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Recent innovations in the technology of superconducting circuits have made it

possible to create nonclassical states of microwave light fields. These states are usually

associated with the subject of quantum optics. The ability to manipulate quantum

states of microwave light fields holds out the promise of building dense integrable cir-

cuits to process quantum information electrically. However, a major difficulty lies in the

fact that there is no general purpose method of efficiently measuring the quantum state

of a microwave field. In this thesis, I describe the development of an amplifier, based

on a Josephson parametric amplifier. This new parametric amplifier enables this kind

of efficient measurement. Although parametric amplifiers are narrowband (only ampli-

fying signals in a narrow frequency range around a central frequency), I have developed

an amplifier whose central frequency is widely tunable (a full octave, 4–8 GHz), greatly

improving its usefulness. I have studied the gain, bandwidth, dynamic range, and added

noise of the amplifier. I have shown that when operated in a particular manner, known

as degenerate mode, the parametric amplifier adds less noise than the noise associated

with the quantum fluctuations of the electromagnetic vacuum. In addition, its gain is

large enough to ensure that the amplified vacuum noise overwhelms the noise added by

conventional amplifiers that follow the parametric amplifier. Together, these two fea-

tures make it possible to measure either the phase or amplitude of a microwave signal

where the dominant uncertainty comes from the quantum noise of the signal itself. In

addition, a degenerate parametric amplifier also prepares particular nonclassical states

called squeezed states. Our parametric amplifier prepares squeezed states, which have
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(in one of its quadratures) noise with a variance less than one tenth that of the vacuum

noise. I have employed the parametric amplifier in two experiments that require its abil-

ity to make efficient measurements. First, I used the parametric amplifier to determine

the full density matrix of a squeezed state generated by a second parametric amplifier.

Second, I used the amplifier to enable a measurement of position with precision bet-

ter than the value at the standard quantum limit. These demonstrations are powerful

evidence that we have indeed realized a general-purpose quantum-efficient method of

measuring microwave fields.
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Chapter 1

Introduction

The theory of quantum mechanics emerged to explain primarily macroscopic de-

grees of freedom, such as atoms and molecules. In the past thirty years there have been

increasingly successful attempts to build macroscopic electrical circuits that nonetheless

behave quantum mechanically. Recently, this trend has only accelerated with the emer-

gence of the field of quantum information. This field seeks to exceed classical bounds

on communication, cryptography, and other information processing tasks.

In contrast to microscopic degrees of freedom, these quantum electrical circuits are

excited by much smaller energies. The transition frequencies between the eigenstates lie

in the microwave rather than optical part of the electromagnetic spectrum. Because the

energy of a microwave photon is so small, detecting fields at the level of single photons

is one of the major problems that need to be solved to store and process quantum

information with electrical circuits. In this thesis I address this measurement problem.

I developed a method of measuring microwave fields where the quantum fluctuations

in the microwave field are the dominant source of noise: in this sense, a measurement

operating at the single photon level. The key element in our measurement scheme

is an amplifier called the Josephson parametric amplifier (JPA), which is capable of

amplifying a signal, in principle, without adding any noise.

At the microwave frequencies we will discuss in this thesis (4–8 GHz), there

is not a quantum-limited photodetector such as in optics as the energy per photon
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of a microwave signal is too small to be individually detected in the same way as

an optical photon. Therefore, the detection of weak microwave signals needs to be

preceded by amplification. The process of amplification usually consists of the task of

weakly coupling many microscopic degrees of freedom (for example, the electrons of a

transistor) to an input signal, and channeling energy from those microscopic degrees

to the input signal. However, amplification is usually accompanied by the unfortunate

addition of noise to the signal (Fig. 1.1a). Most of the time, this added noise will come

from the lack of control of each individual microscopic degree of freedom. However,

even in the case when the control is ideal, quantum mechanics may impose limits on

the minimum added noise of an amplifier depending on the kind of amplification that

is performed.

In this thesis, I will be only interested in linear amplifiers. Linear amplifiers are

those whose output is linearly related to its input signal. I will be mostly interested

in phase-sensitive amplifiers, whose response depends on the phase of the input signal

and which can circumvent the quantum limit on the noise added by phase insensitive

amplifiers. One simple way to understand the concept of a phase sensitive amplifier is

to first define the quadratures of a signal. In general, we can decompose a voltage signal

with frequency components close to a frequency ωo as

Vs(t) = 2V0 [X1(t) cos(ωot) + X2(t) sin(ωot)] (1.1)

where X1 and X2 are the quadratures of the signal. A phase sensitive amplifier amplifies

the quadrature components of the signal by different amounts. I will discuss only a spe-

cific type of phase-sensitive amplifier, one that will only amplify one of the quadratures

and de-amplify the other one.

The quantum noise associated with amplification has been discussed extensively

by several authors [1–3]. The quantum fluctuations limit the ultimate performance

of any amplifier and hence these fluctuations play an important role in high-precision
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Figure 1.1: (a) In general, the amplification process will degrade the signal to noise
ratio by adding certain amount of noise to the signal before amplifying it. (b) Quantum
mechanics places a restriction on the minimum amount of this added noise when the
amplifier amplifies both quadratures of the signal. When an amplifier achieves this limit,
it is said to be quantum limited. (c) On other hand, if the amplifier is a phase-sensitive
amplifier, and only amplifies one of the quadratures, then it can do that ideally without
adding any noise.

measurements. The exact manifestation of this quantum limit depends on the actual

amplification process. Quantum mechanics does not impose any restriction on the

ultimate precision of a single measured quantity (for example, position or momentum

of a particle), but only in the combined precision of two conjugate variables [4]. The

typical case that interests us is a sinusoidal signal with the information encoded in the

amplitude or phase. If we care about the information contained in both quadratures,

Eq. (1.1), then we would need to use a linear phase-insensitive amplifier (Fig. 1.1b),

and the minimum amount of noise (in energy units) that an amplifier must add to a

signal at frequency ωs is

EN =
~ωs

2
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where EN is the noise that the amplifier adds to the signal before being amplified (Fig.

1.1a). This is often called the standard quantum limit of amplifiers and applies only

to phase-insensitive amplifiers. However, if one is only interested in the information

contained in one of the quadratures, the situation is very different (Fig. 1.1c). In

this case, there is no restriction on the added noise of the amplifier. Essentially, as

long as the information in one of the components of the signal is lost, the information

contained in the other quadrature can be amplified with no degradation of the signal to

noise ratio. In the ideal case, these amplifiers can be built from a system with a single

well-controlled degree of freedom (the resonant-mode of a microwave circuit). Another

interesting consequence of the behavior of phase sensitive amplifiers is that while one

of the quadratures is noiselessly amplified, the other one can be squeezed. That is, the

fluctuations at the output of the amplifier would be smaller than those fluctuations at

the input, even if at the input there were only vacuum fluctuations. Such squeezed

states are nonclassical states of light.

S

S

I

Nonlinear 

Inductor

Figure 1.2: A Josephson tunnel junction consists of two superconductors separated by
a small insulating barrier. For the most part, we will treat the Josephson junction as a
nonlinear inductor.

In this thesis, I will describe how we built a microwave amplifier with the best

reported noise-performance ever achieved. Its noise performance is so good and it can

be operated at high enough gains that it is now possible to measure microwave signal

where the dominant noise source is the quantum fluctuations of that microwave signal
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itself. In addition, we have shown that it is a practical, useable amplifier which can be

integrated with other low temperature microwave experiments.

The way we approached this problem of fabricating an ultra-low noise microwave

amplifier was by creating a parametric amplifier using Josephson junctions (Fig. 1.2).

Josephson junctions play a key role in the fabrication of low-noise microwave ampli-

fiers, being the only nonlinear dissipationless element usable at microwave frequencies.

The name parametric amplifier is associated with a class of amplifying and frequency-

converting devices that use the properties of nonlinear or time-varying reactances. If a

reactive parameter oscillates at twice the resonance frequency, energy can be pumped

into (or out of) the input mode, realizing an amplifier. In practice, this time dependence

is often generated through a nonlinear reactance, either inductance or capacitance. If

the nonlinear reactance is proportional to the intensity rather than the amplitude of the

mode, then an intense pump tone applied at the resonance frequency ω automatically

creates the necessary 2ω parametric oscillation. In analogy with optics, we describe this

effect as a Kerr nonlinearity. The nonlinear current-dependent inductance of a Joseph-

son junction provides such a Kerr nonlinearity. By detecting only one quadrature of

a signal, degenerate parametric amplifiers can add even less noise than the minimum

required by quantum mechanics when detecting both quadratures. [5].

