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Controlling dipole-dipole frequency shifts in a lattice-based optical atomic clock
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Motivated by the ideas of using cold alkaline-earth atoms trapped in an optical lattice for realization of
optical atomic clocks, we investigate theoretically the perturbative effects of atom-atom interactions on a clock
transition frequency. These interactions are mediated by the dipole fields associated with the optically excited
atoms. We predict resonancelike features in the frequency shifts when constructive interference among atomic
dipoles occur. We theoretically demonstrate that by fine tuning the coherent dipole-dipole couplings in appro-
priately designed lattice geometries, the undesirable frequency shifts can be greatly suppressed.
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I. INTRODUCTION

The development of increasingly accurate atomic clo
has led to many advances in technology and tests of fun
mental physics. In the search for the next generation
clocks and frequency standards, there has been conside
interest in using alkaline-earth species because of their
row intercombination lines in the optical spectrum@1#. In
order to achieve a high level of short-term stability and lon
term reproducibility and accuracy on the clock transition
is desirable to have a large number of cold atoms locate
a well-characterized trap for an improved signal-to-noise
tio (S/N) and reduced systematic errors associated w
atomic motion. Single ion-based systems do effectiv
eliminate Doppler and other motion-related systematic er
when the single ions are confined in the Lamb-Dicke regi
@2#, although the achievableS/N is limited by single-
quantum absorbers. For neutral atoms it is important
changes in the level structure due to the trapping potentia
not alter the relevant clock transition frequency. Such
scheme has been proposed by trapping alkaline-earth a
in three-dimensional optical lattices tuned to a ‘‘magi
wavelength where the relevant states for the clock transi
experience exactly the same level shift@3#. The 1S0(F
59/2)2 3P0(F59/2) forbidden transition (l05700 nm) in
87Sr @3# is in particular a promising candidate for a lattic
based optical clock transition because of the long lifetime
the excited state (;160 s) and the insensitivity of theJ50
states to the polarization state of the trapping light. Alrea
there have been efforts towards the cooling and trapping
87Sr @4–6#, and recently this transition was directly observ
and measured for the first time@7#. Calcium, another
alkaline-earth atom that has been studied extensively
frequency standard@8,9#, may be a candidate for optical la
tice clocks as well.

In the case ofN independent atoms, one benefits from
AN improvement inS/N in spectroscopy. However, atom
trapped in an optical lattice can interact with each other
cannot truly be considered independent. Each optically
cited atom represents essentially a point dipole whose r
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ated electromagnetic field can affect other atoms. Th
atom-atom interactions can manifest themselves as shift
the observed transition frequencies. Because of the sp
ordering of atoms in a lattice and the potentially high atom
density, it is possible that such interactions may produce v
large frequency shifts. One might expect then that dipo
dipole interactions can be much more severe here than in
example, atomic fountains, and thus could place serious
its on the accuracy of an optical lattice clock if not accoun
for. On the other hand, it might be possible to design latt
geometries where this shift is reduced or canceled. Altho
the trapping lasers are constrained to operate at the ‘‘ma
wavelength, the lattice geometry can be altered by chang
the relative orientations of the trapping beams, whose
grees of freedom can be characterized by a set of varia
$a%.

In this paper, we investigate theoretically the dipo
dipole interaction-induced shifts in the clock transition fr
quency recovered by Ramsey spectroscopy. We show tha
varying the lattice geometry we can quantitatively cont
the clock frequency shift and even reduce the shift to zero
particular, we give an analytical equation that can be sol
giving configurations$a0% where constructive interferenc
causes the line shift to be very large. In these ‘‘bad’’ latti
configurations, the magnitude of the line shift scales appro
mately likeN2/3. Quite generally we propose that by tunin
the parameter space$a% to lie in between two of these ba
configurations, one can find ‘‘good’’ configurations whe
the shift is canceled. The mechanism of cancellation is as
ciated with the destructive interference of contributions
the shift from different atoms in the lattice.

It is important to emphasize that the present mechan
and theoretical treatment differ considerably from the co
ventional approaches used to treat dipole-dipole line bro
ening and shifts. In the case of atoms in a spatially orde
lattice geometry, long-range effects are important, and
usual methods involving binary collisions of nearest neig
bors @10# are not applicable. These long-range effects
clude, in particular, interference of the far-field dipole rad
tion produced by the excited atoms, a phenomenon simila
Bragg scattering in a crystal.

This paper is organized as follows. In Sec. II we deri
equations describing the evolution of an atomic system w
©2004 The American Physical Society10-1
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dipole-dipole interactions. These equations are derived
suming that the atoms are in the Lamb-Dicke regime, w
one atom or less per lattice site. In Sec. III we give a br
review of Ramsey spectroscopy and solve for the dipo
dipole induced line shift using perturbation theory. We fi
that the shift can be qualitatively understood in terms of
classical interaction energies between oscillating dipo
There is a contribution to the shift that is zeroth order in
interrogation timet, which is due to imperfections in th
Ramsey pulses. Even with perfect pulses, however, one fi
a shift that is first order int that results from spontaneou
decay of the atoms. Section IV discusses how our result
the line shift can be generalized for systems with imperf
filling of the lattice sites and for multilevel atoms. In the ca
of imperfect filling, one can calculate the mean value of
frequency shift as well as some nonzero variance, due to
uncertainty of how the lattice is filled. In Sec. V, we deriv
an equation that can be solved giving lattice configurati
where the shift is large due to constructive interference.
derive an approximate scaling law for the shift in these b
configurations and discuss how the line shift can be redu
by choosing an appropriate lattice design. In Sec. VI
demonstrate these results numerically for one specific la
configuration.

