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Abstract. A suitable femtosecond (fs) laser system can provide a broad band comb of
stable optical frequencies and thus can serve as an rf/optical coherent link. In this way
we have performed a direct comparison of the 1S − 2S transition in atomic hydrogen
at 121 nm with a cesium fountain clock, built at the LPTF/Paris, to reach an accuracy
of 1.9×10−14 . The same comb-line counting technique was exploited to determine and
recalibrate several important optical frequency standards. In particular, the improved
measurement of the Cesium D1 line is necessary for a more precise determination of
the fine structure constant. In addition, several of the best-known optical frequency
standards have been recalibrated via the fs method. By creating an octave-spanning
frequency comb a single-laser frequency chain has been realized and tested.

1 Introduction

A frequency comb of equally spaced continuous wave laser frequencies can be
used to measure large differences between laser frequencies simply by multi-
plying the known spacing of the comb with the number of modes in between.
The use of mode-locked lasers as optical comb generators was already reported
over 20 years ago [1]. As the spectral width of such a comb scales inversely
with the (Fourier limited) pulse duration, its application was limited to com-
paratively small frequency differences like the 1028 MHz fine structure splitting
of the sodium 4d level [1]. This limited bandwidth situation changed funda-
mentally with the discovery of self-mode locking in Ti:Sapphire lasers [2], as
explained by Kerr-lens mode-locking [3], and the development of designs to pro-
duce ≈ 10 femtosecond pulses [4]. Recently pulses shorter then 6 fs have been
created directly from a Ti:Sapphire laser oscillator [5,6] with the help of special
dispersion-compensating mirrors. By using self-phase modulation in specially de-
signed optical fibers [7,8,9,10,11] frequency combs have been created with band-
width in excess of one optical octave. Even after spectral broadening the comb
lines remain surprisingly equidistant to an extreme degree [13]. Those combs
can be used to measure the frequency gap between a laser frequency f and its
second harmonic 2f [14,15,16,17,18,19]. This principle allows the realization of a
compact single-laser frequency chain which can be used to measure almost any
optical frequency with the same compact apparatus. In the time domain, the
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output of a mode-locked femtosecond laser may be considered as a continuous
carrier wave that is strongly amplitude modulated by a periodic pulse envelope
function. If such a pulse train and the light from a cw laser are combined on
a photo detector, the beat note between the carrier wave and the cw oscillator
is, in fact, observed in a stroboscopic sampling scheme. The detector signal will
thus reveal a slow modulation at the beat frequency modulo the sampling rate
or pulse repetition frequency. A similar idea based on the stroboscopic sampling
scheme has been reported previously by Chebotayev et al. [20].

2 Kerr-Lens Mode-Locked Lasers

The spectrum emitted by a mode locked laser consists of a comb of laser fre-
quencies that may be identified with the active modes of the laser cavity [21].
The mode separation in a dynamically stable cavity of length L is calculated
from the boundary condition that is imposed on the round trip phase delay:

2Lk(ωn) = 2πn (1)

This equation fixes the optical frequency ωn = 2πnvp(ωn)/2L and the wave
number k(ωn) = ωn/vp(ωn) of the nth cavity mode, where vp(ωn) is the phase
velocity for a monochromatic wave at ωn. The following expansion about some
mean frequency ωm is generally used to take dispersion into account:

2L
[
k(ωm) + k′(ωm)(ωn − ωm) +

k′′(ωm)
2

(ωn − ωm)2 + ...
]

= 2πn (2)

The mode separation ωr ≡ ωn+1−ωn is obtained by subtracting this expression
from itself after n is replaced by n+ 1:

k′(ωm)ωr +
k′′(ωm)

2
(
(ωn+1 − ωm)2 − (ωn − ωm)2

)
+ ... = 2π/2L (3)

A constant mode spacing that is independent of n is mandatory for precise
optical frequency measurements. This is obtained, if all terms in the expansion
of the wave vector k(ω) vanish except for the constant term k(ωm) and the group
velocity term v−1

g = k′(ωm) [21]. These higher-order terms are exactly the ones
that reshape the pulse envelope. The detection of a temporal pulse envelope, that
stays constant for hours in within the laser cavity, is therefore a clear prerequisite
for the absence of dispersion terms that would perturb the regular grid of laser
frequencies. The mode separation then turns into the known expression for the
free spectral range of a multi mode laser ωr = 2πvg/2L. This expression is
actually the inverse pulse round trip time T−1 = vg/2L = ωr/2π, i.e. the rate at
which copies of the same pulse appear at the output coupler. The mode spacing
is therefore readily experimentally accessible as the pulse repetition frequency.
The arbitrariness about the choice of ωm is removed by using an experimental
value for the repetition rate rather than a chosen value for ωm to calculate vg.
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In Kerr-lens mode-locked lasers [3] a combination of prism pairs or specially
designed mirrors [22], are used to compensate for the positive group velocity
dispersion k′′(ωm) (GVD) of the laser crystal and mirrors etc. The remaining
perturbations of the regular grid of modes, due to a imperfect compensation of
the GVD and the presence of higher order terms, are zeroed by mode pulling1.
With Kerr-lens mode-locking this pulling is achieved by exploiting a Kerr-lens
that persists only in the presence of an intense short pulse. The cavity is designed
to make the cavity less lossy if the Kerr-lens is present. The result is a short
pulse with a stable envelope that bounces back and forth between the cavity end
mirrors. In that regime the modes do not only maintain a constant frequency
separation between them but even a constant relative phase (up to a phase
advance of ωrt).