We are not the first group to study these kind of amplifiers. Josephson para-

metric amplifiers have already been operated with near quantum-limited sensitivity [6]

and have been used to squeeze both thermal and vacuum noise [6–8]. However, in

spite of these promising results they were not widely adopted since they suffer from

two main disadvantages: a small dynamic range and narrow band gain. Furthermore,

compelling applications that would benefit from a lower-noise microwave amplifier have

only recently been developed: with the advent of quantum information processing using

superconducting circuits [9,10], or microwave-cavity optomechanics [11], there is now a

need for practical amplifiers that operate at the limits imposed by quantum mechanics.
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Also in contrast with the previous work where the JPA was only tested but never used

to measure something else, we operated our JPA in two low-temperature experiments

that require its unprecedented sensitivity. First, I efficiently reconstruct the quantum

state of a nonclassical microwave signal. Second, I collaborate with other members of

my lab to measure the position of an object with precision better than the quantum

zero-point motion of that object.

While the devices that I create and study are practical amplifiers, we have also

tested their performance in creating nonclassical states of the microwave field: squeezed

states. In fact, the nonclassical microwave fields whose quantum state I reconstructed

using my amplifier were themselves created by another JPA. These nonclassical states

are useful resources for quantum information processing. The continuation of the work

that I started during my Ph.D. will use the nonclassical state to process quantum

information.

Thesis overview

In the succeeding chapters I will explore the operating principles of these devices,

present a few design criteria for their construction and discuss two particular areas

of application. This thesis is organized as follows. In chapter 2, I will describe the

theoretical aspects related to the quantum description of microwave circuits, including

quantum network theory and input-output theory. I will also discuss the origin of the

limits on amplification as well as the generation of squeezed states using a degenerate

parametric amplifier, a type of phase-sensitive amplifier. In chapter 3, I will treat very

generally a type on nonlinear oscillators called Duffing oscillators. I will describe, in

general terms, what a Josephson junction is and discuss how an electrical resonator with

a Josephson junction embedded in it behaves, within some limit, like a Duffing oscillator.

I will then describe how the theory discussed in chapter 2 can be used to analyze the

behavior of the Josephson resonator as a degenerate parametric amplifier. In chapter 4,
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I discuss some of the previous and present work regarding the use of Josephson junctions

for parametric amplifiers. In chapter 5, I will describe the design and implementation

of the amplifier, including a brief discussion of microwave resonators using distributed

circuits. In previous chapters, the analysis of the JPA has been done assuming an

ideal behavior, that is without including the possibility of loss in the system. In this

chapter I also discuss the effects of loss on the performance of a JPA. In chapter 6, I

will describe the experiments done to characterize the samples that we have measured.

This includes the linear and nonlinear behavior of the cavities, and the performance of

the nonlinear resonators as amplifiers, including gain, bandwidth, noise properties and

saturation behavior. I will also describe the measurement of quadrature squeezing, but

using a commercial microwave amplifier. Therefore, even though the inferred squeezing

is about 10 dB, the real squeezing at the microwave detector at room temperature

is only 2%. In chapter 7, I will discuss how we try to increase the sensitivity of our

microwave homodyne measurement by using another JPA as a pre-amplifier for the chain

of commercial amplifiers used in the experiment. This allows us to detect real (rather

than inferred) squeezing of 37% and to perform what is called in the optics community

Wigner-function reconstruction. In chapter 8, I will also use a JPA to increase the

sensitivity of a microwave interferometer used to detect the motion of a nanowire. By

using the JPA, our interferometer is less than a factor of 4 away from being shot-noise

limited. Finally, I provide the conclusions of this thesis in chapter 9 as well as some

directions for the future of these experiments.



Chapter 2

Quantization of electrical circuits and amplifiers

The theory of parametric amplification is intimately related to the theory of cou-

pled modes of resonant systems. So our study begins with the study of the simplest

resonant system: the simple harmonic oscillator (SHO). In our case, our SHO consist

of circuits made out of microfabricated structures, such as for example a parallel LC-

oscillator as shown in figure 2.1a. Quantum mechanics has been generally associated

with the description of microscopic particles such as electrons and atoms. Nevertheless,

recently the concept of macroscopic quantum (mesoscopic) systems has been used to

describe systems that have an intermediate status between the realms of microscopic

particles and classical macroscopic objets [12]. By macroscopic I mean that these sys-

tems contain a large number of microscopic particles and have been fabricated according

to certain specifications. However, their behavior is described in terms of variables that

consist of collective degrees of freedom that behave quantum-mechanically. For typical

values and dimensions, the components that make up these systems can have resonances

of a few gigahertz and dimensions of 1-100 microns. Because the centimeter-long wave-

length of the probing microwave excitation is much larger than the circuits, we are well

into the lumped element limit.1 The state of the circuit in figure 2.1a can be specified

by only two collective degrees of freedom: the charge Q in the capacitor and flux Φ
1 We can also fabricate SHO out of microwave cavities. In that case the dimension of the circuit is

too big to be in the lumped element limit. However, we still characterize the behavior in terms of single
collective excitations.
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in the inductor. In order to probe the quantum mechanical behavior of such a simple

circuit, we need to cool it down to milliKelvin temperatures such that kBT ¿ ~ω0.

However, this last condition is not enough to guarantee that the collective degrees of

freedom Φ and Q need to be treated as a quantum variables; the separation between

the different energy levels ∆E/~ must be bigger than their width γ (Fig. 2.1b). This

condition means that the quality factor Q of the LC oscillator needs to satisfy Q À 1, a

constraint on the damping (and the coupling to the external world) of the oscillator [12].

CL

V

I

1
ω =

0
LC

(a) (b)

-4 -2 2 4

2

4

6

8

Φ

U(Φ)
( )Ψ Φ

2γ < ∆E

QΦ

Φ
=

d
V

dt

Figure 2.1: (a) Circuit representation of our simple harmonic oscillator. The system
coordinates Φ and Q are used to specify the state of the system. (b) One required
condition to observe the quantum nature of a system is that the width of the different
energy states need to be smaller than their separation Q = ∆E/~

2γ À 1.

In this chapter I will develop the classical and quantum description of electrical

circuits, including a quantum description of dissipation. I will begin by studying a dissi-

pationless classical and quantum lumped element circuit. Then I will give a description

of transmission lines in the classical and quantum mechanical regime. This description

will allow me to model dissipation as a semi-infinite transmission line –a model that

is compatible with quantum mechanics. I will then discuss a method that describes

how to treat quantum-mechanically the coupling of an arbitrary system (in this case,

a SHO) to the external world called Input-Output theory (IOT). Finally, in the third

part of the chapter, I will discuss the quantum limits for both phase-insensitive and
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phase-sensitive amplifiers. These limits emerge from the simple constraint that both

the input and output modes must satisfy the appropriate commutation relations. I will

finish this part with a small description of the squeezed states generated by a degenerate

parametric amplifier, a kind of phase-sensitive amplifier.

2.1 Electrical simple harmonic oscillator

2.1.1 Classical normal mode description of a LC-resonator

We will begin by deriving classical and quantum equations of motion for the

simple circuit in figure 2.1. More complex circuits can described as combinations of this

simple circuit. The Lagrangian of the circuit shown in figure 2.1a is

L =
1
2
CV 2 − 1

2
LI2,

=
1
2
C

(
dΦ
dt

)2

− 1
2

Φ2

L
, (2.1)

where in the second line the Lagrangian is expressed in terms of the generalized coor-

dinate Φ. In analogy to the mechanical case of a SHO, the electrostatic energy plays

the role of the kinetic energy, while the magnetic energy plays the role of the potential

energy. From Eq. (2.1), we can derive the canonical conjugate momentum of Φ given

by
∂L
∂Φ̇

= C
dΦ
dt

= Q.