II. EQUATIONS OF MOTION

To treat the problem of interacting atoms in a lattice,
considerN two-level atoms in the Lamb-Dicke limit with
polarizability along thez axis. A simple model of the system
consists of treating the atoms as point dipoles, and we fur
assume that there is one or less atom per lattice site.
corresponds to a Mott-insulator state for bosons or a nor
state for fermions. In principle, to solve exactly the proble
of interacting atoms one would start from the full atom-fie
Hamiltonian and take into account not only all the atom
degrees of freedom but the continuum of electromagn
field modes. To simplify the theoretical treatment, we effe
tively eliminate the field in the standard way using the Bo
Markov approximation~see Appendix!. This is valid pro-
vided that the atomic system evolves slowly on time sca
of the correlation timetc , which is of the orderL/c whereL
is the linear size of the system andc is the speed of light. As
a result of eliminating the field, one finds an effective equ
tion of motion for the density matrixr of the atomic system
Atom-atom interactions then appear through an effec
HamiltonianHeff as well as through a non-Hermitian oper
tor L:

]r

]t
5

1

i\
@H01Heff ,r#1L@r#. ~1!

Here,H0 is the atomic Hamiltonian for a noninteracting sy
tem. Writing out all the terms in detail,
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1

i (
a

Fv0

2
sa

z ,rG2
iG

2 (
aÞb

g~krab!@sa
1sb

2 ,r#

2
G

2 (
a,b

f ~krab!~$sa
1sb

2 ,r%22sb
2rsa

1!

2
1

4 (
a

g~r2sa
zrsa

z!, ~2!

where

f ~v!5
3

2 Fsin2u
sin v

v
1~3cos2u21!S sin v

v3
2

cosv

v2 D G ,

g~v!52
3

2 Fsin2u
cosv

v
1~3cos2u21!S cosv

v3
1

sin v

v2 D G ,

~3!

andu is the angle thatv makes with thez axis.
The first term on the right-hand side of Eq.~2! corre-

sponds toH0 . sa
z is the Pauli matrix of atoma correspond-

ing to the population difference between the excited a
ground states, andv0 is the resonance frequency of the d
pole transition. The second term corresponds toHeff . Here,
G5k0

3d2/3pe0\ is the spontaneous decay rate of the exci
state of a single, isolated atom, wherek052p/l05v0 /c
and d is the dipole matrix element between the ground a
excited states.sa

1 is the atomic raising operator on atoma,
and sb

2 is the lowering operator on atomb. One then sees
that the effect of dipole-dipole interactions is an exchange
excitation between pairs of atoms. The strength of interac
is modified by a functiong(krab) that depends on the dis
tance and orientation between two dipoles. It is to be und
stood thatk5k0 in the functionsf and g. We see that both
short-range, near-field (1/r 3) and long-range, far-field (1/r )
dipole interactions are included in our formalism and a
treated on equal footing. The third term on the right side
Eq. ~2! corresponds toL and also is due to atom-atom inte
actions. It also depends onG and has a position dependen
described byf (krab). The non-Hermitian nature of this term
is evident through the anticommutator. PhysicallyL de-
scribes the processes of both independent and cooper
decay. Finally, we have also added phenomenolog
dephasing through theg term, which in particular includes
the effects of a finite, short-term linewidth of the laser inte
rogating the clock transition.

From Eq.~2!, one can derive equations of motion for an
atomic operators. For our particular application of Rams
spectroscopy, we find it necessary to solve for the cohere
^sa

1& and the two-atom correlation̂sa
zsb

1&. Furthermore, to
remove the rapid oscillations due tov0, it is convenient to
work in the frame rotating with the interrogating laser fr
quencyvL , where
0-2
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]^sa
1&

]t
52 id^sa

1&2
G1g

2
^sa

1&

1
G

2 (
bÞa

@ f ~krab!2 ig~krab!#^sa
zsb

1&, ~4!

]^sa
zsb

1&
]t

52S id1
3G1g

2 D ^sa
zsb

1&2G^sb
1&2

G

2
@ f ~krab!

1 ig~krab!#^sa
1&2G f ~krab!^sa

1sb
z&

1
G

2 (
j Þa,b

@ f ~krb j!2 ig~krb j!#^sa
zsb

zs j
1&

2G (
j Þa,b

@ f ~kra j!1 ig~kra j!#^sa
1sb

1s j
2&

2G (
j Þa,b

@ f ~kra j!2 ig~kra j!#^sa
2sb

1s j
1&, ~5!

andd5vL2v0.
In principle, to solve for the atomic system exactly, equ

tions of motion for higher-order correlations are needed,
though typically some approximation is used to truncate
resulting hierarchy of equations. In general these equat
can describe light-matter interactions in an optically de
medium, including radiation trapping, level shifts, and sup
radiance@11#.

