configura-
tion can affect cooling efficiency) (33). In the regime in which the
molecular mean free path exceeds r, the background gas leads
to a mean damping force dp∕dt ¼ −γgp∕2 with damping rate
γg∕2 ¼ ð8∕πÞðP∕�vrρÞ, where P and �v are the background gas
pressure and mean speed, respectively (34). The random nature
of the collisions also thermalizes the motional energy at a rate
given through the fluctuation–dissipation theorem by dE∕dt ¼
−γgðE − kBTÞ, where T is the gas temperature. In particular,
the characteristic time for the system to heat by one phonon start-
ing from the ground state is τg ¼ ℏωm∕γgkBT. Note that τ−1g does
not necessarily reflect the actual collision rate between the sphere
and gas molecules, Rcoll ≈ πP�vr2∕kBT (it is possible for a single
collision to be quite rare, Rcoll ≪ τ−1g , and to impart several pho-
nons at once). We define a mechanical quality factor Qg ¼ ωm∕γg
due to the background gas and a number of coherent oscillations
NðgÞ

osc ≡ ωmτg∕2π expected before the energy increases by a single
phonon. For a sphere of radius r ¼ 50 nm, ωm∕2π ¼ 0.5 MHz,
and a room-temperature gas with P ¼ 10−10 Torr, one finds
γg ∼ 10−6 s−1, Qg ∼ 3 × 1012, NðgÞ

osc ∼ 4 × 104, indicating that an
ideal nanosphere can be essentially decoupled from its thermal
environment.

Photons scattered by the sphere out of the cavity lead to heat-
ing and decoherence of the motion. In particular, a scattering
event entangles the mechanical and photonic wave functions be-
cause the phase of the outgoing photon becomes correlated with
the position of the scatterer. Tracing out the photonic degrees of
freedom, the density matrix ρ̂ describing the motion evolves after

Figure 1. A) Illustration of dielectric sphere trapped in optical cavity. The large trapping beam intensity provides an optical potential UoptðxÞ that traps the
sphere near an antinode. A second more weakly driven cavity mode with a nonvanishing intensity gradient at the trap center is used to cool the motion of the
sphere. B) Energy level diagram of mechanical motion (denoted m) and cavity cooling mode (ph). The mechanical mode has frequency ωm, while the optical
mode has frequency ω2 and linewidth κ. Photon recoil induces transitions between mechanical states jnmi → jðn� 1Þmi at a rate Rn→n�1 (R0→1 shown by dashed
gray arrow). The cooling beam, with effective optomechanical driving amplitude Ωm, induces anti-Stokes scattering that cools the mechanical motion and
allows for quantum state transfer between motion and light. This beam is also responsible for weaker, off-resonant heating via Stokes scattering. C) Mechan-
ical frequency ωm as a function of trapping beam intensity. For all numerical results, we take λ ¼ 1 μm, ρ ¼ 2 g∕cm3, and ϵ ¼ 2. D) Optical trap depth U0 (in K) as
functions of trapping beam intensity and sphere radius r.
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a scattering event as ρ̂ → ∫ dkPðkÞeik·r̂ρ̂e−ik·r̂ (35). Here PðkÞ is
the probability distribution of the scattered photon wavevector,
and r̂ is the CM position operator. In analogy with atoms or ions
trapped in the Lamb–Dicke regime (25), when the particle is
trapped on a scale Δx ≪ 1∕k, the terms e�ik·r̂ can be expanded
to first order in k. This describes transitions between consecutive
harmonic oscillator levels n → n� 1, with rates Rn→n�1 ¼
γscðnþ 1∕2� 1∕2Þ. Considering motion only along the x direc-
tion,

γsc ¼ ð2∕5Þðωr∕ωmÞRsc [2]

where ωr ¼ ℏk2∕2ρV is the recoil frequency and Rsc is the photon
scattering rate. A result identical to Eq. 2 holds for a weakly
excited, trapped atom (36). In the case of the sphere, Rsc ¼
48π3 I0V 2

λ4ℏω ðϵ−1ϵ−2Þ2, as can be obtained by taking the power radiated
by a dipole of strength pind and dividing by the energy ℏω per
photon. We emphasize that in the Lamb–Dicke regime, the effect
of photon scattering on motional heating and decoherence is
completely described by Eq. 2. On the other hand, the above
transformation of the density matrix ρ̂ is completely general.
For example, when the motional wave packet has a spatial extent
Δx ∼ λ, one finds then that a single scattering event can destroy
quantum coherence (37). Analogous effects also occur due to
absorption and emission of blackbody photons. In our system,
however, such effects are negligible because Δx ≪ 1∕k (i.e.,
ωr∕ωm ≪ 1 in Eq. 2), and the emission rate of blackbody photons
is much smaller than Rsc.