Using the canonical conjugate momentum Q, we can obtain the Hamiltonian

H =
1
2

Φ2

L
+

1
2

Q2

C
(2.2)

and the Hamiltonian form of the equations of motion for this simple oscillator:

dQ

dt
= −∂H

∂Φ
= −Φ

L
, (2.3)

dΦ
dt

=
∂H

∂Q
=

Q

C
.
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Since the signs of the coupling coefficients in Eqs. (2.3) are opposite, it follows that

the system will oscillate with energy periodically exchanged between the electric and

magnetic fields. Solving the equations of motion (EOM) for the LC-resonator is very

simple however one thing to notice is that Eqs. (2.3) are coupled. The simple oscillator

can be described by two decoupled first-order differential equations. This is the normal

mode form of EOM [13]. One way to derive this form is to find the linear combinations

of the Hamiltonian equations that will decouple them. First, we define the complex

variables a and a∗:

a =
1

2
√

L
(Φ + iZrQ), (2.4)

a∗ =
1

2
√

L
(Φ− iZrQ),

where Zr =
√

L
C . Replacing (2.4) in (2.3) yields

(
d

dt
+ iω0)a = 0 (2.5)

and its complex conjugate (c.c.). The choice of normalization constants for the normal

modes will become apparent shortly.

Eqs. (2.5) and its complex conjugate are the two first-order decoupled differential

equations that I was looking for. They are said to be the normal mode form and describe

the resonator equally as well as Eqs. (2.3). The quantities a(t) and a∗(t) are the normal

mode amplitudes and are basically the classical version of the the operators â and â†

often used to study the quantum mechanical version of the simple harmonic oscillator

(SHO). They are linear combinations of the generalized coordinate and momentum

(in this case flux of the inductor and charge in the capacitor) and can be pictured as

two counterrotating phasors of constant length. The magnitudes of these phasors are

normalized so that the sum of their squares gives the total energy stored in the system.
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That is,

E =
1
2

Φ(t)2

L
+

1
2

Q(t)2

C
, (2.6)

= |a(t)|2 + |a∗(t)|2. (2.7)

Furthermore, |a|2 and |a∗|2 represent the energy stored in the a and a∗ modes respec-

tively. Since both V and I are real variables, |a|2 = |a∗|2, and the energy stored in each

mode is equal. The solutions of the normal modes are just

a(t) = a(0)e−iωt, (2.8)

a∗(t) = a∗(0)eiωt, (2.9)

where

a(0) =
1

2
√

L
(Φ(0) + iZrQ(0)) =

√
E

2
exp

[
i arctan

(
ZrQ(0)
Φ(0)

)]

with E being the total energy.

Although it may seem artificial to call a and a∗ different normal modes, this

separation of modes offers the advantage of visualizing Φ(t) + iZrQ(t) and its c.c. as

two different counterrotating phasors; this will be useful when we analyze parametric

processes in coupled resonators. As we will see, modes that rotate in the same sense in

non-degenerate parametric amplifiers will couple more effectively than modes that rotate

in opposite senses; for degenerate parametric amplifiers, we only have one resonant

circuit, and in that case the coupling of modes will be between the a and a∗ mode [13].

Therefore dividing modes up in this fashion will aid in understanding and simplifying

more involved coupled systems.

2.1.2 Description of the problem in quantum mechanics language

We can quantize the system of figure 2.1a following the usual procedure for canon-

ical quantization [12, 14, 15]; Q and Φ become operators satisfying the commutation
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relations:

[Φ̂, Q̂] = i~. (2.10)

In analogy to the classical we define the quantum operator for the normal modes in

term of the charge and flux operators

â =
√

1
2~Zr

(Φ̂ + iZrQ̂), (2.11)

â† =
√

1
2~Zr

(Φ̂− iZrQ̂).

The normalization factor in this case is slightly different than in Eq. (2.4) to be con-

sistent with the usual quantum mechanical definitions for these operators. They satisfy

the bosonic commutation relations

[â, â†] = 1.

Replacing this expression in the Hamiltonian for the system (2.2) we obtain the familiar

expression for the Hamiltonian of the quantum SHO:

H =
~ω
2

(ââ† + â†â) = ~ω(a†a +
1
2
). (2.12)

In order to simplify the notation, I will drop the hat on the operators, unless the

distinction between classical c-numbers and quantum mechanical operator is not obvious

from the context.

2.2 Transmission line theory

The main difference between circuit theory and transmission line theory is elec-

trical size. For circuit theory, the main assumption is that the physical dimension of the

circuit network is much smaller than the wavelength of the electrical signal used to drive

the circuit. In a transmission line, the length of the network is large enough that the

voltages and currents can vary in magnitude and phase over its length. In the systems

we will be studying, there will be a combination of sizes in the building blocks that will
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require us to make use of both circuit and transmission line theory. In the first part for

this section I will first derive the equations of motion of a classical transmission line and

then introduce quantum mechanics following the procedure for canonical quantization.

2.2.1 Classical analysis of transmission lines

Ll dz

dz

Cl dz

I(z,t) I(z+dz,t)

V(z,t)

+

_

V(z+dz,t)

+

_

(a) (b)

V(z,t) +
_

I(z,t)

VR

VL

v, Zc Zload

z=0

Figure 2.2: (a) Lumped element equivalent circuit of a lossless transmission line; the
inductance and capacitance of the circuit shown are given by Lldz and Cldz respectively,
where Ll is the inductance per unit length, Cl the capacitance per unit length and dz the
infinitesimal length the section of transmission line. (b) A transmission line terminated
at z = 0 by a load of impedance Zload. Current I and voltage V are indicated as defined
in the main text in terms of the right and left traveling voltage waves VR and VL.

Fields inside a transmission line satisfy the 1-D wave equation. We can derive

this result by modeling the transmission line as a series of lumped element circuits of

length dz, as shown in figure 2.2a, where Cl and Ll is the capacitance and inductance

per unit length. Applying Kirchhoff’s voltage and current law on one of the cells results

into the derivations of the so called telegrapher equations [16]:

∂V (z, t)
∂z

= −Ll
∂I(z, t)

∂t
, (2.13)

∂I(z, t)
∂z

= −Cl
∂V (z, t)

∂t
.

Combining these equations, we can derive the 1-D wave equation for both voltages and

currents with a propagating velocity of v =
√

1/LlCl:

∂2V (z, t)
∂z2

=
1
v2

∂2V (z, t)
∂t2

. (2.14)
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We know that the solution for the wave equation can be decomposed into a left-traveling

part and a right-traveling part:

V (z, t) = VR(t− z

v
) + VL(t +

z

v
), (2.15)

I(z, t) =
1
Zc
{VR(t− z

v
)− VL(t +

z

v
)},

where Zc is the characteristic impedance of the transmission line given by Zc =
√

Ll/Cl,

and relates the voltage and current on the line as:

Zc =
VR

IR
= −VL

IL
.

VL and VR are arbitrary functions of their argument and they represent signals being

launched in the transmission line.

For an infinite transmission line, the right and left-traveling waves are indepen-

dent; however, when at some coordinate z (that for our convenience, we will define this

point as z = 0) the transmission line is terminated by some circuit then these solutions

are not independent (Fig. 2.2b). They both have to fulfill certain boundary condition

imposed by the circuit with a frequency dependant impedance Zload(ω):

Zload =
V (z = 0, ω)
I(z = 0, ω)

. (2.16)

The instantaneous net power flow transported by the transmission line is given by

P =
1
Zc

(VR(z, t)2 − VL(z, t)2) (2.17)

where our convention is that positive carried power goes to the right. So far our de-

scription of a transmission line has been completely classical. In the next section we

will treat it as a quantum system.

2.2.2 Quantization of a lossless transmission line

Before quantizing the system consisting of a transmission line, we will write its

Hamiltonian and Lagrangian. We will see that an infinite transmission line can be
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Figure 2.3: The relation between the current I(z, t) and the generalized flux variable
φ(z, t) is described.

studied as a collection of an infinite number of independent harmonic oscillators and

hence it can be easily quantized.2 Using the generalized flux variable defined as [3,12]

φ(z, t) ≡
∫ t

−∞
dt′V (z, t′) (2.18)

where V (z, t′) = ∂φ(z,t)
∂t is the local voltage of a transmission line at position z and at

time t′. The relation between the current I(z, t) and φ(z, t) is derived in figure 2.3 and

is given by

I(z, t) = − 1
Ll

∂φ(z, t)
∂z

.

