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Abstract: We have investigated the coupling efficiency and cavity loss
associated with a ring cavity that has a hole in one of the focusing mirrors.
The aperture provides a means through which intracavity high-harmonic
generation can be coupled from the cavity. By studying different cavity
geometries and input modes we have found that the integration of phase-
plates on the focusing mirrors provides the best performance in terms of
input coupling efficiency, cavity loss, and output-coupling of the generated
high harmonic light.
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1. Introduction

Recent experiments in which broadband femtosecond combs are coupled to passive optical
cavities have demonstrated great potential for new optical devices and measurement techniques.
While some experiments utilize the increased frequency sensitivity of a cavity to more precisely
measure optical parameters such as absorption [1] and group-delay dispersion [2] over a broad
bandwidth, other experiments make use of the pulse-energy enhancement inherent to the cavity
to generate more intense sources [3] and enhance nonlinear interactions [4, 5]. One particularly
interesting experiment is the recent demonstration of generating a high repetition rate vacuum-
and extreme-ultraviolet (VUV/XUV) source by coupling the light from a Ti:sapphire oscillator
to a passive cavity [6, 7]. However, coupling the generated radiation out of the cavity presents
many challenges. In this paper, we explore possible output-coupling methods to efficiently
extract the high-harmonic radiation from the cavity.

The recent experimental demonstrations of cavity-based high-harmonic generation (HHG)
utilized an intracavity sapphire plate oriented at Brewster’s angle to couple the HHG from the
cavity. A small Fresnel reflection occurs for the HHG because the sapphire plate is dispersive.
However, this method has may limitations. For instance, the sapphire plate can limit the cavity
energy enhancement. In order to reach the necessary intensities to achieve HHG with a cavity-
enhanced technique, several conditions must be satisfied. First, the cavity must be low loss over
the spectral bandwidth of the femtosecond laser. Because the sapphire plate must be placed
near the intracavity focus, the entire spatial profile of the diffracting beam cannot be aligned at
Brewster’s angle. This additional loss limits the finesse that can be achieved. A second condition
is that each component of the femtosecond comb must overlap a corresponding cavity mode.
This requires that the cavity dispersion must be minimized such that the free spectral range of
the cavity is uniform as a function of wavelength. In order to compensate the dispersion of the
sapphire plate, a negative group-delay dispersion (NGDD) mirror must be utilized. However,
NGDD mirrors are not ideal for low-loss/broadband because of the increased number of coating
layers. Additionally, compensating for higher-order dispersive terms of the sapphire can be
problematic.

A second limitation of the intracavity plate based method of output coupling arises from the
fact that the sapphire plate must be located near the intracavity focus in order to couple out the
HHG before it hits another cavity mirror. For high-finesse cavities, the high intensities inside
the plate lead to significant spectral distortions due to nonlinear processes in the plate [8] which
reduce the ability to couple the entire comb to the cavity. A final limitation of the sapphire plate
is that the output coupling efficiency is low. At low-order harmonics, the index of refraction of
the sapphire has not changed sufficiently to lead to a large Fresnel reflection. At higher-order
harmonics, the sapphire becomes absorbing, and even though the light is reflected from the
front surface, absorption of the evanescent wave penetrating the sapphire leads to a maximum
reflectivity of approximately 20 percent.

An alternative output coupling method, which will be the focus of this article, is to couple
the HHG through a small hole in the concave mirror after the intracavity focus. By coupling
a higher-order spatial beam to the cavity, the pump beam will avoid the hole, maintaining the
high finesse. However, the HHG generated at the focus will diffract at a smaller angle due to
its decreased wavelength and will partially couple through the hole. This technique eliminates
many of the problems associated with the sapphire plate. An additional technique that we will
briefly discuss towards the end of this paper is a noncollinear geometry in which the HHG is
generated by two intracavity pulses intersecting at a slight angle. This technique bears similarity
to the first approach except that the two beams are separate instead of being derived from the
two lobes of the higher-order spatial mode.
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Fig. 1. Schematic of the ring cavity under investigation. A hole of radius a is drilled in
one of the curved mirrors to allow the high-harmonic light to escape from the cavity. The
curved mirrors have radius of curvature R1 and R2 and the distances of separation between
the mirrors are denoted as di.

