
High-resolution Rb two-photon spectroscopy with ultrafast
lasers

Tai Hyun Yoon, Adela Marian, John L. Hall, and Jun Ye

JILA, National Institute of Standards and Technology and University of Colorado
Boulder, CO 80309-0440

ABSTRACT

A two-photon transition in cold Rb atoms will be probed with a phase-coherent wide-bandwidth femtosecond laser
comb. Frequency domain analysis yields a high resolution picture where phase coherence among various transition
pathways through different intermediate states produces interference effects on the resonantly-enhanced transition
probability. This result is supported by the time domain Ramsey interference effect. The two-photon transition
spectrum is analyzed in terms of the pulse repetition rate and carrier frequency offset, leading to a cold-atom-based
frequency stabilization scheme for both degrees of freedom of the femtosecond laser.
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1. INTRODUCTION

The recent rapid progresses in the generation of wide-bandwidth optical combs based on Kerr-lens mode-locked
femtosecond (fs) lasers have opened many dramatic possibilities. The field of optical frequency metrology has been
revolutionized with the capability of a single-step phase-coherent frequency bridge across several hundred THz,1,2

leading to precision optical frequency measurements,1,2 a direct link between optical and microwave standards,2,3

and an absolute frequency measurement of the international optical frequency standard at 633 nm.4 For the
ultrafast science, the recent work on stabilization of the relative phase between the pulse envelope and the optical
carrier3 should lead to more exquisite control of the pulse shape and timing, opening the door for many interesting
experiments in the area of extreme nonlinear optics and coherent control.

Such a remarkable measurement capability has arrived at the time when optical frequency standards based on a
single ion or cold atoms are emerging as potentially the most stable clocks of any sort.5 Although not an ultimate
choice for an optical clock system, the two-photon transition of Rb atoms at 778 nm presents an attractive alternative.6

However, our motivation to study the Rb two-photon transition with a frequency comb generated from a fs laser (fs
comb) has a much broader reach than the mere improvement of the current cw-laser based two-photon system. In
this paper we will show how a phase-coherent wide-bandwidth optical comb induces the desired multi-path quantum
interference effect for a resonantly enhanced two-photon transition rate.7 The analysis is carried out in both the
frequency and the time domains to illustrate the novel aspect of phase-coherent pulses with a wide bandwidth that
covers all the relevant intermediate states. We will discuss the consequence of these results in terms of absolute
control of both degrees of freedom of the fs comb, namely the comb spacing and the carrier offset frequency. The
multi-pulse interference in the time domain gives an interesting variation and generalization of the two-pulse based
temporal coherent control of the excited state wavepacket.8

Doppler-free two-photon spectroscopy is carried out usually with two equal-frequency cw laser beams propagating
in opposite directions.9 The two-photon transition rate can be resonantly enhanced via the intermediate states with
two different laser frequencies10 or accelerated atomic beams,11 with a small residual Doppler effect. High resolution
Ramsey type two-photon spectroscopy using pulsed light has also been demonstrated,12 with the recent extension to
the cold atoms.13 The unique feature of the present work is that the wide bandwidth optical comb allows all relevant
intermediate states to resonantly participate in the two-photon excitation process, permitting the phase coherence
among different comb components to induce a stronger transition rate through quantum interference.
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Figure 1. (a) Schematic of the relevant energy levels of the 87Rb atom. (b) Sequence of mode-locked pulses. The
carrier-envelope phase shift ∆Θ is shown.

2. THEORETICAL ANALYSIS

Figure 1(a) shows the relevant 87Rb energy levels involved in the two-photon transition from the ground state 5S1/2

to the excited state 5D3/2. The dipole-allowed intermediate states, 5P3/2 and 5P1/2, lie ∼ 2 nm and 17 nm below
the virtual level (dotted line in Fig. 1(a)), respectively. Also shown is a regularly spaced comb of optical frequencies
around 800 nm. The comb frequency spacing or the pulse repetition rate (∆) is equal to the inverse of the pulse
roundtrip time (T ) inside the cavity. The uniformity of ∆ has been demonstrated at a level of 1 × 10−17.1 The
frequency of any comb line can thus be expressed as an integer multiple of ∆ plus an offset frequency δ which arises
from a difference in phase (vp) and group (vg) velocities of the pulses in the laser cavity. A 10 fs laser has a sufficient
bandwidth to have comb components line up with corresponding hyperfine states of 5P3/2 and 5P1/2 (∼ 15 nm apart)
to resonantly enhance the two-photon transition. This multi-path quantum interference can be controlled by the
tuning of mode spacing ∆ and carrier offset frequency δ, leading to a scheme of simultaneous stabilization of both ∆
and δ, and thereby the entire comb. The frequency domain analysis is complemented perfectly by the time domain
multi-pulse Ramsey interference picture, as illustrated in Fig. 1(b), where the carrier-envelope phase shift ∆Θ is also
shown.