Then the Lagrangian density for a transmission line is

L =
Cl

2

(
∂φ(z, t)

∂t

)2

− 1
2Ll

(
∂φ(z, t)

∂z

)2

. (2.19)

Using Eq. (2.19), it can be shown using the Euler-Lagrange equation that φ satisfies a

1-D wave equation:
∂2φ(z, t)

∂z2
=

1
v2

∂2φ(z, t)
∂t2

. (2.20)

The momentum conjugate variable of the flux φ(z, t) is the charge density q(z, t):

δL

δ∂tφ
= Cl

∂φ

∂t
= ClV (z, t) = q(z, t)

2 The only difference between the quantization of electromagnetic modes of vacuum in free space
and the ones studied here that in our case photons do not carry a polarization label and travel in one
dimension yielding a different density of states as a function of frequency [3].
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from which we can then derive the Hamiltonian density:

H =
1

2Ll

(
∂φ(z, t)

∂z

)2

+
1

2Cl
q(z, t)2. (2.21)

We have already stated that since the fields in the transmission line satisfy the

wave equation, then their solutions consist of left and right-traveling waves (2.15). We

can introduce quantum mechanics into the analysis of the transmission line again fol-

lowing the usual procedure of canonical quantization:

[φ(z′, t), q(z, t)] = i~δ(z − z′),

[q(z, t), q(z′, t)] = [φ(z, t), φ(z′, t)] = 0.

We can fourier expand these fields following the same procedure described in Refs.

[3, 15, 17]. The only distinction is that I have chosen to use the voltage V (z, t) =

q(z, t)/Cl as my quantized field variable so that our analysis follows closely the language

used in microwave theory

VR(z, t) =

√
~Zc

2

∫ ∞

0

dω

2π

√
ω(aR(ω)e−iω(t−z/v) + H.c.), (2.22)

VL(z, t) =

√
~Zc

2

∫ ∞

0

dω

2π

√
ω(aL(ω)e−iω(t+z/v) + H.c.),

where H.c. stands for Hermitian conjugate, and the operators aL(ω) and aR(ω) are the

annihilation operators for the signal quanta propagating to the left and to the right,

respectively. They satisfy the standard commutation relations for a 1-D scalar field

given below, where we have used the convention from Ref. [3, 18]:

[aα(ω), aα′(ω′)] = 0, (2.23)

[aα(ω), a†α′(ω
′)] = 2πδ(ω − ω′)δα,α′ , (2.24)

〈a†α(ω′)aα′(ω)〉 =
1

exp( ~ωkBT )− 1
2πδ(ω − ω′)δα,α′ , (2.25)

〈{aα(ω), a†α′(ω
′)}〉 = coth(

~ω
2kBT

)2πδ(ω − ω′)δα,α′ , (2.26)



18

where α and α′ stand for either R or L. Using expressions (2.22)-(2.24) and replacing

the field operators into the expression of the Hamiltonian density (2.21), we can derive

our expression for the Hamiltonian of an infinite transmission line:

H =
∫ ∞

−∞
dzH =

∫ ∞

0

dω

2π
~ω[a†L(ω)aL(ω) + a†R(ω)aR(ω)] (2.27)

where I have dropped a constant term that arises from the commutation relations. Eq.

(2.27) shows what I mentioned above: a transmission line can be modeled as a system

composed of an infinite number of harmonic oscillators.

Once we have quantized the fields inside a transmission line, we can calculate

statistical values for some important quantities. For a given thermal state, VR and V 2
R

have the following expectation values:

〈VR〉 = 0, (2.28)

〈V 2
R〉 =

∫

B

dω

2π
SVRVR

= Zc

∫

B

dω

2π

~ω
2

coth(
~ω

2kBT
), (2.29)

where SVRVR
is the symmetrized spectral density of right traveling voltage signal, and

the integration has been limited to the bandwidth Bω of the measuring instrument. We

observe then that a thermal state with temperature T has a noise power per unit band-

width of ~ω2 coth( ~ω
2kBT ) propagating to the right and to the left along the transmission

line. We can use the previous results to estimate the voltage fluctuations generated by a

resistor [3]. In order to do that, let’s consider the example of a transmission line termi-

nated with a resistor at one end. The terminating resistor acts as a black body emitting

thermal noise down the transmission line. If the resistor is held at temperature T it will

bring the transmission line modes into equilibrium at the same temperature. Consider

figure 2.2b where the load Zload is replaced by a resistor like the one shown in figure

2.4. We can derive the voltage noise of a resistor by considering the voltage noise at the

open termination of a transmission line with Zc = R. For the open termination of the

transmission line, the left and right moving signals are not independent, but VR = VL,
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so that the voltage at the end is given by

V = VR + VL = 2VR

and thus, using Eqs. (2.29), we have

SV V (ω) = 4SVR,VR
(ω) = 4Zc

~ω
2

coth(
~ω

2kBT
). (2.30)

It is these fluctuations from a resistor that will allow us to calibrate the noise added by

our amplifier in chapter 6.

Another important point is that transmission lines can act as a simple resistor

in which instead of dissipating energy, it carries it away as propagating waves. This

effective dissipation is a consequence of its semi-infinite length and since it has a con-

servative Hamiltonian, it can be used to treat dissipation within a quantum theory

framework [3,12,15]. This model for resistors (called Nyquist model [19]) is completely

equivalent to modeling dissipation as coupling to a thermal bath or reservoir with an

infinite number of harmonic oscillators [20].

V
NS

VV

R

VR

VL

Zc

V

+

_

Figure 2.4: A noisy resistor R is coupled to a transmission line with a characteristic
impedance of Zc. The noise of the resistor is modeled as a voltage source with a spectral
density given by SV V .

2.3 Input-Output theory

In this section I will consider the problem of coupling a system, e.g. a simple

harmonic oscillator, to the fields of a transmission line using Input-Output theory (IOT).
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IOT is an approximate method that solves an important problem: how to calculate the

quantum statistical properties of both, the field inside a cavity and the field exiting the

cavity given the input field. In this section I will first treat the useful example of coupling

a simple harmonic oscillator, in the form of an LC resonator, to external signals coming

from a transmission line. Due to its simplicity, I can solve this problem exactly using

quantum network theory [15].3 Then I will explain a series of approximations made

to the EOM that allows us to cast them into a form identical to the EOM derived in

quantum optics books for a cavity coupled a reservoir modeled as a collection of infinite

harmonic oscillators [22]. This serves as a prelude for the next part of this section where

I describe another more direct approach of quantizing systems coupled to thermal baths

in a language more akin to that of quantum optics.

2.3.1 Harmonic oscillator coupled to a transmission line

CL V

Vin

Vout

ΦI(z=0,t)

z=0

C
I

L
I

Figure 2.5: A SHO in the form of an LC resonator is coupled to a transmission line.
The resonator is described using as generalized coordinates the flux Φ of the inductor
and the charge Q of the capacitor.

The system analyzed is the one shown in figure 2.5. It consist of an LC resonator

coupled to a transmission line. The equations of motion can be derived using current
3 Quantum network theory was developed as quantum extension of the classical theory of electrical

networks and as a quantum extension of linear response theory in the context of electrical circuits. It
allows us to study fluctuations entering a system as input signal fields from a transmission line [15,21]
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conservation law4 :

−I(z = 0, t) + IL(t) + IC(t) = 0, (2.31)

−I(z = 0, t) +
Φ
L

+
d(CV )

dt
= 0, (2.32)

−I(z = 0, t) +
Φ
L

+ C
d2Φ
dt2

= 0. (2.33)

Now, using expressions (2.15), we can solve for I(z = 0, t) = I(t) in terms of the

internal V (z = 0, t) and incoming Vin(z = 0, t) fields (where for convenience I am using

the subscripts “in” and “out” instead of “R” and “L” to make the distinction between

the input and output fields clearer). Solving for I(t), the result is

I(t) =
2Vin(t)− V (t)

Zc
.

Using the known relation between voltage and flux V = dΦ
dt , our EOM for the internal

field Φ is then

C
d2Φ
dt2

+
1
Zc

dΦ
dt

+
Φ
L

=
2
Zc

Vin(t) (2.34)

The term 2
Zc

Vin(t) is the driving force that the incoming fields exert on the harmonic

oscillator. For the case when the transmission line represents a thermal bath, Vin is

the fluctuation or Langevin force and Eq. (2.34) can be consider just an example of

a Langevin equation. Solving the EOM of the LC-resonator allows us to predict the

outgoing field. In this rather simple example, the response of the oscillator is linear and

can be characterized by a complex frequency dependant impedance Z(ω) (Eq. 2.16)

Z(ω) =
V (z = 0, ω)
I(z = 0, ω)

.