III. RAMSEY SPECTROSCOPY IN THE OPTICAL
LATTICE CLOCK

A. Basic principles

We now analyze the effects of atom-atom interactions
Ramsey spectroscopy. Starting from the ground stateug& ^ N

of the system, suppose that one applies a strong probe p
with the interrogating laser, given in the rotating frame
the Hamiltonian

H5(
a

i\V~sa
1eik•ra2sa

2e2 ik•ra!, ~6!

whereV is the Rabi frequency. For simplicity, we have ma
a plane-wave assumption about the probing laser, takingk to
be in the positivex direction. We also assume thatk'k0, and
suppress the subscript in future calculations. We can do
if the phase erroreidL/c over the length of the sample in
curred by making this assumption is small. Applying th
pulse for a timet evolves the system through the unita
operator

U5)
a

^ S cosVt eikxasinVt

2e2 ikxasinVt cosVt D . ~7!

The state vector immediately following this pulse is given

uc i&5)
a

^

~cosVtug&1eikxasinVtue&), ~8!
02381
-
l-
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e
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whereue& denotes the excited state of the clock transition
In Ramsey spectroscopy, one letsuc i& evolve for an inter-

rogation timet to r(t). During this time the coherence be
tween the ground and excited states acquires some t
dependent phase that depends ond. After a timet, one then
applies a second pulse corresponding to the inverse un
operationU†, and then measures the signal corresponding
S̃5(asa

z , averaged over the final systemr f . S̃ corresponds
to the total population inversion. Because of the seco
pulse,S̃ will now depend ond andt, allowing one to extract
information about the resonance line.

Formally, we can rewriteS̃ as

S̃5TrS (
a

sa
zU†r~ t !U D

5cos2VtK (
a

sa
zL 22sin2VtReK (

a
eikxasa

1L , ~9!

where the averages denoted above apply tor(t), the system
immediately before the second pulse.

In the case ofN noninteracting, independently decayin
atoms,

^sa
z&5211e2Gt~12cos2Vt!, ~10!

^eikxasa
1&5 1

2 sin2Vte2( id1G/21g/2)t, ~11!

which gives a corresponding signal

S̃52N@cos2Vt~12e2Gt!1e2Gtcos22Vt

1e2(G1g)t/2sin22Vtcosdt#. ~12!

One can see that there is a peak in the signal aroundd50.
Determination of this peak allows one to find the frequen
of the transition. One can note two important points aboutS̃.
The contrast inS̃ with respect tod is maximized when a
‘‘perfect’’ p/2 pulse is applied, i.e., whenVt5p/4. Further-
more, the contribution toS̃ due to ^sa

z& in Eq. ~9! is inde-
pendent ofd and thus plays no role in determination of th
resonance line. Thus, one is motivated to define an effec
signalS that consists of the part ofS̃ that is actually used to
determine the line:

S522 sin 2VtReK (
a

eikxasa
1L . ~13!

The equation above states that from a theoretical standp
determination of the resonance line by measuring the po
lation inversion after the second Ramsey pulse is equiva
to measuring the real part of^eikxasa

1& directly before the
second pulse.

B. Effect of interactions

Solving for S exactly in the presence of dipole-dipole in
teractions appears to be quite a difficult task. Since all in
actions are proportional toG, our approach is to solve forS
0-3
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as a perturbative expansion inG. In particular, we solve for
the coherencêsa

1& in Eq. ~4! to second order inG. This
requires solvinĝ sa

zsb
1& in Eq. ~5! to first order inG. The

solution for the coherence with appropriate initial conditio
is

^sa
1&5

1

2
e2 ikxasin~2Vt!e2( id1g/2)tF12

Gt

2
~11Ca!

1
~Gt !2

8
~11Ca!1

G2

2g2 (
bÞa

@ f ~krab!2 ig~krab!#

3@Aabg
2t222Bab~e2gt1gt21!#G , ~14!

where

Aab52
3

4
eik(xa2xb)cos~2Vt!1

1

2
eik(xa2xb)

1
1

4
@ f ~krab!1 ig~krab!#2

1

2
f ~krab!cos~2Vt!

2
1

4 (
j Þa,b

@ f ~krb j!2 ig~krb j!#e
ik(xa2xj )cos2~2Vt!,

~15!

Bab5
1

4
eik(xa2xb)sin2~2Vt! (

j Þa,b
@ f ~kra j!coskxa j

1g~kra j!sinkxa j#, ~16!

Ca5 (
bÞa

@ f ~krab!2 ig~krab!#e
ik(xa2xb)cos2Vt. ~17!