It is convenient to define a dimensionless parameter

ϕ≡ γsc∕ωm ¼ 4π2

5

ϵ − 1

ϵþ 2
ðV∕λ3Þ [3]

to characterize the strength of photon recoil heating, which
primarily depends on the sphere volume compared to the cubic
wavelength. This scaling reflects the fact that the scattered power
and dipole force scale like p2ind and pind, respectively. We empha-
size that the effect of recoil heating can be reduced by simply
using smaller spheres. In the limit that optical scattering is the
dominant heating process, the expected number of coherent os-
cillations is NðscÞ

osc ¼ 1∕ð2πϕÞ ∝ λ3∕V . We will find that ϕ naturally
appears to characterize the fundamental limits to observing quan-
tum behavior in our system. For a sphere of radius r ¼ 50 nm,
ϵ ¼ 2, and λ ¼ 1 μm, one finds that NðscÞ

osc ∼ 150. Comparing
with background gas collisions at P ¼ 10−10 Torr and ωm∕2π ¼
0.5 MHz, recoil heating dominates Nosc for sphere sizes
r ≳ 10 nm. Reaching the regime Nosc ≫ 1 implies that the sphere
can coherently evolve for many oscillation periods after any cool-
ing mechanisms are turned off, which makes this system a pro-
mising candidate for observing coherent quantum phenomena.

Finally, we remark that Rsc can be very large (Rsc ∼ 1014 s−1 for
I0 ¼ 1 W∕μm2 and r ¼ 50 nm) compared to atoms or ions, which
enables direct imaging. The large scattering is due to the large
intensities and the linear response of the sphere (it does not
saturate like an atom or ion), as opposed to the system behaving
as a lossy element in the cavity. The contribution to the cavity loss
rate is κsc ¼ 12π2ωðV 2∕λ3VcÞðϵ−1ϵþ2

Þ2, where Vc is the cavity mode
volume, and κsc is typically much smaller than the natural cavity
linewidth κ.

Cooling the Center-of-Mass Motion to the Ground State
We now describe the optical cooling effect of the weaker, second
cavity mode (denoted mode 2). For concreteness, we assume
that the sphere is trapped near the antinode x ¼ 0 of cavity mode
E1 ∝ cos k1x and that the second mode has spatial profile E2 ∝
cosðk2x − π∕4Þ such that the intensity gradient is maximized. The
total Hamiltonian of the system is given in a rotating frame by

H ¼ −ℏδ1â†1â1 − ℏg1ðcos 2k1x̂ − 1Þâ†1â1 − ℏδ2â
†
2â2

− ℏg2 cos 2ðk2x̂ − π∕4Þâ†2â2 þ
p̂2

2m

þ ℏΩ
2

½ðâ1 þ â†1Þ þ
ffiffiffiffiffiffi
2ζ0

p
ðâ2 þ â†2Þ�: [4]

Here p̂ and x̂ are the momentum and position operators of the
CM, âi is the photon annihilation operator of cavity mode i,
and Ω and Ω

ffiffiffiffiffiffi
2ζ0

p
are the driving amplitudes of modes 1 and

2, respectively. δi is the detuning between the driving field and
mode frequency when the sphere sits at x ¼ 0. The opto-mechan-
ical coupling strengths gi ¼ 3V

4Vc;i

ϵ−1
ϵþ2

ωi characterize the position-
dependent frequency shifts due to the sphere (SI Text), where
Vc;i and ωi are the mode volume and resonance frequency of
mode i. To simplify notation, we assume that modes 1 and 2 have
similar properties, ω1 ≈ ω2 ¼ ω, etc. In addition to the evolution
described by H, the system also exhibits cavity losses and the me-
chanical noise described previously.