The achievable pulse length is determined by the total number of modes
that can contribute to the pulse. The broader the frequency comb the shorter
the possible pulse length, ideally reaching the so-called Fourier limit. In fact, the
spectral width is usually limited by the width over which the GVD and higher
order terms can be compensated for by mode pulling [5,6]. Cavity modes that are
outside this bandwidth are suppressed without the help of the Kerr-lens effect
and do not oscillate.

3 Femtosecond Frequency Combs

A strict derivation of the comb properties is not feasible as it depends on the
special dispersion characteristics of the laser cavity and these data are not ac-
cessible with the desired degree of accuracy. Instead we only assume that the
laser emits a stable coherent pulse train without any detailed consideration of
how this is possible. Further we assume that the electric field E(t), measured
for example at the output coupler, can be written as the product of a periodic
envelope function A(t) and a carrier wave C(t):

E(t) = A(t)C(t) + c.c. (4)

The envelope function defines the pulse repetition time T = 2π/ωr by demanding
A(t) = A(t−T ). Inside the laser cavity the difference between the group velocity
and the phase velocity shifts the carrier with respect to the envelope after each
round trip. The electric field is therefore in general not periodic with T . To
obtain the spectrum of E(t) the Fourier integral has to be calculated:

Ẽ(ω) =
1√
2π

∫ +∞

−∞
E(t)eiωtdt (5)

Separate Fourier transforms of A(t) and C(t) are given by:

Ã(ω) =
√

2π
+∞∑

n=−∞
δ (ω − nωr) Ãn

1 More precisely the slight negative GVD in the cold cavity compensates with the Kerr
nonlinearity to sustain an optical soliton.
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Fig. 1. The spectral shape of the carrier function (left) assumed to be narrower than
the pulse repetition frequency ∆ωc � ωr and the resulting spectrum according to
Eqn. 7 after modulation by the envelope function (right)

C̃(ω) =
1√
2π

∫ +∞

−∞
C(t)eiωtdt (6)

A periodic frequency chirp imposed on the pulses is accounted for by allow-
ing a complex envelope function A(t). Thus the “carrier” C(t) is defined to be
whatever part of the electric field that is non-periodic with T . The convolution
theorem allows us to calculate the Fourier transform of E(t) from Ã(ω) and
C̃(ω):

Ẽ(ω) =
1√
2π

∫ +∞

−∞
Ã(ω′)C̃(ω − ω′)dω′ + c.c.

=
+∞∑

n=−∞
ÃnC̃ (ω − nωr) + c.c. (7)

Up to the scaling factors Ãn this sum represents a periodic spectrum in frequency
space. If the spectral width of the carrier wave ∆ωc is much smaller than the
mode separation ωr, Eqn. 7 represents a regularly spaced comb of laser modes
with identical spectral line shapes, namely the line shape of C̃(ω) (see Fig. 1).
If C̃(ω) is centered at say ωc then the comb is shifted from containing only
exact harmonics of ωr by ωc. The center frequencies of the mode members are
calculated from the mode number n [23,24,21]:

ωn = nωr + ωc (8)
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The measurement of the frequency offset ωc [16,17,18,19] as described below
usually yields a value modulo ωr so that renumbering the modes will restrict the
offset frequency to 0 ≤ ωo ≤ ωr:

ωn = nωr + ωo n = a large integer (9)

This equation maps two radio frequencies ωr and ωo onto the optical frequencies
ωn. While ωr is readily measurable, ωo is not easy to access unless the frequency
comb contains more than an optical octave, as shown in section 7. The individual
modes can be separated, for example with an optical grating, if the spectral width
of the carrier function is narrower than the mode separation: ∆ωc � ωr. This
condition is easy to satisfy, even with a free running Ti:Saphire laser.
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Fig. 2. Consecutive pulses of a chirp free pulse train (A(t) real) and the corresponding
spectrum. Because the carrier propagates with a different velocity within the laser
cavity than the envelope (phase- and group velocity), the electric field does not repeat
itself after one round trip. A pulse-to-pulse phase shift ∆ϕ results in an offset frequency
of ωo = ∆ϕ/T