Equation~14! is correct to every order ofg. Equations~13!
and ~14! can be evaluated numerically for a given latti
configuration and number of atoms. To illustrate the gene
features of the shift, however, we now make the followi
simplifications. We expand Eq.~14! to lowest order ing. We
also assume that the Ramsey pulses are nearly perfectp/2
pulses, i.e., cos2Vt5e!1. We then keep terms likeeGt but
ignore terms likeeG2t2. With these simplifications,

^sa
1&'

1

2
e2 ikxasin~2Vt!e2 idtS 12

Gt

2
1

~Gt !2

8
2faD ,

~18!

where
02381
al

fa5 (
bÞa

@ f ~krab!2 ig~krab!#e
ik(xa2xb)FGt

2
cos~2Vt!

1
~Gt !2

4 S 11
1

2
@ f ~krab!1 ig~krab!#e

2 ik(xa2xb)

1
1

2 (
j Þa,b

@ f ~kra j!coskxa j1g~kra j!sinkxa j# D G .
~19!

The first three terms in the parentheses of Eq.~18! are a
result of expanding thee2Gt/2 term that appears in the resu
for independent atoms, given in Eq.~12!. This is just the
decay of the signal one would get from independent spo
neous emission. The last term in the parentheses is a co
tion due to atom-atom interactions. Plugging this result in
Eq. ~13!, we find that

S'2sin22VtF ~cosdt !S N2
NGt

2
1

N~Gt !2

8
2(

a
RefaD

2~sindt !(
a

ImfaG . ~20!

Because of the antisymmetric sindt term now appearing inS,
one immediately sees that dipole-dipole interactions int
duce a shiftdp in the Ramsey fringes, which can be found b
solving ]S/]d50. Suppose that the inequalitiesdpt!1,Gt
!1 are satisfied. Under these conditions, a simple expres
for dp results:

dp

G
'

1

N (
a

(
bÞa

@g~krab!coskxab2 f ~krab!sinkxab#

3F1

2
cos2Vt1

Gt

4 S 11
1

2 (
j Þa,b

@ f ~kra j!coskxa j

1g~kra j!sinkxa j# D G . ~21!

C. Interpretation of shift

The shift given by Eq.~21! yields a simple interpretation
In anticipation of future analysis, we writedp as

dp

G
5

1

N (
a

(
bÞa

ŨabS 1

2
e1

Gt

4
G̃aD , ~22!

where

Ũab5g~krab!coskxab2 f ~krab!sinkxab , ~23!

e5cos2Vt, ~24!

G̃a511
1

2 (
j Þa,b

@ f ~kra j!coskxa j1g~kra j!sinkxa j#.

~25!
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We will see thatŨab is a dimensionless quantity proportion
to the classical interaction energy between two oscillat
dipoles,e is a parameter characterizing the error in the Ra
sey pulses, andG̃a is a dimensionless quantity characterizi
cooperative decay of the system.

To show the meaning of theŨab term in Eq.~22!, con-
sider the interaction between a classical, oscillating dipol
ra excited with phaseei (kxa2vt) and the field incident on it
due to a classical, oscillating dipole atrb excited with phase
ei (kxb2vt). We assume that both dipoles are oriented alo
the z axis and that their magnitudesd are determined from
the relationG5k0

3d2/3pe0\. The classical interaction en
ergy between dipolea and the incident field is given by
Uab52(1/2)Re@da•Eb* (ra)#. The field atra due to dipoleb
is @12#:

Ez~ra!5ei (kxb2vt)
k3d

4pe0
eikrFsin2u

kr
1~3cos2u21!

3S 1

~kr !3
2

i

~kr !2D G , ~26!

wherer 5urb2rau. Now using the definitions in Eq.~3!, the
interaction energy can readily be rewritten as

Uab52
1

2
Re@da•Eb* ~ra!#

5
\G

4
@g~krab!coskxab2 f ~krab!sinkxab# ~27!

5
\G

4
Ũab . ~28!

One then sees that this indeed corresponds to the first ter
Eq. ~22!.

Although theŨab term in Eq.~22! resembles a classica
interaction energy, the terms in parentheses reflect
quantum-mechanical nature of the system. There is a co
bution to the shift that is zeroth-order in the interrogati
time t and proportional toe. One notes that for perfectp/2
Ramsey pulses,e50. Thus, the zeroth order shift is due
error in the Ramsey pulse. This can be understood by c
sidering Eq.~4!. One sees that the interaction terms on
influence evolution of the coherence through the te
^sa

zsb
1&. For a perfectp/2 pulse, this term is initially zero

and in this case, interactions cannot affect the measurem
at short times. This effect is due to the nature of dipo
dipole interactions: these interactions cannot influence
coherencê sa

1& of an atom when it is in an equal superp
sition of the ground and excited states.

Even if a perfectp/2 pulse is applied, there is an add
tional contribution to the shift that is first order int and

whose strength is given byG̃a . The intuition behind this is
also straightforward. Even if̂sa

zsb
1& is initially zero, decay

of the excited state will eventually evolvêsa
z& away from

zero and back towards its equilibrium value of21. Once
02381
g
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g

of
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e

^sa
zsb

1& is nonzero, interactions can influence evolution

^sa
1&. The rate of decay is characterized byG̃a . The first

term in G̃a is the contribution from independent decay of t
atom back to the ground state. The second contribution
volves a sum over other atoms and represents a correc
due to the fact that the decay process may in fact be co
erative ~e.g., superradiance!. One can easily verify that the
contribution from atomj is proportional to Im@da•Ej* (ra)#:

Im@da•Ej* ~ra!#} f ~kra j!cos~kxa j!1g~kra j!sin~kxa j!.
~29!