From basic microwave theory using expressions (2.15) and (2.16), it can be shown that

the relation between the incoming and outgoing signal is

Vout(z = 0, ω) = Γ(ω)Vin(z = 0, ω) (2.35)
4 A Quantum Network theory approach to a problem usually starts by writing the Lagrangian of

the system, and using the Euler-Lagrange equation, the EOM are then derived [12, 15]. However, this
example is simple enough that we can skip this step.
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where Γ(ω) is the called the reflection coefficient and is defined as

Γ(ω) =
Z(ω)− Zc

Z(ω) + Zc
. (2.36)

For our example, from circuit theory we know that the impedance of a parallel LC

resonator is given by

Z(ω) =
jLω

1− (ω/ω0)2
(2.37)

where I am using the electrical engineering sign convention of j = −i and ω0 = 1/
√

LC.

In the limit of low damping (Q = ω0ZcC À 1), we expect the resonator to respond to

inputs only near the frequency ω0 where the impedance is large compared to Zc, and

we may approximate [3, 16]

Z(ω) =
jLωω2

0

(ω0 − ω)(ω0 + ω)
≈ jLω2

0

2(ω0 − ω)
=

1
2Cj(ω − ω0)

which then yields for the reflection coefficient in the high Q limit

Γ(ω) =
Z(ω)− Zc

Z(ω) + Zc
≈ γ − j(ω − ω0)

γ + j(ω − ω0)
(2.38)

where γ = 1
2CZc

defines the amplitude decay rate, or half width at half maximum

(HWHM).

So far, the analysis has been completely classical. We start the quantum mechan-

ical analysis by making the input and output fields quantum mechanical signals that

are represented in the fourier domain as shown in expression (2.22). In this case, the

incoming field consist of the right-propagating signals at z = 0

Vin(t) =

√
~Zc

2

∫ ∞

0

dω

2π

√
ω(ain(ω)e−iωt) + H.c.). (2.39)

Solving for internal fields in Eq. (2.34) in the frequency domain, the result is

Φ(ω) =
1
C

√
2~ω
Zc

ain(ω)
−ω2 − i2γω + ω2

0

, (2.40)

Φ†(ω) =
1
C

√
2~ω
Zc

a†in(ω)
−ω2 + i2γω + ω2

0

. (2.41)
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From these expressions we can derive the time-dependant solution for Φ as shown below

Φ(t) =
1
C

√
2~
Zc

∫ ∞

0

dω

2π

√
ω

(
ain(ω)e−iωt

−ω2 − i2γω + ω2
0

+ H.c.
)

. (2.42)

Now consider the flux’s conjugate momentum given by the charge of the capacitor

Q = CV = C(dΦ/dt). Using the commutation relations (2.23 and 2.24) we can show

that Q and Φ have the expected commutation relation:

[Φ(t), Q(t)] = i
4γ~
π

∫ ∞

0
dω

ω2

(ω2 − ω2
0)2 + (2γω)2

. (2.43)

= i~.

This is the electrical equivalent to [x, p] = i~. Eqs. (2.34-2.42) constitute the solution

for the quantum problem of an LC circuit coupled to a transmission line. We can

calculate expectation values for the internal fields, and together with Eq. (2.15) we can

calculate expectation values for the output fields (VL → Vout).

2.3.2 Approximations

So far, I have not made any approximations in the analysis, and we have been

able to solve this problem exactly due to its simplicity. However for more complicated

systems (e.g. a non-linear harmonic oscillator), the exact solution is not possible unless

some approximations are made. I introduce these approximations in this section in

the same context of a SHO coupled to a transmission line from which I will derive

expressions similar to those found in the quantum optics literature describing a cavity

coupled a thermal bath.

Consider again the EOM for the LC-harmonic oscillator coupled to a transmission

line.

C
d2Φ
dt2

+
1
Zc

dΦ
dt

+
Φ
L

=
2
Zc

Vin(t).

We now write the expression for Φ(t) as

Φ(t) =

√
hω0L

2
[c(t)e−iω0t + c†(t)eiω0t] (2.44)
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where the normalization constant has been chosen according to Eq. (2.11), so that the

energy in the internal field will be E = ~ω0c
†c. In this expression, the amplitude c(t) is

a slowly varying function of time.

Let’s consider the incoming field Vin(t) as defined in Eq. (2.39). When the Q of

the resonator is high, one expects it to respond to inputs only near the frequency ω0.

With this in mind, we replace
√

ω with
√

ω0:

Vin(t) =

√
~Zc

2

∫ ∞

0

dω

2π

√
ω(ain(ω)e−iωt + a†in(ω)eiωt), (2.45)

≈
√
~Zcω0

2
{e−iω0t

∫ ∞

−ω0

dω′

2π
bin(ω′)e−iω′t

+eiω0t

∫ ∞

−ω0

dω′

2π
b†in(ω

′)eiω′t}, (2.46)

where we have made a change of variables (ω → ω′+ω0) and defined the new annihilation

operator

bin(ω) = ain(ω + ω0)

which has the same commutation relations as ain (Eqs. 2.23, 2.24). Further, because the

oscillator will only respond to a driving signal whose frequency is close to ω0, that is at

frequencies ω′ = 0 for the new frequency variable, we can extend the integral lower limit

to −∞ without introducing a large error. Thus, we arrive to the following expression

for the incoming field

Vin(t) =

√
~Zcω0

2
[e−iω0tbin(t) + eiω0tb†in(t)] (2.47)

where

bin(t) =
1
2π

∫ ∞

−∞
dωbin(ω)e−iωt. (2.48)

We can picture bin(t) as the slowly varying part compare to ω0 of the input field [17].

Since bin(ω) satisfy the commutation relations

[bin(ω), bin(ω′)] = 0, (2.49)

[bin(ω), b†in(ω
′)] = 2πδ(ω − ω′), (2.50)
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the analysis of the temporal modes (2.48) shows that their quantum commutator obeys

[bin(t), bin(t′)] = 0, (2.51)

[bin(t), b
†
in(t

′)] = δ(t− t′). (2.52)

It can be shown that the normalization of bin(t) results in a incoming power for a

monochromatic signal at frequency ω of [3]

Pin = ~ω〈b†in(t)bin(t)〉. (2.53)

The approximations used to derive Eqs. (2.46), (2.47), (2.48) and (2.50) are

referred to as the Markov approximation [3, 17, 22, 23]. A similar line of reasoning,

with the appropriate changes can be applied to obtain the expression for the outgoing

field and we get exactly the same equations as Eqs. (2.47-2.53) with the subscript “in”

replaced by “out”.

Our next set of approximations will let us write the EOMs for these coupled

systems in a form similar to those found in quantum optics literature [3, 17, 22–24]. If

we replace Eqs. (2.44) and (2.47) into (2.34) and separating the parts oscillating at

e−iω0t and eiω0t, we obtain:

C
d2

dt2
(ce−iω0t) +

1
Zc

d

dt
(ce−iω0t) +

ce−iω0t

L
=

2√
LZc

bin(t)e−iω0t. (2.54)

The following approximations are made:

• d2

dt2
(ce−iω0t) ≈ −ω2

0ce
−iω0t − i2ω0

dc
dte

−iω0t

• |1c dc
dt | ¿ ω0

These approximations constitute the “slowly varying envelope approximation” [13, 17].

It basically means that the amplitude c(t) is going to be a slow varying function of time

compared to the time scale of 1/ω0. After substituting these equations in (2.54), we

obtain
dc

dt
+ γc = i

√
2γbin(t). (2.55)
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The equivalent expression for the boundary conditions (2.15) in terms of the operators

c, bin and bout is

bout(t) + bin(t) = −i
√

2γc. (2.56)

We can derive an expression for Q(t) equivalent to (2.44) within the same set of approx-

imations. Substituting both expressions for Q and Φ in Eq. (2.43), it can be deduced

that [c, c†] = 1, as expected.