Now let us consider two instructive examples of possible carrier functions.
If C(t) = e−iωcct the output the line shapes of the individual modes are delta
functions C̃(ω) = δ(ω − ωcc). The frequency offset ωc of Eqn. 8 is identified
with ωcc. According to Eqn. 4 after each round trip the carrier will shift with
respect to the envelope by ∆ϕ = arg(C(t− T )) − arg(C(t)) = ωccT so that the
frequency offset is given by ωcc = ∆ϕ/T [23,24,21]. In a typical laser cavity this
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pulse-to-pulse carrier-envelope phase shift is much larger than 2π but measure-
ments [25,17] usually yield a value modulo 2π. The restriction 0 ≤ ∆ϕ ≤ 2π
is synonymous with the restriction 0 ≤ ωo ≤ ωr introduced earlier. Figure 2
sketches this situation in the time domain for a chirp free pulse train.

As the second example consider a train of half-cycle pulses, for example:

E(t) = Eo

∑
k

e−( t−kT
τ )2

(10)

In this case the electric field would be repetitive with the round trip time. There-
fore C(t) is a constant and its Fourier transform is a delta function centered as
ωc = 0. If it becomes possible to build a laser able to produce a stable pulse
train of that kind, all the comb frequencies would become exact harmonics of
the pulse repetition rate. Obviously, this would be an ideal situation for optical
frequency metrology.

These examples are instructive, but it is important to note that experimen-
tally we neither rely on a strictly periodic electric field nor on the assumption of
a chirp free pulse train. The strict periodicity of the spectrum as stated in Eqn. 7
and the possibility to resolve single modes are the only requirements that enable
the fs laser system to achieve precise optical to radio frequency conversions.

In a real laser a pulse train with a chirp mostly synchronized with the repe-
tition rate will be emitted. That is because the same pulse is maintained in the
laser cavity practically for an infinite time without degradation. A pulse chirp
that is monotonically increasing or decreasing from pulse to pulse would mono-
tonically shift the emitted spectrum in one direction and is therefore ruled out.
All that is left is a possible pulse to pulse phase shift (giving rise to a frequency
offset of the comb) and noise on the chirp, the pulse shape and the intensity.
The noise processes will either broaden the individual modes or impose ampli-
tude noise on their relative intensities. Provided that the noise on the chirp is
small as compared to the mode spacing none of these processes will change the
regular spacing of the comb. This is in fact the only feature that we rely on for
optical frequency metrology because ωr and ωo of Eqn. 9 are servo controlled in
those experiments. In fact recent experiments performed in our Garching lab-
oratory [26] confirm the model used here and set an upper limit on the mode
spacing constancy of 3 parts in 1017 even for a free running femtosecond laser.
In the same work the equality of the mode separation and the pulse repetition
frequency was established with an upper limit of 6 parts in 1016.

4 Spectral Broadening by Self-Phase Modulation

The spectral width of a pulse train emitted by a femtosecond laser can be sig-
nificantly broadened in a single mode fiber [27]. This process that maintains the
mode structure is described in the time domain by the optical Kerr effect or self-
phase modulation. The first discussion is simplified by assuming an unchanging
pulse-shape under propagation. After propagating the length l the intensity de-
pendent refractive index n(t) = no + n2I(t) leads to a self induced phase shift
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of
ΦNL(t) = −n2I(t)ωcl/c with I(t) = |A(t)|2. (11)

This time dependent phase shift leads to a frequency modulation that is propor-
tional to the time derivative of the self induced phase shift Φ̇NL(t). For fused
silica with its positive Kerr coefficient n2 = 2.5× 10−16 cm2/W [28] the leading
edges of the pulses are creating extra frequencies shifted to the red (Φ̇NL(t) < 0)
while the trailing edges causes blue shifted frequencies to emerge. Self-phase
modulation modifies the envelope function according to

A(t) −→ A(t)eiΦNL(t). (12)

Because ΦNL(t) has the same periodicity as A(t) the comb structure of the
spectrum, as derived in section 3, is not affected. In an optical fiber self-phase
modulation can be quite efficient even though the nonlinear coefficient in fused
silica is comparatively small. This is because the fiber core carries a high intensity
over an extended length.

This simplified picture of self-phase modulation neglects dispersion, time-
delayed nonlinearities and shock formation which is all known to occur in optical
fibers. While n2 in fused silica is at least as fast as a few fs, the GVD broadens
the pulses as they travel along the fiber so that the available peak power Po

is decreased. Effective self-phase modulation however takes place when the so
called dispersion length is much smaller then the nonlinear length whose ratio
is given by [27]