This reflects the well-known result that the atomic inversi
^sa

z& is driven by the dipole component in quadrature w
the incident field.

IV. GENERALIZATION OF RESULTS

A. Imperfect filling of lattice sites

Experimentally, knowing the exact number of atoms
the lattice and achieving a filling factor of one atom p
lattice site are difficult tasks. Most likely, one can expe
mentally determine the densityr(r ) of atoms in the lattice,
such that the probability of occupation at any particular sita
is P(ra)5r(ra)V, whereV is the volume of a unit cell. It is
straightforward to modify Eq.~21! to the case of imperfec
filling. For simplicity, we only consider the shift that is ze
roth order int. This shift can be written

dp

G
5

1

N (
a

(
bÞa

1

2
cos2Vt@g~krab!coskxab

2 f ~krab!sinkxab# ~30!

5
2

N (
pairs

1

2
cos2Vtg~krab!coskxab ~31!

5
1

2
cos2Vt (

RÞ0
U~R!

N~R!

N
, ~32!

where U(R)5g(kR)coskRx , $R% denotes the set of direc
lattice vectors, andN(R) is the number of pairs of atom
separated byR. In the derivation above we have utilized th
fact that sinkxab52sinkxba to cancel the sum of
f (krab)sinkxab. In a realistic scenario, one neither know
N(R) nor N exactly. In this case, one must solve instead
the ensemble average^dp& and the varianceDdp . For large
N, one can safely pull the factor ofN out of the ensemble
average:

K N~R!

N L '
^N~R!&

^N&
. ~33!

With this simplification,
0-5



CHANG, YE, AND LUKIN PHYSICAL REVIEW A 69, 023810 ~2004!
^dp&
G

5
1

2^N&
cos2Vt (

RÞ0
U~R!^N~R!& ~34!

5
1

2^N&
cos2Vt (

RÞ0
U~R!E drr~r !r~r1R!V, ~35!

~Ddp!2

G2
5S 1

2^N&
cos2Vt D 2

(
R,R8Þ0

U~R!U~R8!^N~R!N~R8!&2S 1

2^N&
cos2Vt (

RÞ0
U~R!^N~R!& D 2

~36!

5S 1

2^N&
cos2Vt D 2F (

R,R8Þ0

U~R!U~R8!E drr~r !r~r1R!V2$@12r~r !V#r~r1R8!

1@12r~r1R!V#r~r1R1R8!1@12r~r !V#r~r2R8!1@12r~r1R!V#r~r1R2R8!%

12 (
RÞ0

U~R!2E drr~r !r~r1R!V$@12r~r !r~r1R!V2#2@12r~r !V#r~r1R!V2r~r !@12r~r1R!V#V%G . ~37!
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Each term in Eq.~37! has a clear meaning. To calculate t
average shift in Eq.~35!, one must evaluatêN(R)&. To do
this, one must perform a sum overr i of the probability that
the sitesr i andr i1R are both occupied. To find the varianc
one must calculate quantities likêN(R)N(R8)&, and thus
the probability that the sitesr i , r i1R, r j , andr j1R8 are all
occupied. When these four points are distinct, the probab
is simply a product of the probabilities of each point bei
occupied. This is untrue when one or more of the poi
overlap. The terms in Eq.~37! represent corrections due t
these overlaps. The product r(r )r(r1R)V2@(1
2r(r )V#r(r1R8), for example, is due to the overlap ofr i
and r j .

B. Effects of multilevel atomic structure

Our results derived thus far are for the case of two-le
atoms. This is the relevant case of study for the (J50)
2(J50) forbidden transition proposed for optical lattic
clocks, where the simple level structure makes it easie
cancel the relative ac Stark shift in the clock transitio
Nonetheless, our results can be generalized to more com
cated level structure, such as the case of an atom wi
single ground and multiple excited states. A simple argum
shows that Eq.~21! remains correct to the lowest nontrivia
order inGt. If multiple excited states are present in additi
to the one that is initially excited, the equation of motion f
^sa

1
clock& in Eq. ~18! will contain additional terms like

^sa
zsb

1
other&, where the subscript ‘‘clock’’ refers to the cloc

transition and ‘‘other’’ refers to other excited state leve
Initially, ^sb

1
other&50 and thus

^sa
zsb

1
other&

^sa
zsb

1
clock&

}Gt. ~38!

Consequently, at short times, evolution of^sa
1

clock& will be
dominated by the clock transition. Thus, if imperfections
the Ramsey pulse constitute the major source of shift,
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multiple excited states will contribute an additional source
shift that is first order inGt. If decay of the clock excited
state constitutes the major source, the multiple excited st
will contribute a shift that is of orderG2t2.