Expanding the opto-mechanical coupling term of mode 2
around x ¼ 0, ℏg cos 2ðkx̂ − π∕4Þâ†2â2 ≈ 2ℏgkx̂â†2â2, one finds a
linear coupling in the sphere position analogous to the effect
of radiation pressure on a moving mirror of a Fabry–Perot cavity
(13). Physically, the motion induces changes in the detuning and
thus the intracavity field amplitude, while the lag in the cavity
response enables the field to do work (cooling) on the sphere.
Following the techniques of ref. 13, to calculate the cooling rate
we first apply shifts to the operators, âi → âi þ αi and x̂ → x̂þ x0,
where αi and x0 ≈ ζ∕k [ζ ≈ κ2ζ0∕ðκ2 þ 4δ22Þ] are mean values of the
quantum fields. Here we have defined 2ζ ¼ jα2∕α1j2 as the ratio
of intracavity intensities of modes 1 and 2 and assumed that
mode 1 is driven on resonance (δ1 ¼ 0). To lowest order in ζ, field
mode 1 (mode 2) is purely responsible for trapping (cooling).
Subsequently tracing out the cavity degrees of freedom yields
equations for the mechanical motion alone. In particular, to
lowest order in ζ and for δ2 < 0, the cooling laser provides
a net cooling rate Γ≡ Ropt;− − Ropt;þ ¼ κΩ2

m½ððδ2 þ ωmÞ2þ
ðκ∕2Þ2Þ−1 − ððδ2 − ωmÞ2 þ ðκ∕2Þ2Þ−1� (SI Text), where Ropt;∓ de-
note the anti-Stokes (cooling) and Stokes (heating) scattering
rates (see Fig. 1B). Here Ωm ≡ 2gkxmjα1j

ffiffiffiffiffi
2ζ

p
is the effective

opto-mechanical driving amplitude (see Fig. 1B) and xm≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ∕2mωm

p
. Validity of these perturbative results requires Ωm

≲κ;ωm and ζ ≲ 1.
In the realistic limit that background gas collisions are negli-

gible, the steady-state phonon number is hnf i ≈ ~nf þ γsc∕Γ, where
~nf ¼ Ropt;þ∕Γ is the fundamental limit of laser cooling (13). It is
minimized when δ2 ¼ −ð1∕2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ 4ω2

m

p
. In particular, when

sideband resolution is achieved (ωm ≳ κ), ~nf ;min ≈ ðκ∕4ωmÞ2 ≪ 1,
indicating that ground-state cooling is possible provided other
heating mechanisms are made sufficiently small. Considering
the limit ωm ≫ κ and taking the maximum cooling rate Γ ∼ κ con-
sistent with the perturbative calculations, using Eq. 3 one can
then rewrite hnf i as

hnf i ≈
κ2

16ω2
m
þ ϕ

ωm

κ
: ðωm ≫ κÞ [5]

The last term on the right corresponds to photon recoil heating.
Eq. 5 is minimized for κ∕ωm ¼ 2ϕ1∕3, in which case hnf imin ¼
3ϕ2∕3∕4 ∝ ðr∕λÞ2 ≪ 1. Thus, one sees that ground-state cooling
is readily attainable (provided that ζ ≲ 1 can be simultaneously
satisfied). Physically, the optimum value of κ∕ωm balances good
sideband resolution and excessive heating when large intensities
are used to increase ωm.

To illustrate these results, we consider a fused silica sphere of
radius r ¼ 50 nm and ωm∕ð2πÞ ¼ 0.5 MHz levitated inside
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a cavity of length L ¼ 1 cm and mode waist w ¼ 25 μm (Vc ¼
ðπ∕4ÞLw2). In Fig. 2A we plot the minimum obtainable hnf i
(black curve) as a function of cavity finesseF≡ πc∕κL, assuming
negligible gas collisions and subject to the constraints 2ζ, Ωm∕κ,
Ωm∕ωm < 1∕2 and optimized over detuning δ2. For low cavity fi-
nesse the cooling is nearly limited by sideband resolution ( ~nf ;min,
red curve), and the ground-state regime hnf i < 1 can be reached
with a minimum finesse of F ∼ 104. A minimum of hnf i ∼ 0.01 is
reached at a finesse ofF ∼ 3 × 105, with a maximum cooling rate
of Γ ∼ κ ∼ 3 × 105 s−1 (see Table 1 for a summary of parameters).
This corresponds to a final temperature of Tf ∼ 5 μK, or a re-
markable compression factor of T∕Tf ∼ 6 × 107 relative to room
temperature T. We note that values of F ∼ 106 have been
achieved in Fabry–Perot cavities at similar wavelengths (38).