To study the dramatic enhancement of the two-photon transition rate Γgf by the resonant intermediate states
and the subsequent interference among different paths, we calculate Γgf analytically in both frequency and time
domains using the time-dependent second-order perturbation theory. The perturbative part of the Hamiltonian is
HI = -µE(t), where µ is the electric dipole moment and E(t) is the applied electric field. For the transition of
5S1/2 (F ′′ = 2) → 5D3/2 (F ′ = 2), we have five participating intermediate states, namely, 5P1/2 F

′ = 1, 2 and
5P3/2 F

′ = 1, 2, 3. We denote the ground state, five intermediate states, and the final excited state by |ψg〉, |ψm〉
(m = 1−5), and |ψf 〉, respectively. µ1 and µ2 are the dipole moments associated with the transitions of |ψg〉 → |ψm〉
and |ψm〉 → |ψf 〉. We note in passing that for the case of polarization-gradient cooled Rb atoms, the first-order
Doppler shift can be neglected since its magnitude (∼ 100 kHz) is much smaller than the natural linewidths of the
intermediate states (∼ 6 MHz).

2.1. Frequency Domain Analysis

For the frequency domain analysis, we express the time-dependent electric field E(t) of the fs comb as

E(t) =
1
2

∞∑

n=−∞
E0 exp[−i(ωr + n2π∆)t] + c.c., (1)



where ωr = 2π(Nr∆+ δ) is a reference frequency, Nr is an integer, and we assume that the comb spectrum extends
−∞ to ∞ from ωr and has the same field amplitude E0. The atomic wave function can be expressed as

|Ψ(t)〉 =
∑

l

Cl(t)|ψl〉 exp(−iElt/h̄) (2)

in terms of the slowly-varying probability amplitudes Cl(t) of atomic states |ψl〉 of energy El, with l covering all
relevant states. In order to apply the time-dependent perturbation theory, we set Cl(t) = C

(0)
l (t)+C(1)

l (t)+C(2)
l (t)+

· · ·, with the initial condition C(0)
l (0) = δlg. The interaction between the atoms and the electric field induces

(
d

dt
+ πγl)C

(k+1)
l = − i

h̄

∑

n

〈ψl|HI |ψn〉 exp(iωnlt)C
(k)
l , (3)

where ωnl = (El − En)/h̄ is the frequency of the transition |ψn〉 → |ψl〉, and γl are the corresponding decay terms.

We are now prepared to solve Eq. (3) for the steady-state solution of Cf (t). Bjorkholm and Liao obtained an
analytical solution for the second-order excited-state population |C(2)

f |2 for the atomic two-photon transition with
a resonant or nearly-resonant intermediate state.14 We use their basic ideas to obtain our solution for C(2)

f , but
the situation here is more general, i.e. we have a phase-coherent optical comb and multi-intermediate states. For
simplicity, we restrict our attention to low optical field strength for each femtosecond comb component, so that
saturation and ac Stark effects are ignored, and hence |Cg(t)| 
 1, |Cm(t)| � 1, and |Cf (t)| � 1. The approach
we take is as follows: First we use the rotating-wave and rate-equation approximations to solve Eq. (3) for the
steady-state solution C(1)

m (t) with the initial condition C(0)
l (0) = δlg. This solution for C

(1)
m (t) is then reinserted into

Eq. (3) to solve for C(2)
f (t). In order to keep simplicity and ease of physical interpretation we further assume that

ωgm and ωmf are considerably different.