V. ANALYSIS OF RESULTS

Equation~21! or Eqs.~35! and ~37! can be evaluated nu
merically for a given lattice configuration and number
atoms. To extract the key features of the shift, we note t
the zeroth-order shift int in Eq. ~21! essentially consists o
adding together the classical dipole interaction energ
Ũab}2Re@da•Eb* (ra)#. For a generic configuration of at
oms, the amplitudes of the dipole fields incident on a giv
dipole a tend to interfere. For certain configurations, it
possible that the field amplitudes will add constructive
along some direction of propagationk. Near these configu-
rations one will expect large shifts to result. The conditi
for constructive interference between radiated dipole field
similar to that of Bragg scattering in a crystal, and is read
found to occur when

uG̃u5k0 , ~39!

where G̃5(Gx2k0 ,Gy ,Gz) and G is a reciprocal lattice
vector. This condition can be rewritten as

uGu252k0Gx . ~40!

Numerical results indicate that peaks in the line shift do
deed occur when condition~40! is nearly satisfied.

One can easily derive an approximate scaling law for
line shift in these resonant configurations. We define a
mensionless parameterb related to the density of atoms b
n51/(bl)3. b characterizes the spacing between neighb
in the lattice. In a resonant configuration, the electric fie
add constructively, and the total electric field experienced
an atom is approximately
0-6
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E;E d3r
n

kr
;E

0

L

dr
nr

k
;

L2

k~bl!3
, ~41!

whereL is the linear size of the system. ForN total atoms,
L;blN1/3. Then

dp

G
;

N2/3

b
. ~42!

Experimentally, one has freedom to choose the orientat
of the trapping laser beams that form the lattice. The con
parameters can be parameterized by a set of variables$a%,
which will also determine the reciprocal lattice vecto
G($a%). One can then find solutions$a0% of Eq. ~40! corre-
sponding to configurations with large line shifts. In the p
rameter space between two sets of solutions$a0%, one can
numerically find configurations where the shift is signi
cantly reduced.

In the case of imperfect filling of lattice sites, it will b
important to account for not only the mean shift but t
variance as well. For large numbers of atoms, Eq.~37! can-
not be evaluated exactly without extensive computational
sources. With a small filling factorP5rV!1, however, we
can estimate that the major contribution to the variance
sults from ther2 terms, while ther3 terms remain negli-
gible. In this diffuse limit,

~Ddp!2

G2
'S 1

2^N&
cos2Vt D 2

2 (
RÞ0

U~R!2

3E drr~r !r~r1R!V. ~43!

In this case, one readily finds that the varianceDdp scales
like (P/N)1/3. For P,1/2, the variance increases withP due
to the increasing uncertainty of whether a pair of sites w
both be occupied, but decreases withN due to the decreasin
fractional uncertainty in the total number of pairs of atom
separated by a vectorR.

VI. NUMERICAL EXAMPLE

As an illustration of our results, we consider87Sr atoms
trapped in a lattice formed by six interfering beams,
shown in Fig. 1. For87Sr, the ‘‘magic’’ wavelength of the
trapping lasers is roughlylT51.07l0 @3#, and one can vary
the angleu between the propagation vectors of the trapp
beams. The resulting lattice is tetragonal, with lattice c
stants ofax5p/kTsinu, ay5p/kTcosu, andaz5p/kT along
x, y, andz, respectively. The lattice constants are plotted
Fig. 2. The corresponding basis of the reciprocal lattice
lengths Gx52kTsinu, Gy52kTcosu, and Gz52kT . We
have ignored the effect of atomic backaction@13,14# on the
trapping fields, whereby scattering of light by the atoms
troduces phases that might modify the lattice constants. S
effects are expected to be stronger in red-detuned latti
where atoms lie in the antinodes of the potential, and w
increasing atomic density. Taking into account this back
tion does not modify our results, except that now the latt
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constants must be solved self-consistently@13,14#.
Using Eq.~40! we can find values ofu where constructive

interference causes the shifts to be large. We focus on
specific solutions,u0 /p50.116 andu0 /p50.180. These
correspond to lattice spacings (ax ,ay ,az)
5(1.50,0.57,0.54)l0 and (ax ,ay ,az)5(1.00,0.63,0.54)l0,
respectively. It is evident then that the constructive interf
ence for these configurations occurs in thex direction. For
our system we consider^N& atoms in a spherical distribution
with uniform densityr(r ) for r ,r 0, and zero density forr
.r 0. The relationship between the density and filling fra
tion P is given byP5r(r )V, whereV is the volume of a unit
cell. The critical valuer 0 is determined by the equation

r 05S 3^N&V

4pP D 1/3

. ~44!

We first consider a perfectly filled lattice consisting ofN
5106 atoms. For simplicity we calculate the line shift t
zeroth order in the interrogation timet. In Fig. 3, we plot the

FIG. 1. The lattice studied in our numerical example is form
by the interference of six laser beams. Thick arrows denote
directions of propagation of the beams, and thin arrows denote
direction of polarization. Four beams are oriented along thex-y
plane, each making an angle6u with they axis and polarized along
z. Two additional beams run parallel toz and are polarized alongx.