Thus far, we have only considered the motion along the cavity
axis. With additional cavities oriented along different axes, clearly
it is possible to achieve 3D ground-state cooling of the CM mo-
tion. Moreover, due to the high rate of Rayleigh scattering, feed-
back cooling can be readily applied for transverse localization.
However, as shown in SI Text, the transverse motion need not
be reduced below the level set by the ambient environment. Spe-
cifically, one only requires that the transverse position uncer-
tainty Δy be small compared to the beam waist w, as the
transverse motion introduces errors of order ðΔy∕wÞ2 (e.g., in
the fractional decrease in cooling efficiency). For the parameters
of Table 1, thermal motion at T ¼ 300 K yields only ðΔy∕wÞ2 ∼
10−2 due to the large trap depth, while recoil heating leads to a
position uncertainty Δy∕w ≈

ffiffiffiffiffiffiffiffiffiffi
ϕωr t

p
in the absence of any trans-

verse cooling mechanism. Note that result of recoil heating is in-
tensity-independent, since an increase in intensity leads to equal
increases in the photon scattering rate and the transverse confine-
ment of the optical potential. One finds that recoil heating is a
very weak effect, as a time t∼5,000 s is required to reach the
regime ðΔy∕wÞ2 ∼ 10−2.

Motional Entanglement and Squeezed Light Generation
Using Quantum State Transfer
A number of related schemes have been proposed for quantum
state transfer between light and the motion of atoms (15, 16) or
nano-mechanical systems (17, 18). In our system, the small me-
chanical noise and ease of achieving good sideband resolution in
principle allow state transfer to be realized with almost perfect
efficiency. This might enable light with nonclassical properties
to be mapped onto mechanical motion (39), and as an example,
we show that this can be used to generate EPR correlations be-
tween two spatially separate spheres. Moreover, a complemen-
tary process can be realized, where a nontrivial mechanical
state (a squeezed state) is prepared through coherent manipula-
tion and subsequently transferred to light leaving the cavity. The
latter case illustrates how opto-mechanics can yield a novel
nonlinear optical system.

First we give a simplified picture of quantum state transfer
using a one-sided, ideal cavity (where all losses are via transmis-
sion through one cavity mirror) (40). Specifically, we consider the
Heisenberg equations of motion in a rotating frame for the cavity
cooling mode and the motion (after applying the shifts described
in the previous section), when the cooling mode is driven
resonantly on the red motional sideband (δ2 ¼ −ωm),

dâ2
dt

¼ −
κ

2
â2 − iΩmðb̂þ b̂†e2iωmtÞ þ ffiffiffi

κ
p

â2;in;

db̂
dt

¼ ði∕ℏÞ½He; b̂� − iΩmðâ2 þ â†2e
2iωmtÞ þ iF̂ðtÞeiωmt: [6]

The Hamiltonian He describes any external forces or couplings
applied to the sphere beyond those in Eq. 4, b̂ is the annihilation
operator corresponding to a harmonic oscillator of mass m and
frequency ωm, and â2;in is the cavity input operator associated
with losses. FðtÞ is the (Hermitian) noise due to photon recoil,
which has correlations hFðtÞFðt0Þi ¼ ϕωmδðt − t0Þ, and we assume
all other noise is negligible. Since the cavity trapping mode (â1)
effectively provides a harmonic potential and can otherwise be
ignored, for simplicity we will omit the subscript 2 as we refer
to the cooling mode in future discussions. Temporarily assuming
that the nonsecular terms (e2iωmt) can be ignored and that
the mechanical motion evolves slowly on time scales compared
to 1∕κ, one can adiabatically eliminate the cavity mode to
yield â ≈ −2iðΩm∕κÞb̂þ ð2∕ ffiffiffi