It is now straightforward to obtain the second-order two-photon excited-state probability amplitude C(2)
f (t)

according to the method explained above and here is our final formula:

C
(2)
f (t) = 5

∑

p

∑

q

exp{i[ωgf − (p+ q)2π∆− 4πδ]t}
i[ωgf − (p+ q)2π∆− 4πδ] + πγf

∑

m

β1β2

i[ωgm − 2π(p∆+ δ)] + πγm
, (4)

where β1(2) = µ1(2)E0/2h̄ is the Rabi frequency associated with the transition |ψg〉 → |ψm〉 (|ψm〉 → |ψf 〉), assumed
to be real. In order to obtain the result of Eq. (4) we assume that almost all the atoms still remain in the ground
state after the first-order interactions so that the intermediate-state populations can be neglected, because the power
of each comb component is not strong enough to saturate the single-photon transitions. The two-photon transition
rate is given by

Γgf = γf |C(2)
f (t)|2, (5)

where γf is the natural linewidth of the excited state |ψf 〉. In Eq. (5) Γgf has two resonance denominators. One
originates from energy conservation of the two-photon transition where the sum of the two comb frequencies matches
ωgf ; the other results from the single-photon resonance of |ψg〉 → |ψm〉. The linewidths of the two resonances are
γf and γm, respectively. Each intermediate state provides a resonant pathway and they add coherently to yield the
total transition rate Γgf , owing to the fact that different comb components are phase coherent, which is intrinsically
different from the result for the single intermediate state driven by two coherent nearly-resonant fields.14

2.2. Time Domain Analysis
The second-order two-photon excited-state probability amplitude can be obtained independently as a solution of the
Eq. (3) written in the time domain with the electric field given below. In the time domain, the train of (N+1)
mode-locked pulses can be represented by

E(t) =
N∑

l=0

E0 exp[−(t− lT )2/2τ2] exp[−iωc(t− lT )− il∆Θ], (6)

with ∆Θ = ωcT (1 − vg/vp) = 2πδ/∆ + n2π. Here ωc is the carrier frequency, τ is the pulse width, l and n are
integers. During the time periods of lT − τ/2 to lT + τ/2, one pulse, with its sufficiently wide bandwidth, drives
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Figure 2. Time evolution sequence of the atomic state |Ψ(0) > driven by the first square pulse with the pulse
interaction time τ and interval between two pulses T − τ , where |i >= |g >, |m >, |f > refer to the ground state,
intermediate states, and excited state, respectively.

the probability amplitudes of all intermediate states C(1)
m (t) with the first order perturbation and of the final state

C
(2)
f (t) with the second order perturbation in Eq. (3).

To reach an analytical solution, we simplify the original Gaussian pulse shape to be square, then the amplitude
of the electric field in Eq. (6) becomes simply

El(t) = El for lT ≤ t ≤ lT + τ,
0 for lT + τ ≤ t ≤ (l + 1)T. (7)

Figure 2 shows the time evolution sequence of the atomic state |Ψ(0) > driven by the first square pulse with the pulse
interaction time τ and interval between two pulses T − τ , where |i >= |g >, |m >, |f > refer to the ground state,
intermediate states, and excited state, respectively. We ignore the decay of the states during the pulse interaction
time τ , since τ � T (5 ∼ 6 orders of magnitude). In between two pulses, lT +τ ≤ t ≤ (l+1)T , l = 0 to N, the atomic
states evolve freely according to the unperturbed Hamiltonian H0 along with the appropriate decay rates. The next
pulse, with the corresponding phase shifts, will continue to build the atomic probability amplitudes in a coherent
fashion. This process will of course reach a state of equilibrium since the excited state has a lifetime of 1/(2πγf ).
As in the frequency domain analysis, we apply the second-order perturbation theory to obtain the excited-state
probability amplitude C(2)

f (NT ). After the first pulse interaction the probability amplitudes for the intermediate

states obtained from Eqs. (3) and (7) with the initial conditions C(0)
l (0) = δlg are

C(1)
m (τ) = β1S

τ (gm), (8)

where

Sτ (v) =
exp[i(ωv − sωc)τ ]− 1

ωv − sωc
(9)

with s = 1 for v = gm,mf , and s = 2 for v = gf . We use Eq. (8) as an initial condition for Eq. (3) to write an
expression for the second-order excited-state probability amplitude C(2)

f (τ) and it is easily obtained from Eq. (3) as

C
(2)
f (τ) =

∑

m

β1β2[Sτ (gf)− Sτ (mf)]
1

ωgm − ωc
. (10)
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Figure 3. Γgf as a function of ∆ and δ, calculated from the analytical expressions obtained in frequency domain
(a) and in time domain (b). The values of ∆0 and δ0 are 100 MHz and 15.69 MHz, respectively, for both (a) and
(b). The pulse width is 10 fs for (b)