FIG. 2. The lattice constants for the six-beam lattice are plot
in units of l0 as functions ofu. We assume that the ratio of th
resonant wave vector to that of the trapping lasers isk0 /kT

51.07, consistent with the magic wavelength of87Sr. The solid
line represents the lattice constant alongx, the dashed line alongy,
and the constant dotted line alongz.
0-7
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quantity 2dp /Gcos(2Vt) as a function ofu. Peaks in the
shift are clearly visible at the pointsu0 that were calculated
analytically. It should be noted that the line shift can be ve
large in one of these resonant configurations. Even in
limit of short interrogation times, one can see that shifts
orderdp;10G are possible. This is perhaps a surprising
sult, and occurs because the spatial ordering of the at
allows the interactions to behave constructively at th
points. For longer interrogation times, one expects this
shift to become even larger, since the constructive inter
ence in these configurations also leads to superradiant d
and thus a large contribution to the shift that is first order
t. One also sees that away from these bad points, the sh
strongly suppressed and even becomes zero for one pa
lar value ofu.

We next consider a partially filled lattice consisting
^N&5105 atoms and a filling factor ofP50.05. The mean
shift 2^dp&/Gcos(2Vt) as a function ofu is also shown in
Fig. 3. The shape of the curve qualitatively looks the same
the case of the perfectly filled lattice, although the over
scale is different. For the imperfectly filled lattice, the ma
nitude of the shift is smaller by approximately a factor of 1
due to both a smaller number of atoms and the larger ave
spacing between atoms. This factor of decrease ag
roughly with the scaling law given in Eq.~42!. The shift for
the imperfectly filled lattice exhibits peaks at the same po
u0 calculated earlier, and vanishes nearu/p50.125. At this
point, one can use Eq.~43! to estimate the variance in th
expected shift. Within this diffuse approximation, we fin
that the variance

Ddp

G
'

1

2
cos~2Vt!33.131023. ~45!

Experimentally, there will be additional sources of error th
result from not knowingr(r ) perfectly, errors in the configu

FIG. 3. The calculated mean shifts for the six-beam lattice a
function of u. The solid line corresponds to a system of^N&5105

atoms with a filling factor of 0.05, while the dashed line corr
sponds toN5106 atoms in a perfectly filled lattice. The overa
shapes of the curves are similar but differ in scale. For the im
fectly filled lattice, the magnitude of the shift is smaller due to bo
a smaller number of atoms and a larger average spacing bet
atoms.
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ration of the trapping lasers, and the effects of atomic ba
action on the lattice constants. However, it appears from
figures that the curves remain relatively flat when the c
figuration is not too close to resonance, and as long as
remains in this regime one might expect that these ot
sources of error will not significantly affect the results.
Fig. 3, for example, the slope around the zero crossing
the imperfectly filled lattice is approximatelyd^dp&/du
50.6G cos(2Vt), or d^dp&/dax520.2G cos(2Vt)/l0. Thus,
it appears that the shift due to dipole-dipole interactions
be made quite small by appropriately designing the latti
even in the presence of additional sources of error.

VII. CONCLUSION

We have derived an expression for the line shift measu
in Ramsey spectroscopy due to dipole-dipole interactio
We find that the lattice geometry strongly affects the mag
tude of the shift, and is peaked in lattice configuratio
where the interactions between atoms add constructively.
cause of the spatial ordering in the lattice, the shift can
quite large in these resonant configurations. By tuning
lattice between two of these configurations, one can red
the dipole-induced line shift to nearly zero.

While the resonant configurations might be bad for clo
applications, it might be worthwhile to study these config
rations further. The dipole-dipole couplings in an optical la
tice offer the possibility of strong, constructive interactio
that can be dynamically tuned by changing the lattice geo
etry. This might be useful for applications such as quant
information processing and might have interesting con
quences for studying phenomena such as superradiance
for probing the superfluid-Mott insulator transition.
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APPENDIX A: DERIVATION OF MASTER EQUATION

In this appendix we derive Eq.~2! starting from the full
atom-field Hamiltonian. For a more detailed derivation a
discussion, one can also see Refs.@15,16#. The Hamiltonian
for the atom-field system is

H5H01V, ~A1!

where

H05H internal1Hfield ~A2!

5(
j

S 1

2
\v0s j

zD1(
k,ê

\vk,eS ak,e
† ak,e1

1

2D
~A3!

and

a
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V52(
j

dj•E„r j ) ~A4!

52(
j

(
k,e

d~s j
11s j

2!~ êatom• ê!~Ek,eak,ee
ik•r j1H.c.!.

~A5!

s j
z refers to the internal state of atomj, v0 is the atomic

transition frequency, andvk,e is the frequency of the mod
of the electromagnetic field with wave vectork and polariza-
tion ê. r j is the position of atomj, andêatom is the polariza-
tion direction of the dipoles.

We now consider the evolution of the atoms1field den-
sity matrix ra f in the interaction picture. The equation o
motion is given by

]ra f

]t
5

1

i\
@Ṽ~ t !,ra f#, ~A6!