R =
LD

LNL
=

n2ωcPoT
2
o

cAeff |k′′(ωc)|
(13)

where To and Aeff are the initial pulse duration and the effective fiber core
area [27] calculated from the radial intensity distribution2. In the dispersion
dominant regime R� 1 the pulses will disperse before any significant nonlinear
interaction can take place while for R 
 1 dispersion can be neglected as an
inhibitor of self-phase modulation. Of course here we are considering the case of
a physical fiber longer than either LD = T 2

o /|k′′(ωc)| or LNL = cAeff/n2ωcPo.
So we see that spectral broadening of the comb [29,30] is achieved by im-

posing a large frequency chirp on each of the pulses. Provided that the coupling
efficiency into the fiber is stable, the periodicity of the pulse train is maintained.
The discussion of section 3 is thus equally valid if the electric field E(t) as mea-
sured for example at the fiber output facet instead of the laser output coupler. As
described below we have used a frequency comb widened to more than 45 THz
by a conventional single mode fiber to perform the first phase coherent vacuum
UV to radio frequency comparison in our Garching laboratory [16,31]. In recent
experiments we have confirmed that the fiber does not affect the mode spacing
constancy within our experimental uncertainty of a few parts in 1018 [13].

2 Aeff = πw2
o for a Gaussian beam with radius wo.
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5 Photonic Crystal Fibers

Very efficient spectral broadening can be observed in photonic crystal fibers
(PCF) [7,8,9,10,11]. A PCF uses a triangular array of submicron-sized air holes
running the length of a silica fiber to confine light to a pure silica region embed-
ded within the array [7]. The large refractive index contrast between the pure
silica core and the “holey” cladding, and the resultant strong nature of the op-
tical confinement, allows the design of fibers with characteristics quite different
from those of conventional fibers. The larger index contrast enables use of a
small core size, and the increased energy concentration leads to increased non-
linear interaction of the guided light with the silica. As a considerable fraction
of the mode travels as an evanescent wave inside the air holes, the waveguide
dispersion can be designed to be strong enough to substantially compensate the
material dispersion. As a result, fs pulses travel further in these fibers before
being dispersed which further increases the nonlinear interaction. Consequently,
substantially broader spectra can be generated in PCFs at relatively low peak
powers [9,10,11]. Other processes like stimulated Raman and Brillouin scatter-
ing or shock wave formation that might spoil the usefulness of these broadened
frequency combs are probably present. Indeed, in an experiment using 8 cm of
PCF and 73 fs pulses at 75 MHz repetition rate from a Mira 900 system (Co-
herent Inc.) we have seen an exceptionally broad spectrum from 450 to 1400 nm
with excessive broadband noise, way above the shot noise. Using 25 fs pulses at
a repetition rate of 625 MHz for the frequency chain reported below, this extra
broadband noise was suppressed so as to enable us to phase lock the comb. As an
additional data point, the JILA laser (Kapteyn-Murnane Labs model TS) with
100 MHz repetition rate leads to a comfortable operating range near 25 mW
transmitted power, where the 1064 nm and 532 nm beats with a CW laser were
both adequate. Further power increases rapidly decreased the S/N ratio. Com-
paring the several Boulder sources, one finds the best operation near 250 pJ per
pulse, basically independent of repetition rate for ≈ 50 fs pulses. The detailed
nature of interesting broadband excess noise is not yet known. Thus there is still
a little “art” in the proper use of the fiber broadening process for metrology.

6 Phase-Locking the Frequency Comb

For most applications of the frequency comb it is desirable to fix one of the
modes in frequency space and to phase-lock the pulse repetition rate simulta-
neously. For this purpose it is necessary to control the phase velocity (more
precisely the round trip phase delay) of that particular mode and the group
velocity (more precisely the round trip group delay) independently. A piezo
driven folding mirror changes the cavity length L and shifts all modes propor-
tional to their absolute frequency ∆ωn = ωn∆L/L, as the additional path in
air has a negligible dispersion. A mode-locked laser that uses two intra-cavity
prisms to produce the negative group velocity dispersion necessary for Kerr-lens
mode-locking provides us with a means for independently controlling the pulse
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repetition rate. To change the mode separation without changing the absolute
frequency of say ωn, we use a second piezo-transducer to tilt the mirror slightly
at the dispersive end of the cavity where the modes are horizontally dispersed.
The vertical pivot ideally corresponds to the mode ωn [21]. We thus introduce
an additional phase shift ∆ψ proportional to the frequency distance from ωn,
which displaces the pulse in time and thus changes the round trip group delay.
In the frequency domain one could argue that the length of the cavity stays
constant for the mode ωn while higher (lower) frequency modes experience a
longer (shorter) cavity (or vice versa, depending on the sign of ∆ψ). With our
Coherent Mira 900 system the position of the pivot did not seem to be important
and could even be placed next to the mirror. Also the slight misalignment of the
laser cavity introduced only a negligible loss of power. In the alternative case
where only dispersion compensation mirrors are used to produce the negative
group velocity dispersion, one can modulate the pump power or manipulate the
Kerr lens by slightly tilting the pump beam [19] in order to alter ωo. The cavity
length then is used to control the repetition rate. Although the two controls (i.e.
cavity length and pump power) are not orthogonal they affect the round trip
group delay T and the round trip phase delay differently. Further, the pump
control loop can be rather fast compared with the PZT-driven length correction.
Thus we can control both, ωo and ωr.