2. Computational method

In order to evaluate the performance of the proposed output-coupling scheme, the cavity loss
introduced by the hole and the spatial profile of the HHG at the machined mirror must be cal-
culated. Figure 1 depicts the cavity geometry we are investigating with the relevant dimensions
labeled. While many methods exist for calculating the cavity modes (see for example, [9]),
many of these techniques are specialized to calculating the laser-cavity mode that experiences
the most gain. In our case, however, we are seeking the cavity modes which are low-loss, but
are also reasonably smooth and can be easily excited with a laser beam. The method we have
chosen to calculate the cavity modes is to express the cavity mode as a superposition of the
Laguerre-Gaussian modes of the unapertured cavity which form a complete basis [9]:
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∞
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where (r,φ) represent the radial and angular coordinates of the field amplitude u ν , ν is the
angular mode order number, and p is the radial mode order number. Physically, the weighting
coefficient cp represents the amount of the unapertured cavity mode with radial mode-order
p that is contained in the physical cavity mode of the apertured cavity. R and w represent the
position dependent radius of curvature and width of the unapertured modes inside the cavity and
can be calculated with ABCD matrix techniques, k = 2π/λ where λ is the laser wavelength,
Lν

p is the associated Laguerre polynomial [10], and ψ p,ν is the position dependent geometrical
phase.

Using this representation, the weighting coefficients of the cavity mode can be solved for
using matrix eigenvalue methods. The associated eigenvalue β , which encodes the round-trip
cavity loss and longitudinal frequency, can be calculated by solving the matrix equation:

AD2D1�c = β�c (2)

where �c is a vector with elements cp, and A is a matrix which is responsible for modeling the
aperture by decomposing the field u(r) before the mirror into a field which is zero for r < a after
the mirror. Diagonal matrices Di account for the fact that different transverse modes accumulate
different geometrical phase by traveling distance d i in the cavity where (as shown in Fig. 1) we
use d1 to represent the overall path outside the two curved mirrors and d 2 for the distance
between the two curved mirrors. Fortunately, the elements of the aperture matrix

Ap,m =

√
p!

(p+ ν)!

√
m!

(m+ ν)!
Sν,ν

p,m (3)
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Fig. 2. (a) Comparison of expected cavity loss for a gaussian (ν = 0) and donut-mode
(ν = 1) beam coupled to a cavity with a hole drilled in one of the mirrors. The losses were
also approximated by integrating the power of the unperturbed beam over the hole area
which are shown as solid and dashed lines for the Gaussian and donut mode, respectively.
(b) Percentage of light that can be coupled to cavity mode using an ideal gaussian or donut-
mode.

where
Sν,η

p,m =
∫ ∞

2a2/w2
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ν
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can be easily calculated by making use of the recurrence relationship

Sν,η
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where y0 = 2a2/w2
0 and w0 is the field 1/e half-width of the unapertured gaussian mode on

the apertured mirror. The coefficient vector�c is truncated at a finite number of terms, and β is
solved by inverse iteration as the size of the aperture adiabatically increases.

3. Results

As a specific example to study, we have chosen cavity parameters similar to those used exper-
imentally in Refs. [6, 7]. The curved mirrors have a radius of curvature R 1 = R2 = 10 cm, the
long arm of the cavity has length d1 = 2.9 m and the short path of the cavity (d2 ≈ 10 cm) will
be varied to probe the output-coupling scheme for different levels of cavity stability. In order to
calculate the beam width of the cavity mode, a laser wavelength of λ = 800 nm was used.

Figure 2 compares the performance of the cavity when a gaussian beam (ν = 0) and a donut-
mode (ν = 1) are coupled to a cavity in which d2 is in the center of its stability region such
that w = 860 μm. The expected round-trip cavity loss (Fig. 2(a)) is calculated as the hole size
increases. As a comparison, a first-order approximation is also calculated in which the loss
is computed by assuming the mode-profile does not change as the hole-size is increased and
the loss is simply the fraction of the light that overlaps the hole. For the gaussian beam, the
approximate expression overestimates the loss because the stable cavity mode for larger hole
sizes reorganizes sufficiently to avoid the hole.
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Fig. 3. (a) Comparison of loss for the donut mode at varying levels of cavity stability. (b)
Fortunately, even after renormalizing the hole size by the mode diameter, for larger hole
sizes the cavity loss is less when the cavity is operated near the edge of stability where the
intracavity focus is tighter (� and �).