Ṽ~ t !5eiH 0t/\Ve2 iH 0t/\. ~A7!

We can integrate Eq.~A6! once and substitute the result ba
into itself. We then trace out the field degrees of freedom
obtain an equation of motion for the atomic density matrixr
alone:

]r

]t
52

1

\2
TrfE

0

t

dt†Ṽ~ t !,@Ṽ~ t2t!,ra f~ t2t!#‡. ~A8!

To make the above equation more useful, we employ
Born-Markov approximation, replacingra f(t2t) with r(t)
^ u0&^0u. Physically, this amounts to assuming that corre
tions in the field are negligible, that the field can always
approximated by a vacuum state, and that the correla
time of the atom-field system is much shorter than a
atomic time scales. These assumptions safely allow u
extend the time integral to infinity, so that

]r

]t
52

1

\2
TrfE

0

`

dt†Ṽ~ t !,@Ṽ~ t2t!,r~ t ! ^ u0&^0u#‡.

~A9!

Writing out Ṽ(t) and Ṽ(t8), wheret85t2t, gives

Ṽ~ t !5 (
a,k,ê

2dEk,e~ êatom• ê!~sa
1eiv0t1sa

2e2 iv0t!

3~ak,ee
i (k•ra2vk,et)1ak,e

† e2 i (k•ra2vk,et)!, ~A10!

Ṽ~ t8!5 (
b,k8,ê8

2dEk8,e8~ êatom• ê8!~sb
1eiv0t81sb

2e2 iv0t8!

3~ak8,e8e
i (k8•rb2vk8,e8t8)1ak8,e8

† e2 i (k8•rb2vk8,e8t8)!.

~A11!

When we substitute the expansions above into Eq.~A9! and
perform the trace, the only nonzero terms will be those
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sociated with ak,eak8,e8
† u0&^0u, ak,e

† u0&^0uak8,e8 ,

ak8,e8
† u0&^0uak,e , and u0&^0uak8,e8ak,e

† , wherek5k8 and ê

5 ê8. Making these simplifications and replacing the sum
k by an integral gives

]r

]t
52

1

\2E0

`

dtE
0

` 1

~2p!3
k2 dk

3E dV (
a,b,ê

d2Ek,e
2 ~ êatom• ê!2

3@e2 i (vk,e2v0)t1 ik•rabsa
1sb

2r

1e2 i (vk,e1v0)t1 ik•rabsa
2sb

1r

2ei (vk,e1v0)t2 ik•rabsa
1rsb

2

2ei (vk,e2v0)t2 ik•rabsb
2rsa

11H.c.#. ~A12!

The angular integral is tedious but straightforward and gi

E dV(
ê

eik•rab~ êatom• ê!2

54pFsin2u
sinkrab

krab
1~123 cos2u!

3S coskrab

~krab!
2

2
sinkrab

~krab!
3D G . ~A13!

The time integral can be evaluated using the formula

E
0

`

c dte2 ic(k7k0)t5pd~k07k!6 iP 1

k07k
, ~A14!

whereP denotes the principal value. Thed function above
eventually yields the non-Hermitian component of the ev
lution, while the principal value yields the coherent atom
atom interactions. Performing all integrals, making the
placementG5k0

3d2/3pe0\c3, and changing back to the
Schrodinger picture yields Eq.~2!.

APPENDIX B: SECOND QUANTIZATION OF ATOMS
IN THE LATTICE

The results above were derived treating the atoms in
lattice in first quantization. Starting instead from seco
quantization, one can see that the results derived in
quantization are appropriate in the limit of tight confineme
of the atoms, when the overlap between atoms at differ
sites can be ignored.

In second quantization, the atomic wave functionĉ(r )
can be expanded in terms of Wannier functions:

ĉ~r !5(
nni

bnnifnn~r2r i !. ~B1!

Heren5e,g denotes the internal state of the atom,n is the
band index, andi labels the lattice sitesr i . To lowest order,
0-9
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we assume that only the harmonic oscillator ground-s
wave function is relevant. The atomic Hamiltonian is th
given in second quantization by

Ĥa5(
n i j

bin
† bj nE drfn~r2r i !S P̂2

2M
1U~r !1EnD

3fn~r2r j !. ~B2!

In the limit of tight confinement, the overlap integrals fori
Þ j can be ignored, leading back to the atomic Hamilton
used in first quantization.

In second quantization, the electric dipole Hamiltonian
given by
nc

02381
te

n

s

He52(
i j

S bie
† bjgE drfe~r2r i !@d•E~r !#fg~r2r j !

1big
† bjeE drfg~r2r i !@d•E~r !#fe~r2r j ! D , ~B3!

where

E~r !5(
k,e

Ek,eak,ee
ik•r ê1H.c. ~B4!

Again, in the limit of tight confinement, the overlap integra
for iÞ j can be ignored, and furthermore the termE(r ) can
be replaced withE(r i). In this limit this Hamiltonian is
equivalent to the electric dipole Hamiltonian used in fi
quantization.
s.
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