The previous expressions have been derived in the ω0-rotating frame. One can

transform back to the non-rotating frame through the following transformations

a(t) = e−iω0tc(t),

ain(t) = e−iω0tbin(t),

aout(t) = e−iω0tbout(t),

with the same commutation relations as their counterparts in the rotating frame. The

equations of motion (2.55) and (2.56) in the non-rotating frame become

da

dt
+ iω0a + γa = i

√
2γain(t) (2.57)

aout(t) + ain(t) = −i
√

2γa. (2.58)

We can go on to solve exactly Eqs. (2.57) and (2.58); however, I will not do

that now, but in the following section. The point I wanted to make in this section

was to explain the approximations that allowed us to reduce expressions (2.34) and

(2.15) derived using quantum network theory to a form that is commonly encountered

in quantum optics when analyzing a cavity mode (in our case the cavity’s role played

by the LC-resonator) coupled to an external field through a partly transparent mirror.

What I will show in the next section is that Eqs. (2.57) and (2.58) can also be derived

in a much more direct way when one is willing to make the approximations explained in

this section since the very beginning. This method is what is more commonly described

as Input-Output theory.
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2.3.3 Alternative approach

aout(t)
cavity

test port γ

ain(t)
a a†

= ωH h

Figure 2.6: The typical example in quantum optics used to introduce Input-Output
theory consists of a cavity whose Hamiltonian is that of harmonic oscillator coupled to
a thermal bath via a test port. The coupling between the reservoir and the cavity is
described by frequency-independent term γ.

In this section I describe a more direct way to derive the equivalent equations

to (2.57) and (2.58) but for a generic system (not necessarily a SHO). The present

discussion follows closely standard references on the subject [3, 17, 22–24]. In order to

drive a cavity like the one shown in figure 2.6, we need to open a port which exposes the

cavity to both an external drive and the noise of the thermal bath it is now coupled to.

Input-Output theory allow us to formally separate the degrees of freedom into internal

cavity modes and external bath modes. The Hamiltonian of a generic high-Q cavity

coupled to a thermal bath can written in the following form

H = Hsys + Hbath + Hint

where Hsys is the Hamiltonian for the system under study. In our case, Hsys is given by

Eq. (2.12),

HB =
∑

n

∫ ∞

−∞

dω

2π
~ωa†n(ω)an(ω) (2.59)

is the sum over the n thermal baths and

Hint = ~
∑

n

∫ ∞

−∞

dω

2π
[κ∗na†n(ω)g + κng†an(ω)] (2.60)

where g = g(a, a†) and g† are the system operators the bath couples to and κn is the

coupling constant between the n thermal bath and the system. I have assumed that all
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the baths couple to the same operator in the system under study. This Hamiltonian

gives rise to linear coupling between the system variables and the bath modes. The an

operators are the boson annihilation operators for the n-different baths the system is

coupled to and they obey the usual commutation relations:

[an(ω), a†n′(ω
′)] = 2πδn,n′δ(ω − ω′), (2.61)

[an(ω), an′(ω′)] = [a†n(ω), a†n′(ω
′)] = 0.

Now there are two important points about the interaction and thermal bath Hamilto-

nian:

(1) The range of integration is from −∞ to∞ as opposed to from 0 to∞: the cavity

resonance only responds to frequencies within certain range. Thus, the lower

integration limit has been extended from 0 to −∞ as we did in the previous

section under the “slowly varying envelope approximation.”

(2) The coupling constants κn are frequency independent: we have assumed the

Markov approximation by assuming κn is a constant over the range of frequen-

cies that are relevant to the system.

Since the creation and annihilation operators have no explicit time dependance,

we can derive their Heisenberg equations of motion from

i~
dO
dt

= [O,H]

from which one obtains the following EOM for the bath mode operators

dan(ω)
dt

= −iωan(ω)− iκ∗ng (2.62)

and for the system operator f (not necessarily g), one obtains

df(ω)
dt

= − i

~
[f,Hsys]− i

∑
n

∫ ∞

−∞

dω

2π
{κ∗na†n(ω)[f, g] + κn[f, g†]an(ω)}. (2.63)
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The bath mode fields have yet to be separated into incoming and outgoing bath fields.

The procedure through which this is done can be reviewed in the extensive literature

[3,17,22,23]. We do not review it here since the derivation is not so intuitively appealing

as in the case explained above for the transmission line coupled to a LC-resonator; we

just quote the resulting EOM for the internal field in terms of the input fields:

df

dt
= − i

~
[f, Hsys] +

∑
n

{[ |κn|2
2

g† + iκ∗nain†
n (t)

]
[f, g]− [f, g†]

[ |κn|2
2

g − iκnain
n (t)

]}

(2.64)

and the boundary condition that relates the input, output and internal fields

ain
n (t) + aout

n (t) = −iκ∗ng(t) (2.65)

with

[aα
n(t), aα

n′(t
′)] = 0 (2.66)

[aα
n(t), aα†

n′ (t
′)] = δn,n′δ(t− t′) (2.67)

for α → in, out

So far, Eqs. (2.64-2.65) have been expressed for a very general case. To touch

ground, let’s consider the equivalent case of a harmonic oscillator coupled to a single

thermal bath (Fig. 2.6). In that case we drop the index n for multiple thermal baths,

Hsys = ~ω0a
†a

and replace g for a in Eq. (2.60). Expressions (2.64) and (2.65) for the case of f = a

reduces to
da

dt
= −iω0a− |κ|2

2
a + iκain(t) (2.68)

and

ain(t) + aout(t) = −iκa(t). (2.69)

Eqs. (2.68) and (2.69) are exactly the same equations we derived in the previous

section (2.57) and (2.58) with the coupling constants κ being defined as κ =
√

2γ. They
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can be solved by Fourier transformation for both the internal field and the output field

yielding

a(ω) =
√

2γi

i(ω0 − ω) + γ
ain(ω) (2.70)

aout(ω) =
i(ω − ω0) + γ

−i(ω − ω0) + γ
ain(ω). (2.71)

From Eq. (2.71), the ratio of the input and output field is

aout

ain
=

i(ω − ω0) + γ

−i(ω − ω0) + γ

which is exactly the reflection coefficient Γ(ω) that was derived for a parallel LC res-

onator coupled to a transmission line (2.38)

The reason the alternative approach is useful, is that it gives us a recipe for how

to add ports, without worrying about the details of the coupling and it lets us treat

more complicated systems than a SHO in a much simpler way. For these reasons, we

will be doing extensive use of expressions (2.64) and (2.65) in the following chapters.

2.4 Quantum-limited amplification: Haus-Caves theorem

A comprehensive review on quantum limits of amplification can be found in Ref.

[2]. This section will review the fundamental properties of amplification. The general

quantum limit (Haus-Caves theorem) is first discussed for phase insensitive amplifiers,

where the origin of the half a quantum of added noise is clarified. Then we will discuss

the concept of a noiseless amplifier in the form of a phase sensitive amplifier. Finally

we will discuss the generic example of a degenerate parametric amplifier as a phase

sensitive amplifier, and its properties as a generator of quadrature-squeezed states. In

this section, I will only discuss the simple case of a single-mode system. However, real

signals and real amplifiers have a nonzero bandwidth, and a multimode analysis of the

amplifiers is necessary. The generalization of the results derived here to the multimode

case is considered in appendix A.
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Figure 2.7: (a) Input and output signals for a linear phase insensitive amplifier. The
input noise (red) is amplified (pink). However the output contains an amount on noise
larger than just the amplified noise due to the added noise of the amplifier (blue). (b)
For an ideal phase sensitive amplifier (such as a degenerate parametric amplifier), the
output does not contain any amplifier noise. However, this comes with the restriction
that only one of the quadratures (X1) is amplified, while the other is deamplified.

2.4.1 Phase insensitive amplifier

A phase insensitive amplifier is one that for a given input, the output will not show

any phase preference; that is, for a given phase shift on the input signal, the only effect

is an equivalent phase shift of the output [2]. Another requirement for an amplifier to

be phase insensitive is that it must add equal amount of noise to both quadratures [25].

In general, we can define a voltage signal with the time dependance explicitly included

as

Vs = V0

(
ase

−iωot + a†se
iωot

)

where as(0) ≡ as and a†s(0) ≡ a†s. We can decompose this voltage signal into two phase

or quadrature operators:

Vs = 2V0 (X1 cos(ωot) + X2 sin(ωot)) . (2.72)

In the previous expressions, the signal Vs has been normalized so that a†sas = X2
1 +

X2
2 − 1/2 corresponds to the photon number operator in the signal mode [26]. The
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quadrature operators are hermitian (and therefore observables) defined by

X1 =
1
2
(as + a†s), (2.73)

X2 =
1
2i

(as − a†s). (2.74)

From Eq. (2.72), it is evident that the quadrature operators are associated with field

amplitudes oscillating 90◦ out of phase. Let’s consider a linear amplifier with gain G1

for the cosine quadrature component and gain G2 for the sine quadrature component.