κ
p Þâin, and db̂∕dt ≈ ði∕ℏÞ½He; b̂�−

ðΓ∕2Þb̂ − i
ffiffiffi
Γ

p
âin þ iF̂ðtÞeiωmt, where Γ≡ 4Ω2

m∕κ is the cavity-in-
duced cooling rate in the weak-driving limit (Ωm ≲ κ). The cavity
output is related to the input and intracavity fields through
âout ¼

ffiffiffi
κ

p
â − âin (40), or âout ≈ −i

ffiffiffi
Γ

p
b̂þ âin, which states that the

mechanical motion is mapped onto the outgoing light. Physically,
the cooling process converts phononic excitations into photonic
excitations that leak out of the cavity. Generally, two mechanisms
will degrade state transfer. First, F̂ adds extra noise to the ideal
state that one is attempting to transfer, with a strength character-
ized by the small parameter ϕ. Second, the nonsecular terms
contribute to Stokes scattering, destroying the perfect phonon-
photon correspondence, with a strength that is expected to be
proportional to ðκ∕ωmÞ2. Given that ϕ, ðκ∕ωmÞ2 can be made
small, nearly perfect state transfer is possible in principle. We
illustrate this with two examples, entanglement transfer and
squeezed light generation.

Entanglement Transfer. Here we describe how EPR correlations
shared between two modes of light (21) can be mapped to the
motion of two spheres trapped in spatially separate cavities.
Specifically, we define quadrature operators for the input light
for each of the two systems (denoted A, B), given by X ðjÞ

þ;in ¼

Figure 2. A) Mean phonon number hnf i (black curve) versus cavity finesseF (F ¼ πc∕κL) under optimized cooling conditions. The system parameters are given
in Table 1. The red curve denotes ~nf;min, the fundamental limit of cooling imposed by sideband resolution. B) Solid blue curve: optimized EPR variance between
two levitated spheres, as a function of squeezing parameter e−2R. System parameters are identical to a). Dashed curve: EPR variance in limit of perfect state
transfer, ΔEPR ¼ e−2R. Green curve: cavity finesse corresponding to optimal EPR variance. C) Optimized variance ðΔX2

þ;outÞmin (in dB) of squeezed output light
from an ideal cavity, as a function of sphere size.
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ðâðjÞin þ âðjÞ†in Þ, X ðjÞ
−;in ¼ ðâðjÞin − âðjÞ†in Þ∕i for j ¼ A;B. A similar set

of operators X ðjÞ
�;m, X

ðjÞ
�;out can be defined for the motion and

output light, by replacing âðjÞin → b̂ðjÞ, âðjÞout, respectively. Of parti-
cular interest is the case where the two input fields exhibit
broadband EPR correlations between them,

hðX ðAÞ
�;inðωÞ � X ðBÞ

�;inðωÞÞ2i∕2 ¼ e−2R < 1. [7]

When the variances satisfy e−2R < 1, the two modes exhibit cor-
relations below vacuum level and are entangled (41) (for concre-
teness, we assume the other combinations of quadratures satisfy
hðX ðAÞ

�;inðωÞ∓X ðBÞ
�;inðωÞÞ2i∕2 ¼ e2R). Such EPR correlations have

been observed with light and in the internal degrees of freedom
of atomic ensembles (42), but have yet to be demonstrated using
mechanical systems.

To proceed, we solve Eq. 6 in the Fourier domain (including
the nonsecular terms) for each of the systems for the correlations
given in Eq. 7 and He ¼ 0. Generally, the nonsecular terms yield
an infinite set of algebraic equations (coupling frequencies ωm þ
2nωm for integer n), which given ωm ≫ Ωm, κ can be truncated to
good approximation at n > 1. For simplicity of analysis, we
assume the two systems have identical properties, and that the
cooling rate Γ ¼ κ. However, we expect our results should qual-
itatively hold provided that only Γ, ωm of the two systems are
properly tuned, which can be easily accomplished by adjusting
the trapping and cooling beam intensities. One can then show
that state transfer yields the following joint variances in the
motion (SI Text),

ΔEPR ≡ hðX ðAÞ
�;mðtÞ∓X ðBÞ

�;mðtÞÞ2i∕2

¼ e−2R þ κ2

16ω2
m
ð3e2R þ 2 sinh 2RÞ þ 4ϕωm

κ
: [8]