In a different approach, the JILA group has locked the fs laser’s two degrees of
freedom using information from beats with our stable Nd:YAG/I2 reference laser
system, without using an rf source. In this work, the beat at 1064 nm mainly
controlled the position of one optical comb line, while the 532 nm beat was used
to control the repetition rate. This frequency information was used to tightly
lock, eventually phase-lock, the laser cavity length via the 1064 nm beat. As this
PZT motion also affects the repetition rate somewhat, we found it attractive to
use a frequency-based lock for the 532 nm-derived information, applying it to
the “twister” PZT to mainly affect the repetition rate. Unfortunately the comb
line chosen for absolute frequency stabilization, at 1064 nm, is not really near
the center of the fiber-broadened spectrum, which led to a serious level of non-
orthogonality. This was handled by preparing an appropriate linear combination
of the two signals for the two transducers and their servo systems. We obtained
rms frequency noise (1s) below 1 Hz for the 1064 nm beat and about 180 Hz
for the green beat [33]. Basically this two-laser system offers about 4 million
stable optical frequencies, with 100 MHz optical frequency separations, each
with linewidths ≈ 100 Hz and below, and with a stability improving in time,
ideally following the Nd:YAG/I2 reference which shows an Allan Deviation of
≈ 4 × 10−15 at 700 s. By measuring the repetition rate against the NIST
frequency standard, all of these comb lines are known in absolute frequency.
Alternatively and interestingly, the repetition rate should form a stable optical
clock with its output at 100 MHz. Such a result, translating frequency stability
gained in the optical domain into the microwaves and rf, is made possible by
the broad, octave-spanning fs comb. Using our new fiber optic connection to
the NIST Frequency Standard, it will be fascinating to compare our optically-
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Fig. 3. The offset frequency ωr that displaces the modes of an octave spanning fre-
quency comb from being exact harmonics of the repetition rate ωr is measured by
frequency doubling some modes at the “red” side of the comb and beat them with
modes at the “blue” side

derived clock output stability with that of the NIST rf standard system. Already
the rf stability is not worse than the best other source available to us.

7 Self-calibrated Optical Combs: Absolute Optical
Frequencies

Being able to control ωo and ωr is not sufficient if we don’t know their values.
The repetition rate ωr is simply measured by a photo detector at the output
of either the laser or the fiber. To measure the offset frequency ωo, a mode
nωr + ωo on the “red” side of the comb is frequency doubled to 2(nωr + ωo). If
the comb contains more than an optical octave there will be a mode with the
mode number 2n oscillating at 2nωr+ωo. As sketched in Fig. 3 we take advantage
of the fact that the offset frequency is common to all modes3 by creating the beat
frequency (=difference frequency) between the frequency doubled “red” mode
and the “blue” mode to obtain ωo. This method allowed the construction of a
very simple frequency chain [14,15,16,17,18,19] that eventually operated with a
single laser. It occupies only 1 square meter on our optical table with considerable
potential for further miniaturization. At the same time it supplies us with a
reference frequency grid across much of the visible and infrared spectrum.

The system sketched in Fig. 3 is implemented in Garching with a Ti:sapphire
25 fs ring laser (GigaOptics, model GigaJet) with modes that are separated by
ωr = 2π 625 MHz. This makes it easy to distinguish them with a commercial
wavemeter. While the ring design makes it almost immune to feedback from the
fiber, the high repetition rate increases the available power per mode. The highly
efficient spectral broadening of the PCF compensates for the decrease of available
pulse peak power connected with a high repetition rate. To generate an octave
spanning comb we have coupled 190 mW average power through 35 cm PCF.
3 This is another way of saying that the modes are equally spaced.
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The pump beam intensity (Verdi, Coherent Inc.) is controlled by an EOM (LM
0202, Gsänger). With 7 W of pump power we achieve above 650 mW average
power from the femtosecond laser.

The infrared part of the spectrum at the fiber exit is separated from the green
part with the help of a dichroic mirror, and passed through a 3 × 3 × 7 mm3

AR coated KTP crystal properly cut for frequency doubling with ≈ 1060 nm
input. The harmonic green is recombined on a polarizing beam splitter with the
green part from the direct fiber output. For the green comb part an optical delay
line is included to match the optical path lengths. In the JILA setup [18], an
AOM was also introduced in this arm to displace the interesting beat frequency
region away from zero (see Fig.5). The polarization axes of the recombined light
are mixed using a rotatable polarizer. A grating which serves as 5 nm wide
bandpass filter selects the wavelengths around 530 nm. A beat signal with a
signal to noise ratio exceeding 40 dB in 400 kHz bandwidth has been obtained
at Garching. The offset frequency is phase locked with the help of an EOM in the
pump beam while the repetition rate ωr is phase locked with a PZT mounted
folding mirror. By this means the absolute frequency of each of the modes is
phase coherently linked to the rf reference and known with the same relative
precision.