Another issue that arises when comparing performance between the gaussian and donut mode
is the input coupling efficiency. The reorganization of the gaussian beam that allows relatively
low loss to be maintained leads to a dramatic reduction in the input-coupling efficiency (see Fig.
2(b)) since the cavity mode looks less like a gaussian. Large diffraction fringes also develop
because the hard-edged aperture acts on the high-intensity portion of the gaussian beam. In
contrast, high coupling efficiency can be maintained for the donut-mode at moderately large
hole diameter.

The efficiency of HHG is very sensitive to the peak intensity of the laser pulse inside the gas
sample being excited. As such, a tight intracavity focus is required. Besides changing the radius
of curvature of the focusing mirrors, the intracavity focus can be made smaller by changing the
mirror separation d2 such that the cavity is operated near the edge of its stability regime. We
have investigated the performance of the output coupling method as a function of the cavity
stability. In Fig. 3(a), we present results of the calculated loss for the donut-mode when the
cavity is operated at the center of its stability regime where the intracavity focus is 15-μm.
In addition, we calculated the loss when the cavity is operated on either side of its stability
regime such that the intracavity focus is 10-μm. The results of Fig. 3(a) can be misleading
however because the mode size on the mirror increases as the focus is decreased. Thus, a smaller
percentage of the light will impinge on the hole resulting in a smaller loss. However, the HHG
will also be generated with a smaller transverse profile and will diffract more quickly. A fairer
comparison can be made if the hole diameter is normalized by the mode diameter on the mirror.
Figure 3(b) clearly shows that operating near the edge of cavity stability is advantageous both
in terms of cavity loss and peak focal-intensity. The reduced loss experienced when the cavity
is operated near the edge of stability when the fractional hole size is fixed can be understood
by realizing that the curved mirrors form a perfect one-to-one telescope at both limits of cavity
stability. This limiting case possesses lossless modes for any hole size.

While the donut mode offers better performance compared to the gaussian in terms of mini-
mizing loss and improved input-coupling efficiency, there are several drawbacks. First, it is very
difficult to achieve a donut mode directly from a mode locked laser. Second, the peak intensity
at the focus for a donut mode is only 1/e ≈ 37% the peak intensity of the gaussian if the two
beams have the same power. Considering the highly nonlinear nature of HHG, this reduction in
peak intensity can lead to a significant reduction in the HHG yield. Third, slight astigmatism
in the ring cavity breaks the longitudinal-mode degeneracy between the TEM 01 and TEM10

modes. These difficulties can be partially addressed by inserting a phase-mask before the cav-
ity which produces a beam with a gaussian intensity distribution but introduces a π phase shift
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between the two halves of the spatial profile. Computing the overlap integral of the beam with
the TEM01 reveals that a conversion efficiency of 93% can be achieved. While a phase plate
that increases ν by one could have been used, manufacturing a phase plate that creates a TEM 01

is far simpler. In addition, the peak intensity of the TEM 01 is twice that of the donut yielding
only a 26% reduction in peak intensity relative to the gaussian. Since the TEM 01 mode can be
expressed as a superposition of the ν = ±1 donut modes, the expected coupling efficiency and
loss experienced by theTEM01 will be the same as that already calculated for the donut mode.

To experimentally verify the numerical results presented here, a phase plate was fabricated
as well as mirrors with holes drilled in them. A 725-μm step was reactive ion etched onto a
sapphire window which was inserted into the laser beam (with the step line cutting through the
middle of the spatial profile) at Brewster’s angle between the laser and enhancement cavity.
This phase plate worked sufficiently well over the spectral bandwidth of ∼20 nm that could
be coupled well into the cavity due to intracavity dispersion. With unapertured mirrors in the
cavity, the coupling efficiency of the TEM01 mode was 85% of what could be achieved with the
gaussian mode, compared to a theoretical limit of 93%. By filling the entire vacuum chamber
with 1-Torr of Xenon, a strong plasma was observed indicating that sufficient peak intensity
buildup in excess of 1013W/cm2 at the intracavity focus was still maintained with the TEM01