As expected, Stokes scattering and recoil heating contribute to
the variance by amounts ðκ∕ωmÞ2 and ϕωm∕κ, respectively. This
can beminimized with respect to κ∕ωm, yieldingΔEPR;min ¼ e−2Rþ
3ðϕ∕2Þ2∕3ð3e2R þ 2 sinh 2RÞ1∕3. To illustrate these results we plot
ΔEPR;min in Fig. 2B as a function of e−2R, taking the same para-
meters as in Fig. 2A. For the moderate values of e−2R typically
obtained in experiments (21), EPR correlations in the motion
can be achieved with reasonable cavity finesse F ∼ 105.

Squeezed Light Generation. First we describe a technique to create
a mechanical squeezed state and then derive the properties of the
outgoing light upon quantum state transfer. Mechanical squeez-
ing is accomplished by adding a sinusoidally varying component
to the intensity of the trapping beam, which yields the Hamilto-
nian of a parametric amplifier (43), He ¼ ϵmω

2
mx2 sin 2ωmt. Here

ϵm is a small parameter characterizing the strength of the mod-
ulation of the trap frequency. As one approaches the threshold
for parametric oscillation (ϵmωm → Γ), the variance in one quad-
rature of motion is reduced by up to a factor of 2 (43).

We now investigate the properties of the outgoing light over a
narrow frequency range near the cavity resonance, specifically
considering X�;outðω ¼ 0Þ. We apply similar methods as above
to solve Eq. 6 in the Fourier domain. Taking the limit as one

approaches threshold and Γ ¼ κ, the variance in the output light
is given by (SI Text)

ΔX2þ;outðω ¼ 0Þ ¼ 2ϕωm

κ
þ 5

16

κ2

ω2
m
: [9]

Again, an optimum value of κ∕ωm ∝ ϕ1∕3 maximizes the squeez-
ing, with a minimum variance of ðΔX2þ;outÞmin ≈ 2.04ϕ2∕3. Thus
for small sphere sizes the noise level can be reduced far below
that of the vacuum state (corresponding to ΔX2þ;out ¼ 1). A plot
of ðΔX2þ;outÞmin as a function of sphere size is shown in Fig. 2C.
For r ¼ 10 nm size spheres, one finds that ∼30 dB of noise reduc-
tion relative to the vacuum state can be obtained using an ideal
cavity (note that for a background gas pressure of P ∼ 10−10 Torr,
additional noise arising from gas collisions is negligible down
to r ∼ 10 nm).

In practice, a cavity has additional scattering and absorption
losses that limit the squeezing. Starting from Eq. 9, which gives
the amount of squeezing at threshold using an ideal cavity (with
Γ ¼ κ), we model cavity losses via a beam splitter transformation
with the ideal squeezed light and vacuum as the two inputs. The
output light exhibits reduced squeezing due to mixing with the
vacuum, given by

ðΔX2þ;outðω ¼ 0ÞÞmin ¼
�
1 −

κ0

κ

��
2ϕωm

κ
þ 5

16

κ2

ω2
m

�
þ κ0

κ
; [10]

where κ0, κ denote the scattering/absorption loss in the cavity
and the total cavity linewidth, respectively. In the relevant re-
gime where κ0∕κ ≪ 1, we can approximate 1 − κ0∕κ ≈ 1 and the
squeezing is optimized for the choice κ∕ωm ¼ 2ð2∕5Þ1∕3ðϕþ κ0∕
ð2ωmÞÞ1∕3, for which ðΔX2þ;outÞmin ≈ 2.04ðϕþ κ0∕ð2ωmÞÞ2∕3. We
now must choose a set of realistic cavity parameters where this
optimized squeezing can be realized, and where Γ ¼ κ is consis-
tent with ζ being small. As an example, taking a cavity length and
waist of L ∼ 2 cm and w ∼ 10 μm, κ0 corresponding to 1 ppm
losses per round trip (38), and sphere parameters r ¼ 50 nm and
ωm∕ð2πÞ ¼ 0.5 MHz, we find that Γ ¼ κ corresponds to a value
ζ ∼ 1∕4, which yields squeezing of ∼15 dB in the output light.