To use this calibrated frequency grid, a low noise beat signal between one of
the modes with a cw laser has to be created. This is done by spectrally filtering
the comb to prevent most of the unused modes, that only produce shot noise,
from impinging on the photo detector. The rotatable polarizer, that works as an
adjustable beam splitter, is then used to maximize the signal to noise ratio. In
some cases a Phase-Tracking Oscillator can help to guarantee accurate counting.
Some of the details are found in Ref. [21].

The single-laser f : 2f frequency chain now appears as the natural endpoint of
a thirty-year development to measure absolute optical frequencies, using intervals
between harmonics or subharmonics of laser frequencies (see later). But for the
first demonstration of the self-referenced frequency comb concept performed in
Garching, not too long ago [16], when photonic crystal fibers were not yet widely
available, we managed to obtain spectral broadening by use a regular single mode
fiber. At that time we could bridge a frequency interval of 50 THz at the most
when seeding the fiber with a commercial mode-locked laser (Coherent model
Mira 900) that had a repetition rate of 75 MHz and a measured pulse duration
of 73 fs. Interestingly, the shorter pulses from the JILA laser led to broadening
beyond 100 THz, also using a standard fiber [30]. As shown in Fig. 4 the 50 THz
comb is used to fix the frequency difference 0.5f between two laser diodes at
4f (848 nm) and 3.5f (969 nm). One laser diode is phase locked to the fourth
harmonic of an infrared HeNe laser at f (3.39 µm) and the other is frequency
doubled to obtain 7f . At that stage all lasers but the the HeNe laser are phase
locked to another laser in the chain. We close the chain by phase locking the
remaining laser by controlling its frequency f such that the sum of f and 7f
equals 8f as produced by frequency doubling the laser diode at 4f . Only after
closing the last phase locked loop are the relations between absolute frequencies
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Fig. 4. The first self-referenced frequency chain that has been used in Refs. [16,19,31]
uses an optical frequency interval divider (oval symbol) [34] that fixes the relation
between the frequencies f , 4f and 7f by locking f +7f to 2×4f . The 3.39 µm laser at
f is locked through the divider after the frequency comb locked the difference between
3.5f and 4f

as mentioned precisely fulfilled. We can then set the frequency of the HeNe laser,
and all other lasers in the chain, by setting the frequency difference between the
laser diodes 4f−3.5f = 0.5f with a cesium atomic clock that controls the mode
spacing. We have used this frequency chain for an improved measurement of
the hydrogen 1S-2S transition frequency at 2466 THz [16,31]. We excite this
transition with two photons from a frequency doubled dye laser at 486 nm. To
enable us to use the 7f output of the frequency chain shown in 4 we introduced
a second smaller frequency gap that is measured with the same frequency comb.
As described elsewhere in this volume [35] we use a sophisticated line shape
model [36,35] to obtain [31]

f1S2S = 2 466 061 413 187 103(46) Hz (14)

for the hyperfine centroid. To achieve this accuracy we made use of a trans-
portable cesium fountain clock [32] constructed by the group of A. Clairon at
the Laboratoire Primaire du Temps et des Fréquences (LPTF). This measure-
ment represents now the most precise measurement of an optical frequency and
provides the first phase coherent link from the vacuum UV (121 nm) to the radio
frequency domain. A previous measurement [37] of this transition also serves as
an independent test of the previous harmonic frequency chains at Garching and
at the Physikalisch Technische Bundesanstalt Braunschweig/Germany to within
3.4 parts in 1013.

After the first successful testing of the comb properties at Garching [26] other
groups worldwide also saw the single-laser f : 2f self-calibrated frequency chain
as a highly attractive desirable approach to measuring absolute optical frequen-
cies. It has long been known that a white light continuum is produced when an
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(amplified) femtosecond laser pulse is focused into a nonlinear dielectric medium
with an intensity-dependent refractive index. Experiments carried out in early
1997 [38] demonstrated conclusively that such white light continuum pulses can
be mutually phase-coherent, and a universal optical frequency comb synthesizer
with a train of such pulses was envisioned by one of us (T.W.H.) at that time.
However, pulses intense enough could not be produced with a sufficiently high
repetition rate that could have allowed one to separate out a single mode. In May
1999, researchers at Lucent Technology announced the generation of white light
continuum pulses directly from a low-power femtosecond laser oscillator with the
help of a microstructured silica fiber [11]. It was then obvious to some of us that
such fibers would produce an octave-spanning frequency comb, and the Garch-
ing and Boulder teams entered a friendly race to obtain a fiber sample. The
Boulder team won this race by a few weeks and obtained its fiber sample from
Lucent in October 1999 to demonstrate the first octave-spanning self-referenced
frequency comb [14,17,18]. The Garching group obtained a photonic crystal fiber
a few weeks later from P. Russell at Bath University [12] and successfully imple-
mented a single-laser frequency “chain” in November 1999 [15,16,19].
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Fig. 5. Experimental setup for locking the offset frequency ωo. The femtosecond laser
is located inside the shaded box. Solid lines represent optical paths, and dashed lines
show electrical paths. The high-reflector mirror is mounted on a transducer to provide
both tilt and translation