mode. An apertured mirror was then fabricated by mechanically counterboring a 3-mm hole
into a glass substrate to within 1-mm of the reflecting surface. The remaining 1-mm was then
laser machined to produce holes from 100 to 300 μm in diameter. The surface was then polished
to the desired radius of curvature and coated with a high-reflector coating. When inserted into
the cavity to which a TEM01 was coupled, a 100-μm hole changed the cavity finesse from 3300
to 2650 (as measured by cavity ringdown) corresponding to an additional 0.05% loss. This is
comparable to that predicted by the simulations presented above. After coupling all aspects
of the experiment together (input coupling efficiency, mode conversion, spectral filtering, hole
loss), an intracavity pulse-energy enhancement of 275 was still experimentally achieved leading
to visible ionization of Xenon at the intracavity focus.

A final drawback of not using a gaussian beam is that the HHG will not have a constant phase
across its spatial profile because of the nonconstant phase of the fundamental beam. In addi-
tion, the harmonic will be generated in a ring (or dual lobed) which could lead to reduced output
coupling since the peak intensity of the HHG will not be on-axis. In order to evaluate the output
coupling efficiency, a simple model of HHG was used in which the cavity mode was calculated
at the focus, raised to the n-th power where n was the harmonic order being investigated, and
propagated to the mirror. Hence, the complicated intensity dependence and phase-matching as-
pect of HHG have been neglected. While this simple model should work well for approximating
the spatial profile of the low-order harmonics, the absolute efficiencies at higher-order harmonic
should be calculated using a more rigorous model for the HHG process. Figure 4 shows a com-
parison of the ninth-harmonic profiles at the apertured mirror for a gaussian, ν = 1 donut, and
TEM01 input modes when a 225-μm hole (shown as a white ring) is used. Even though the
cavity loss for the ν = 1 and TEM01 are identical, the output coupling through the aperture
for the TEM01 is significantly higher. Whereas the phase of the ninth harmonic of the donut
mode wraps 18π , resulting in a ν = 9 character, the phase of the high-harmonic TEM 01 simply
contains a π phase step across the beam. This results in a predominantly ν = ±1 character and
a considerably smaller diffraction angle.

One solution that addresses these issues is to integrate λ/2 phase masks onto both concave
mirrors of the cavity. In the long arm of the cavity, a TEM 01 beam with low on-axis intensity
is coupled to the cavity. Upon reflection from the concave mirror, the two lobes of the beam
become in phase but retains a low-intensity on-axis. However, as the beam propagates to the
focus, a strong on-axis intensity develops leading to strong axially-generated HHG [11]. Upon
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Fig. 4. Ninth-harmonic intensity profiles at the apertured mirror for gaussian, donut (ν = 1),
and TEM01 input beams. The high-harmonic donut has a ν = 9 character. The white circle
represent the 225-μm diameter aperture.

propagating to the apertured concave mirror, the fundamental beam redevelops the low-intensity
node on-axis such that low loss is maintained. Finally, reflection from the apertured mirror with
the integrated phase mask reproduces a TEM01 character to the beam.

Even though a TEM01 mode would be used in an actual experiment, it is easier to do the cal-
culations in the basis of the donut mode. The action of a phase mask that maintains the intensity
distribution but increases the azimuthal symmetry parameter, ν , by one can be incorporated into
the model as an additional transfer matrix, N, with components,

Nq,p =
∫ ∞

0

L1
q(y)L

0
p(y)

√
ye−y

√
q+ 1

dy = −Γ(p− 1
2 )Γ(q+ 1

2 )3F2(−p, 3
2 ,−q;−q+ 1

2 ,−p+ 3
2 ;1)

4
√

π
√

q+ 1Γ(p+ 1)Γ(q+ 1)
(6)

where 3F2 is the generalized hypergeometric function [12]. While calculating the matrix ele-
ments directly from Eq. 6 can be cumbersome for large p and q, a recurrence relationship can
be derived to allow efficient computation of the matrix elements:

Nq,p =
(−4q+ 8pq−7−8p2+ 16p)