In principle, similar techniques also apply to trapped atoms or
ions. However, one benefits from the relatively large mass m of
the sphere. Specifically, approaching threshold, one quadrature
of motion becomes infinitely unsqueezed, producing a large posi-
tion uncertainty Δx (43). At the same time, faithful quantum state
transfer requires a linear opto-mechanical coupling, which trans-
lates into a requirement that the spatial extent Δx of the motional
state of the nanosphere be well-localized with respect to the
wavelegnth λ0 of the trapping laser and the wavelengths λs for
any incoherent scattering events. Taking λ0 ¼ λs ¼ 2π∕k as rele-

vant to the nanosphere, we require that kΔx ≈ k
ffiffiffiffiffiffiffiffiffi
ℏ�n

2mωm

q
≪ 1,

where �n characterizes the average phonon number. In SI Text,
we show that kΔx < 10−2 can be satisfied with a sphere even
in the regime of ∼30 dB squeezing. To compare, a “typical” atom
of mass ma ¼ 100 amu trapped with frequency ωm∕ð2πÞ ¼
0.5 MHz has a ground-state wavepacket of size xa ≈ 10 nm, so
that Δx ≈ xa�n1∕2 ≈ 320 nm. Hence, a linear coupling cannot be
achieved for optically trapped atoms for the requisite �n, while

Table 1. Example cooling parameters for a fused silica sphere of radius r ¼ 50 nm at λ ¼ 1 μm

Cavity
length

Beam
waist

Cavity
finesse F

Total cavity decay
κ∕2π, scattering

contribution κsc∕2π

Mechanical
frequency

ωm∕2π

Intracavity intensities:
trapping, cooling

beams
Internal heating

ΔT int

Photon scattering
rate Rsc (both

beams)
Phonon

number hnf i
1 cm 25 μm 3 × 105 5 × 104, 100 Hz 0.5 MHz 0.1, 0.05 W∕μm2 80 K 1.6 × 1013 s−1 0.01
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linear coupling is possible for ion traps. However, in both cases, a
single scattered photon would substantially decohere the mo-
tional quantum state of the atom, as Δx is comparable to λs.

The amount of squeezing predicted in this opto-mechanical
system compares favorably with traditional techniques involving
a nonlinear optical crystal pumped inside a cavity, where squeez-
ing of ∼10 dB has recently been observed (19, 20). An important
limitation in these experiments appears to be nonlinear absorp-
tion of the crystal (19), which currently prevents significantly
greater squeezing even if all other imperfections are eliminated.
On the other hand, the mechanical noise in our system in prin-
ciple enables squeezing by up to ∼30 dB, limited only by cavity
losses and extraction efficiency. With state-of-the-art Fabry–
Perot cavities, we anticipate that up to ∼15 dB of squeezing in the
output light can be achieved. Even higher levels should be pos-
sible by coupling the levitated particle to microsphere cavities to
take advantage of their small mode volumes and remarkable
quality factors (44), provided that trapping techniques near such
structures can be developed.

Outlook
An optically levitated opto-mechanical system can have remark-
ably long coherence times, which potentially enables quantum
phenomena such as entanglement to be observed even in room-
temperature environments. Combining previously demonstrated
techniques to controllably grow small particles (45) and load
and manipulate them in vacuum (9, 46) should put this system

within immediate experimental reach. Extending the ideas
presented here should open up several other interesting possibi-
lities. First, we anticipate that our techniques to achieve environ-
mental isolation and use optical forces to engineer themechanical
motion are applicable to a large class of opto-mechanical systems
beyond dielectric nano-particles. For example, by introducing
specifically tailored optical potentials, it should be possible to pro-
duce nontrivial dynamics, such as nonlinear motion. In addition,
several nano-particles or more complex nano-mechanical systems
with internal modes could be levitated and coupled together,
for the purpose of entanglingmultiple degrees of freedom. Finally,
by levitating charged or magnetic systems, one could potentially
realize systems analogous to ion traps (47) or facilitate novel
quantum hybrid architectures (6).

Note added: We have become aware of a recent, similar
proposal to optically levitate and manipulate a nano-mechanical
system by O. Romero-Isart et al., in arXiv:0909.1469.
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