During the time τ ≤ t ≤ T the atomic states evolve freely with their own decay rates and thus at time T , when the
second pulse comes in, Eqs. (8) and (10) become

C(1)
m (T ) = C(1)

m (τ) exp[−γm(T − τ)/2], (11)

C
(2)
f (T ) = C

(2)
f (τ) exp[−γf (T − τ)/2]. (12)

Following the same steps for the next N pulses we are able to find the second-order probability amplitude for the
excited state C(2)

f (NT ) as

C
(2)
f (NT ) = C

(2)
f (τ)

N∑

l=0

exp[−πγf (N − l)T + i(ωgf − 4πδ)lT ]

+
5∑

m=1

β2S
τ (mf)

N∑

l=1

Cm(lT ) exp[−πγf (N − l)T + i(wmf − 2πδ)lT ], (13)

with

Cm(lT ) = β1S
τ (gm)

l−1∑

n=0

exp[−πγm(l − n)T + i(ωgm − 2πδ)nT ]. (14)

It is interesting to note that the phase terms in Eq. (13) depend explicitly on the carrier-envelope phase shift ∆Θ,
but not on the carrier frequency ωc, which has an effect only on the relative signal size.

2.3. Calculational Results

The measured values of the Rb transition frequencies, hyperfine intervals, and decay rates are used in the present
calculations.15 Figure 3 shows a typical Γgf as a function of ∆ and δ, with curve (a) calculated from the frequency
domain (Eq. 4) and (b) calculated from the time domain (Eq. 13). In the frequency domain calculation, the
frequency coverage of the comb pairs to excite |g〉 → |m〉 and |m〉 → |f〉 used in the calculation far exceeds the
hyperfine splittings among the intermediate states. Also the number of pulses used for the time domain calculation
is larger than necessary to reach the steady state. (See Fig. 4) The agreement between the two approaches is perfect,
with both graphs generated around the same nominal values of ∆0 = 100 MHz and δ0 = 15.69 MHz. The resonance
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Figure 4. (a)Γgf vs. number of comb pairs Nc calculated in frequency domain. Only one intermediate state is
considered. (b) Same as (a) except all five intermediate states are included. (c) Dependence of the two-photon
transition linewidth δ1/2 on pulse number (Np). (d) Γgf vs. pulse number (Np).

width associated with ∆ (with a fixed δ) is determined primarily from the two-photon resonance condition and is on
the order of γf/(ωgf/2π∆). The resonance width associated with δ is roughly on the order of γf (300 kHz).

To show the effect of multi-comb line contributions, i.e. multi-path quantum interference effect, we plot in Fig.
4 (a) and (b) the growth of Γgf vs. the number of participating comb pairs. The calculation is performed in the
frequency domain. Figure 4 (a) shows a hypothetical case where we leave only one intermediate state to avoid
quantum interference. If one of the comb pairs is resonant with the two-photon transition, we would expect all of the
phase-locked comb lines to be resonant in pairs and contribute coherently to the two-photon absorption, which would
result in an enhanced signal. However, as one can see from Fig. 4 (a) we find that the main contribution to the signal
comes from the first comb pair with one component tuned near |ψg〉 → |ψm〉 and the other tuned near |ψm〉 → |ψf 〉.
And the next 15 pairs of comb lines contribute to less then 1 % of the signal level. This is understandable considering
that the comb spacing ∆ (∼ 100 MHz) is much larger than γm (5 MHz). When we include all five intermediate
states, the situation changes dramatically and the ”saturation” curve shown in Fig. 4 (b) is less smooth, with the
interference among different pathways contributing to sudden change of the signal size. Now, the first 10 pairs of
comb lines need to be included for the final signal size, which depends on the frequency ratio between the comb
spacing ∆ and the hyperfine intervals in the 5P3/2 and 5P1/2 levels of the Rb atom and on the relative detuning of
each comb pair to the intermediate levels. Figure 4 (c) and (d) illustrates the evolution of time domain interference
effect as we plot the resonance linewidth and size with respect to the increasing pulse numbers. Clearly the Ramsey
interference enhances the frequency resolution as more pulses participate, with the final linewidth limited basically
by γf itself (Fig. 4 (c) and its inset), after 200 pulses or so. The signal size also reaches a stable value after a
similar number of pulses (Fig. 4 (d)). The number of pulses needed to reach equilibrium is on the order of the ratio
of excited state lifetime over the pulse repetition period T. The bandwidth issue of the comb can be explored with
the original Gaussian pulse-shape in Eq. (6). We find that for a pulse of constant energy, the signal size remains
unchanged when the pulse width τ increases, till about 30 fs, where the bandwidth becomes too small to cover the
intermediate states and the signal size starts to decrease. In the calculation for Fig. 3 and Fig. 4, τ is set to be 10
fs.