The JILA implementation of this technique is illustrated in Fig. 5 [18]. For the
first measurement ωr was phase locked to a precise radio frequency reference (a
GPS controlled Rb standard) but knowledge and control of ωo was not required.
The entire comb was allowed to freely “float” and δ1 and δ2 were measured
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as two heterodyne beats. One beat was between ω1064, a I2 stabilized Nd:YAG
laser and an infrared comb mode and the other beat was between the frequency
doubled Nd:YAG laser and a green comb mode. With only the mode spacing of
the fs comb fixed, the variations of the δ1 and δ2 are correlated as ωo fluctuates.
This correlated noise, and therefore any dependence on ωo, is removed before
counting by preparing either the difference or sum of δ1 and δ2. Measurements
using this technique yielded a frequency for the 127I2 R(56) 32 − 0 a10 transition
of 563 260 223 514(5) kHz. The dominant sources of uncertainty were the real-
ization of the optical frequency (±4 kHz) in addition to the microwave frequency
(±2.2 kHz) that controls ωr. Once the very stable iodine-stabilized CW-YAG is
measured in this fashion its realization is no longer a limitation, and any other
optical frequency that falls within the bandwidth of the comb can be measured
with respect to the iodine standard. This enabled the concurrent measurement
of the 633 nm HeNe/I2 [39] and the 778 nm Rb 2-photon [40] standard [17].

As described earlier, a more elegant technique exists to measure and control
the offset frequency ωo, while furthermore eliminating the need for any auxil-
iary CW lasers. As shown, the comparison of frequency-doubled low frequency
comb components from the fiber can be heterodyned with the directly generated
comb components near twice the optical frequency to yield ωo. With the AOM
operating at 7/8 of the 90 MHz repetition rate, the JILA team could establish
the condition of zero offset of the comb-lines from harmonics of the repetition
frequency, i.e. ωo = 0. Alternatively, thanks to the digital frequency synthesis
employed, we could fix the offset frequency to be a rational fraction of the inter-
comb-line spacing. This provides a defined cycle period for the carrier-envelope
phase-slip closure cycle, which may be useful in experiments designed to eluci-
date a dependence on the carrier-envelope phase. The Garching team achieved
this ability to select an arbitrary value of ωo (including ωo = 0) by the use of an
auxiliary frequency doubled Nd:YAG laser [19].

8 Accuracy Tests of the fs Laser Comb Approach

Previously we have shown that the repetition rate of a mode locked laser equals
the mode spacing to within the experimental uncertainty of a few parts in
1016 [26] by comparing it with a second frequency comb generated by an efficient
electro-optic modulator [41]. Furthermore the uniform spacing of the modes was
verified [26] even after further spectral broadening in a standard single mode
fiber on the level of a few parts in 1018 [13]. To check the integrity of the fem-
tosecond approach we compared the f : 2f interval frequency chain as sketched
in Fig. 3 with the more complex version of Fig.4 [19]. We used the 848 nm laser
diode of Fig. 4 and a second 848 nm laser diode locked to the frequency comb of
the f : 2f chain. The frequencies of these two laser diodes measured relative to a
quartz oscillator, that was used as a radio frequency reference for the frequency
combs, are 353 504 624 750 000 Hz and 353 504 494 400 000 Hz for the f : 2f
and the 3.5f : 4f chain respectively. We expect a beat note between the two
848 nm laser diodes of 130.35 MHz which was measured with a radio frequency
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counter (Hewlett Packard, model 53132A) referenced to the same quartz oscilla-
tor. In all the measurements described here we use additional frequency counters
to detect cycle slips in the phase locked loops (see for example [19]). We exclude
data with cycle slips from evaluation.
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Fig. 6. Left: Deviation of the averaged beat note between the two frequency chains
from the expected value for various counter gate times. Right: Measured Allan standard
deviation between the two chains as a function of the counter gate time

After averaging all data we obtained a mean deviation from the expected
beat frequency of 71 ± 179 mHz at 354 THz. This corresponds to a relative
uncertainty of 5.1 × 10−16. No systematic effect is visible at this accuracy and
the distributions of data points look almost ideally Gaussian for sufficiently
large data sets. Fig. 6 shows the measured Allan standard deviation [42], which
measures the stability of one chain against the other, for counter gate times4 of 1,
3, 10, 30 and 100 s. As both 354 THz signals are phase locked to each other (via
the quartz oscillator) and the rms phase fluctuation is expected to be constant
in time, the Allan standard deviation should fall off like the inverse counter gate
time. Presumably the larger 3.5f : 4f chain is limiting the relative stability as
it includes large range (±1024 π) phase detectors necessary to compensate for
the low servo bandwith available for some of the lasers. In addition the large
frequency chain of Fig. 4 is resting on two separate optical tables whose relative
position was not controlled. Another source of instability could be the specified
1.5×10−13 Allan standard deviation (within 1 s) of the quartz oscillator together
with time delays present in both systems.