The two quadrature components Y1 and Y2 of the output amplified signal are given by:

Y1 =
√

G1X1 + F1, (2.75)

Y2 =
√

G2X2 + F2,

where F1 and F2 are the fluctuation operators of the amplifier internal modes. The

input and output mode operators must satisfy the boson commutation relations

[X1, X2] = [Y1, Y2] =
i

2
. (2.76)

In order for Y1 and Y2 to satisfy the commutation relations, F1 and F2 cannot be zero,

but they need to satisfy

[F1, F2] =
i

2
[1−

√
G1

√
G2] (2.77)

where I have assumed that the input mode is independent of the amplifier internal mode

([Xi, Fj ] = 0).5 Eq. (2.77) implies that the product of the fluctuations in F1 and F2

must satisfy the following inequality

〈∆F 2
1 〉〈∆F 2

2 〉 ≥
G1G2

16
(1− 1√

G1

√
G2

)2. (2.78)

When quoting a noise number for an amplifier, this is usually referred to the

input of the amplifier; that is, the output of the amplifier is divided by its gain, and
5 Carlton Caves mentions the possibility of systems amplifier-input field where it would be possible

to have less noise added than the limit we will derive. However, this would only be possible if the input
noise and the internal-mode noise of the amplifier were correlated [2].
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that way we can do a fair comparison in the noise performance of different amplifiers,

independent of their gains. Following the same reasoning, we can define the normalized

output signals as

X1,eff =
Y1√
G1

= X1 +
F1√
G1

, (2.79)

X2,eff =
Y2√
G2

= X2 +
F2√
G2

.

Again, the uncertainty product for the new defined normalized output modes is given

by

〈∆X2
1,eff 〉〈∆X2

2,eff 〉 = (〈∆X2
1 〉+

〈∆F 2
1 〉

G1
)(〈∆X2

2 〉+
〈∆F 2

2 〉
G2

),

≥ 1
16

(2− 1√
G1

√
G2

)2. (2.80)

Now we can observe, in the limit of high gain, what Eq. (2.80) implies: for G1 = G2 À 1

the uncertainty product (2.80) will be greater or equal to 1/4 which is to be compared

with the original uncertainty product in the quadrature components of the incoming

field 〈∆X2
1 〉〈∆X2

2 〉 ≥ 1/16. The equality is true when two requirements are fulfilled:

the input is a minimum uncertainty state and

〈∆F 2
i 〉

Gi
= 〈∆X2

i 〉

where i = 1, 2. In such a case, it can be shown that the noise added by the amplifier to

both quadratures of the signal is exactly half a quantum of noise, AN = 1
2 where AN is

the added noise number (figure 2.7a). Some authors prefer to specify the added noise

as a noise temperature. In most cases, the noise temperature is defined as

TN =
AN~ω

kB
.

Now the general case for a finite gain depends on whether the amplifier is phase-

preserving (
√

G1 =
√

G2 =
√

G) or a phase conjugating (
√

G1 =
√

G = −√G2) ampli-

fier. The fundamental theorem is

AN =
〈∆F 2

1 〉
Gi

+
〈∆F 2

2 〉
Gi

≥ 1
2
|1∓ 1

G
| (2.81)
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where the upper (lower) sign holds for phase-preserving (phase-conjugating) amplifiers

[2].

Haus-Caves theorem is just a consequence of a more general quantum-mechanical

uncertainty relationship for the simultaneous measurement of two conjugate variables:

the uncertainty product of two simultaneously measured conjugate observables is a

factor of 2 larger than that dictated by the Heisenberg uncertainty principle [4, 27].

One explanation for this is that the additional noise must be introduced so that these

2 observables measured simultaneously commute; what I mean by this statement can

be better described if we calculate the commutation relation of the normalized output

fields in Eq. (2.79):

[X1,eff , X2,eff ] =
i

2
1√

G1
√

G2

where we can observe that in the limit of |√G1
√

G2| À 1, the two normalized output

signal operators will commute: after large enough amplification, the quantum signals

X1 and X2 get to a “classical power level”, where simultaneous measurements can be

performed with no additional introduction of uncertainty. The quantum bounds on

the simultaneous measurement of the input modes are not violated due to the noise

apparently added at the amplifiers input [27].

The simplest realization of a linear phase insensitive amplifier is a nondegenerate

parametric amplifier [28]. An example of such consists of three resonant modes coupled

together by nonlinear elements. The three modes are called the pump, the signal and

the idler. I will not discuss all the details of nondegenerate parametric amplifier but

only the transformation it does on the input idler and signal modes, ignoring the fact

that the pump mode is the one that does the necessary work to do the amplification.

A nondegenerate parametric amplifier performs the following transformation of
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the input modes [2]:



bs

b†i


 =




cosh r sinh r

sinh r cosh r







as

a†i


 (2.82)

where s stands for signal mode, i for idler mode, and r is a real constant that determines

the gain of the amplifier.6 The gain
√

G1 =
√

G2 =
√

G is given by
√

G = cosh r. In

this case, the noise operator Fi from Eq. (2.75) is given by

F1 =
sinh r

2
(ai + a†i ) = X1,i sinh r,

F2 = − i sinh r

2
(ai − a†i ) = X2,i sinh r.

In this set of transformations, it is obvious that the added noise is introduced through

the idler mode, and the minimum added noise will be given when this idler mode is in

the vacuum state 〈a†iai〉 = 0. The added noise number is then given by

AN =
1
2

sinh2 r

cosh2 r
,

=
1
2
(1− 1

G
),

which is the Haus-Caves theorem, Eq. (2.81), for a phase preserving amplifier. In

chapter 7 we will use the nondegenerate parametric amplifier to model the inefficiencies

associated with any linear amplifier, including those whose added noise is larger than

vacuum noise.

2.4.2 Phase sensitive amplifier

A phase sensitive amplifier is one in which the output depends in an essential

way on the phase of the signal at its input. Consider Eqs. (2.75), in the special case

of a phase sensitive amplifier with G1G2 = 1. The output modes Y1 and Y2 will satisfy

the commutation relation without the need of the operators F1 and F2 responsible
6 The most generic transformation done by a nondegenerate parametric amplifier would include the

possibility of complex amplitude gains in the transformation matrix of Eq. 2.82. However, this would
not change any of our conclusions.
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of the added amplifier noise. In this case, X1 is amplified with no added noise and

can be measured as a classical signal after the amplification process obtaining all the

information stored in this quadrature. However, X2 is deamplified, therefore losing all

the information in that other quadrature. This is necessary in order not to violate the

quantum limit on the simultaneous measurement of two conjugate variables [4, 27].

One example of such a noiseless amplifier is a degenerate parametric amplifier

(DPA), an example that will occupy us during most of the rest of this thesis. For now I

just give a taste of the transformation that a DPA imposes on the input mode, regardless

of the way we are implementing it (that will be described in the next chapter). The

generic scattering matrix for a lossless degenerate parametric amplifier is given by [2,8]



bs

b†s


 =




G M

M∗ G∗







as

a†s


 (2.83)

where bs is the signal output mode and as is the signal input mode. In order to maintain

the commutation relations [as, a
†
s] = [bs, b

†
s] = 1, and [as, as] = [bs, bs] = 0, we require

that

|G|2 − |M|2 = 1.

For simplicity, and without loss of generality, call G =
√

G, and therefore M =
√

G− 1.

The resulting gains for both quadratures is then given by

Y1 = (
√

G +
√

G− 1)X1 =
√

G1X1, (2.84)

Y2 = (
√

G−
√

G− 1)X2 =
√

G2X2.

The two gains satisfy the condition G1G2 = 1 and therefore there is no additional noise

term in the output quadratures: the quadrature X1 is amplified but X2 is deamplified,

as shown in figure 2.7b. In addition, for a gain larger than unity the fluctuations of the

output quadrature Y2 will have less fluctuations than vacuum fluctuations

〈∆Y 2
2 〉 <

1
4
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Quantum states for which this condition is fulfilled are called (quadrature) squeezed

states.