3. COLD-ATOM-BASED FREQUENCY STABILIZATION SCHEME

While the results shown in Fig. 3 are informative, they are hardly useful for frequency control of the fs comb. Clearly
Fig. 3 provides only one constraint for both ∆ and δ and therefore we will not be able to control them independently.
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Figure 5. Γgf as functions of ∆ and δ1 (Eq. 15). All parameters are same as in Fig. 3 except ∆0 = 101.851871
MHz for (a) and ∆0 = 105 MHz for (b).

The reason lies in the fact that we have chosen the zero frequency as the reference point for both degrees of freedom
associated with the comb. In other words, the effects on the comb frequency by the changes of ∆ and δ are too
similar and so an orthogonalized control is difficult. This situation can be remedied in practice. Optically one can
adjust the laser cavity such that the frequency ωp at which the cavity dispersion is not sensitive (to first order) to a
rotating mirror lies above ωgf/2, i.e. virtual state (dotted line in Fig. 1) for the two-photon transition. In this case
the comb components interacting with the intermediate states will be shifted down with an increasing ∆, but up
with an increasing δ, leading to a possible orthogonal control. Another approach is to use electronic means to mix
the control information for both ∆ and δ such that two new orthogonal signals can be generated. Mathematically,
this orthorgonalizaiton process amounts to a change of variables in Eq. (4), which we now rewrite as

C
(2)
f (t) =

5
2π

∑

k

exp{−4πiδ1t}
i(−2δ1) + γf/2

∑

m

β1β2

i[ωgm − ωgf/2− 2π(k∆+ δ1)] + πγm
, (15)

where δ1 = δ +∆ −Mod(ωgf/4π∆). Figure 5 displays the resonance picture against δ1 and ∆. We choose to show
two representative cases with ∆0 = 101.851871 MHz for (a) and ∆0 = 105 MHz for (b). Specific values of ∆0 are
sought to have corresponding comb components tuned near a majority of the five intermediate states. Furthermore,
to have a maximum enhanced peak, detunings between the five intermediate states and their respective comb lines
should all have the same sign. The single peak in (a) shows an enhanced Γgf (by 32 = 9 times, compared against a
single state resonance) due to three constructively interfering states. (b) shows a situation where no comb lines are
tuned near resonances of intermediate states and yet constructive interference still helps to enhance the signal. The
resonance width associated with ∆ is on the order of γm/[(ωgf/2−ωgm)/2π∆]. Simultaneous control of both ∆ and
δ is now clearly feasible. Atom-based frequency stabilization of a fs laser provides long term stability and should be
an attractive complement to other approaches including lock of ∆ to a microwave source,1,2 lock of a fs laser to an
optical cavity,16 self-referenced f-2f heterodyne lock,3 and a fs comb phase locked to an ultrastable cw laser.17 An
experimental realization of the cold-atom-based frequency stabilization of the fs laser is under way at JILA using
cold 87Rb atoms in a magneto-optical trap.

4. CONCLUSIONS

As a conclusion we show that the two-photon process can be dramatically enhanced through the use of a phase-
coherent fs comb resonantly exciting step-wise transitions. Quantum interference among different path ways leads to
the desired information of the atomic structure while providing an absolute reference for a complete control of the fs



laser. The ultrahigh resolution aspect of this approach can be understood also from the time domain analysis where
a series of Ramsey-type atom-pulse interactions provide a long coherent interrogation time.
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