Another domain of fs comb accuracy confirmation was provided by compari-
son of the apparent measured frequency of a HeNe I2-stabilized laser, measured
4 Here the averaging time is identical to the counter gate time. Because the dead
time between counter readings was much larger than the inverse counter bandwidth
juxtapositioning of say 1s gate time data to derive the Allan deviation for longer
times would produce false results [43].
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with a fs comb in JILA and with that measured by a traditional harmonic syn-
thesis chain at NRC, Ottowa [44]. Expressing the difference between the two
measurements of the 473 THz frequency of the Iodine-stabilized transfer laser,
one found (200 ± 770 Hz). While the accuracy of this test (1.6 × 10−12) has
fewer digits, it is extremely comforting to find such an agreement between the
two synthesis methods and the two national labs. (The domain below ≈ 1 kHz
(2 × 10−12) is hard to explore with the HeNe I2 laser system, due to its broad
line and rather large shifts with operating parameters).

9 The Fine Structure Constant α

Recently we have used the femtosecond technology to measure the transition
frequency of the cesium D1 line [45]. This line provides an important link for a
new determination of the fine structure constant α. Because α scales all electro-
magnetic interactions, it can be determined by a variety of independent physical
methods. Different values measured with comparable accuracy disagree with
each other by up to 3.5 standard deviations and the derivation of the currently
most accurate value of α from the electron g − 2 experiment relies on extensive
QED calculations [46]. The 1999 CODATA value [47] α−1 = 137.035 999 76(50)
(3.7×10−9) follows from the g−2 results. To resolve this unsatisfactory situation
it is most desirable to determine a value for the fine structure constant that is
comparable in accuracy with the value from the g − 2 experiment but does not
depend heavily on QED calculations. A promising way is to use the accurately
known Rydberg constant R∞ according to:

α2 =
2R∞
c

h

me
= 2R∞ × 2cfrec

f2
D1

× mp

me
× mCs

mp
(15)

In addition to the Rydberg constant a number of different quantities, all based
on intrinsically accurate frequency measurements, are needed. Experiments are
under way in Stanford in S. Chu’s group to measure the photon recoil shift
frec = f2

D1h/2mCsc
2 of the cesium D1 line [48]. Together with the proton-

electron mass ratio mp/me, that is known to 2×10−9 [49] and even more precise
measurements of the cesium to proton mass ratio mCs/mp in Penning traps,
that have been reported recently [50], our measurement has already yielded a
new value of α [45].

As shown in Fig. 7 we compared the frequency of the cesium D1 line at
895 nm with the 4th harmonic of the methane stabilized He-Ne laser operating
at 3.4 µm (f = 88 THz). The laser that creates the frequency comb, the fourth
harmonic generation and the HeNe laser are identical with the systems shown in
Fig. 4. However, the HeNe laser was stabilized to a methane transition in this ex-
periment and was used as a frequency reference instead of the Cs fountain clock.
The frequency of this laser has been calibrated at the Physikalisch Technische
Bundesanstalt Braunschweig/Germany (PTB) and in our own laboratory [51] to
within a few parts in 1013.
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Fig. 7. Frequency chain used for the determination of the cesium D1 line

10 Conclusion

To summarize we have presented here a new concept for measuring optical fre-
quencies, based on a well-stabilized train of optical impulses. This new technique
has been applied to the measurement of the hydrogen 1S−2S transition, to cal-
ibrate iodine stabilized HeNe lasers, and to the Cesium D1 line which is a cor-
nerstone for a new determination of α. This development culminates in the fully
phase locked single-laser optical frequency synthesizer. It uses a single femtosec-
ond laser and is nevertheless capable of phase coherently linking the rf domain
with a whole octave of optical frequencies. It occupies only 1 square meter on
our optical table with considerable potential for further miniaturization.

We believe that the development of accurate optical frequency synthesis
marks only the beginning of an exciting new period of ultra-precise physics.
The femtosecond frequency chain does also provide us with the long awaited
compact optical clockwork that can serve in future optical clocks. Possible can-
didates for precise optical reference frequencies derived from narrow transitions
in Ca, Hg+ [52] and In+ [53] are currently investigated using the femtosecond
comb technology.
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(2000)



A New Type of Frequency Chain 143

18. D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, and
S.T. Cundiff: Science 288, 635 (2000)
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