2p(1+ 2q−2p)
Nq,p−1 − (p−1)(5+ 2q−2p)

p(1+ 2q−2p)
Nq,p−2 (7)

The loss resulting from the integration of a pair of phase masks on the two curved mirrors can
therefore be computed by solving the matrix eigenvalue problem

β�c = AND2NT D1�c (8)

where the ν = 1 beam is propagating in the d1 arm of the cavity.
In order for the integrated phase plates to work effectively, the intensity distribution on the

first focusing mirror must be reproduced on the second curved mirror. This is accomplished
by operating near the edge of cavity stability such that the diffractive phase in propagating
between the curved mirrors is about π radians for the gaussian mode of the unperturbed cavity.
Figure 5 presents a comparison of the cavity loss for the gaussian and donut modes without
the integrated phase masks and the hybrid mode resulting from the integrated phase masks.
The cavity conditions correspond to the situation near the inner edge of stability in Fig. 3. As
can be seen, the results for the hybrid mode matches well with the donut mode in terms of
loss and coupling efficiency. Unlike the donut mode however, an intense on-axis distribution
develops at the tight intracavity focus which will lead to improved harmonic generation and
output coupling.

We have calculated the expected output coupling efficiency when a TEM 01 mode is coupled
to the cavity with and without the integrated phase masks. As shown in Fig. 6, the integrated
phase plates lead to a dramatic increase in the output coupling, especially at lower order har-
monics. Even for a relatively large hole of 250 μm, the loss can be maintained below 0.1% and
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Fig. 5. (a) Intracavity loss near the inner edge of stability for a cavity that has phase masks
integrated on the curved mirrors. A hybrid mode which has ν = 0 and ν = 1 character in
different parts of the cavity is supported. For comparison, the round-trip loss without the
integrated masks is also computed for an input gaussian and donut mode. (b) The hybrid
mode can also be excited with similar coupling efficiency as the donut mode.

Fig. 6. Output coupling efficiency of the HHG for a cavity (a) without and (b) with phase
masks integrated onto the concave mirrors. Note the vertical scale difference between (a)
and (b)

an output coupling efficiency in excess of 40% at the fifteenth harmonic can be achieved. In
addition, as stated above, HHG will be more efficiently generated because the peak intensity at
the intracavity focus will be higher for the hybrid mode.

An additional output coupling method is to utilize a cavity that is twice as long as the laser
cavity. As such, two pulses will be inside the buildup cavity. By using two sets of concave
mirrors that share a common focus, HHG can be achieved in a noncollinear geometry [13,
14] and the high-harmonic light can escape through a small gap between the curved mirrors.
(See Fig. 7). This method presents some advantages compared to the previously discussed
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Fig. 7. Output coupling method using noncollinear geometry. The length of the optical cav-
ity is twice the laser-cavity length such that two pulses inside the cavity can simultaneously
focus into a gas sample. The noncollinearly generated HHG is output coupled through a
gap between the two focusing mirrors.

schemes. First, separation of the high-harmonic from the fundamental light is simple because
they are propagating in different directions. Second, no complicated fabrication is necessary.
Finally, there is an inherent increase in the intensity at the focus by a factor of two since there
are two separate pulses colliding. However, several disadvantages may lead to experimental
challenges. First, since the cavity is twice as long, more mirrors would have to be used to fold
the cavity into a reasonable size. This will increase the losses and dispersion and could limit
the energy enhancement achieved. Second, the noncollinear geometry will limit the effective
interaction length of the two pulses. Lastly, the cavity geometry must be arranged such that the
two ultrashort pulses overlap in time at the focus. In addition, the two halves of the cavity need
to be stabilized such that the two pulses will maintain constructive interference on axis.

4. Conclusion

Cavity enhanced HHG shows great promise for high-precision spectroscopy at vacuum ultravi-
olet wavelengths. In this paper we have presented several alternative geometries to help increase
the fluence through more effective output coupling. While technically challenging to fabricate,
the integration of phase masks onto the concave mirrors appears to be the most promising over-
all since a high finesse can be maintained, the cavity mode can be effectively excited, and a
large percentage of the generated HHG can be coupled from the cavity.

Note added in proof: We have recently successfully coupled out the third harmonic through
the aperture of the concave cavity mirror.
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