2.4.3 Quadrature squeezing

For the two quadrature operator X1 and X2 of a system, i.e. SHO, that satisfy

the commutation relation Eq. (2.76), it follows that

〈∆X2
1 〉〈∆X2

2 〉 ≥
1
16

. (2.85)

A state of that system is said to be squeezed if for either of the quadratures operators

〈∆X2
i 〉 ≤

1
4
.

Obviously, because of Eq. (2.85), we cannot have both variances being squeezed. Those

states for which one of the quadratures is squeezed and the equality in Eq. (2.85) holds

are called ideal squeezed states. States for which one of the conditions holds will have

less “noise” in one of the quadratures than for a coherent state or a vacuum state, with

the requirement that the fluctuations in the other quadrature must be enhanced in order

not to violate the uncertainty relation.

It is sometimes convenient to define a generic quadrature operator

X(θ) =
1
2
(ae−iθ + a†eiθ) (2.86)

where X1 = X(0) and X2 = X(π/2). We characterize the squeezing by introducing the

parameter ξ(θ)

ξ(θ) =
〈∆X(θ)2〉

1/4
. (2.87)

Squeezing exists for some θ whenever 0 ≤ ξ < 1.

Most schemes for generation of quadratures squeezed light are based on some sort

of parametric process using various types of nonlinear devices. A degenerate parametric

amplifier can be used for this process of squeezing. Without loss of generality, consider
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Figure 2.8: Schematic of the noise in the quadrature variable space for a vacuum state
(circle) and a squeezed state (ellipse) for r = 1. The squeezed state is rotated by an
angle φ according to Eqs. (2.88-2.89). The quadrature axes Yi are defined according to
Eq. (2.86), Y1 = X(φ) and Y2 = X(φ + π/2).

the DPA described in the previous section with G = cosh r and M = −eiφ sinh r, where

φ defines the axis where the squeezing happens. In this case, b = a cosh r−a†ei2φ cosh r

and we obtain

〈∆X2
1 〉 =

1
4
(cosh2 r + sinh2 r − 2 sinh r cosh r cos 2φ), (2.88)

〈∆X2
1 〉|φ=0 =

1
4
e−2r,

〈∆X2
2 〉 =

1
4
(cosh2 r + sinh2 r + 2 sinh r cosh r cos 2φ), (2.89)

〈∆X2
2 〉|φ=0 =

1
4
e2r,

where for φ = 0 evidently squeezing exists in the X1 quadrature. For φ = π/2, the

squeezing appears in the X2 quadrature. In general, for an arbitrary angle φ, the

squeezing will appear along the x-axis of a frame rotated by an angle φ. A representation

of the squeezed vacuum state where the fluctuations in one of the quadratures is reduced

is shown in figure 2.8. The states generated by the parametric process of a lossless DPA

are ideal squeezed states. However, in general, squeezed states do not need to equalize

the uncertainty relation (2.85).



Chapter 3

Theory of Josephson parametric amplifiers

In this chapter I introduce a generic form of the Josephson parametric amplifier. I

start by discussing the driven Duffing oscillator. I will then give a brief description of the

nonlinear circuit element we will use to create our parametric amplifier: the Josephson

junction. Finally, I will discuss the Josephson non-linear oscillator in an electric circuits

language, and its behavior as an amplifier, including the necessary conditions that it

must fulfill in order to be a useful parametric amplifier. In this last section I will

describe how the analysis of the Josephson parametric amplifier can be discussed using

IOT and discuss the equivalence of both approaches, IOT and circuit theory. I will then

derive expressions for the gains of the JPA, showing how it satisfies the condition for a

degenerate parametric amplifier, Eq. (2.83). I will discuss some technical aspects of the

amplifier, such as bandwidth and added noise, as well as squeezing of the internal and

output modes.

3.1 Non-linear driven oscillators (Duffing oscillator)

The nonlinear system we will be studying is the Duffing oscillator:

ẍ + 2γẋ + ω2
0x + βx3 = F cos(ωt). (3.1)

In mechanical terms, the left hand side (lhs) of the Duffing equation can be thought

of as a damped nonlinear spring; a hard spring for β > 0 and a soft spring for β < 0.
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In the next section, I will show that the Josephson non-linear oscillator is equivalent

to a soft spring Duffing oscillator, consequently I will assume β < 0 in the rest of the

chapter. In a typical problem of forced oscillations in a linear RLC circuit like the one

studied in chapter 2 (Duffing equation with β = 0), the standard approach used to find

the solution of the EOM is to assume that enough time has passed so that we can ignore

the transient solution and seek the steady state periodic solution vibrating at the same

frequency ω as that of the driving force. A nonlinear oscillator can respond in many

additional ways that are not possible for a linear system. Nevertheless, we begin our

study of forced duffing oscillator with a similar approach to that of the linear oscillator

by seeking the harmonic solution which has the same frequency as the driving term.

In order to obtain the approximate analytic form for the harmonic solution, we

will used the “iteration method” [29]. We write the Duffing equation in the following

form:

ẍ = −2γẋ− ω2
0x− βx3 + F cos(ωt) (3.2)

and assume that to lowest (zeroth) order, the solution is given by x0 = A cos(ωt + φ)

and substitute it in the rhs of equation 3.2. Then we integrate the resulting equation

generating a first order solution x1(t) which should represent a better approximation

of x(t) provided β satisfies certain conditions.1 The iteration procedure can be then

repeated until a sufficiently accurate solution for x has been achieved (after n of such

iterations, the solution x(t) ' xn(t)).

Now to keep the analysis simple, I will temporarily set the damping coefficient γ

equal to zero.

ẍ = −ω2
0x− βx3 + F cos(ωt). (3.3)

Since there is no loss, the response is expected to be either in phase or 180◦, so I can
1 The integration constants that result from the integration of the rhs are set equal to zero in order

to avoid the appearance of secular terms which would spoil the periodicity of our desired solution [29].
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safely assume that x0 = A cos(ωt). From Eq. (3.3), we obtain

ẍ1 = −
(

ω2
0A +

3
4
βA3 − F

)
cos(ωt)− 1

4
βA3 cos(3ωt).

This equation is easily integrated twice from which we obtain

x1(t) = A1 cos(ωt) +
1
36

βA3

ω2
cos(3ωt) (3.4)

where

A1 ≡ 1
ω2

(ω2
0A +

3
4
βA3 − F ).

Now, x2(t) can be derived from x1(t) and so on. I won’t derive this long series, but

rather argue that for small nonzero β, if x0(t) = A cos(ωt) is a reasonable zeroth order

approximation, then the coefficient A1 in x1(t) should differ very little from A, so we

set A = A1, and A now is solved from the following expression,

(
ω2

0 − ω2 +
3β

4
A2

)
A = F.

Then Eq. 3.4 reduces to

x1(t) ≈ A cos(ωt) +
1
36

βA3

ω2
0 + 3

4βA2 − F
A

cos(3ωt).

The condition that the zeroth order solution is close to the full solution is equivalent to

saying that the harmonic term in Eq. 3.4 is much larger than the third harmonic term.

This can be expressed as a restriction on the size of β,

βA2

36ω2
¿ 1. (3.5)

I will return to this restriction when discussing about the requirements on the size of

the non-linearity required for a good parametric amplifier.2

I will now relax the assumption that γ = 0. Just like in the driven damped simple

harmonic oscillator, when damping is included the displacement and the driving force
2 The actual expression for the third-harmonic correction is slightly different [30]. In order to obtain

it, we just need to do the next iteration keeping both the harmonic ω term and the next 3ω term.
However, for our purposes βA2/36ω2 is close enough and gives us a good order of magnitude restriction
on β.
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will be out of phase, with an angle between 0 and 180◦. The approximate series solution

is similar to the lossless case, only adding the possibility of a phase shift between the

response and the drive. However, in order to make the derivation simpler we fix the

phase of the response and leave the phase of the driving force to be determined:

ẍ1 = −2γẋ0 − ω2
0x0 − βx3

0 + F cos(ωt + φ),

= −2γẋ0 − ω2
0x0 − βx3

0 + H cos(ωt)−G sin(ωt),

with x0(t) = A cos(ωt). Again integrating the rhs yields

x1(t) = A1 cos(ωt) + B1 sin(ωt) +
1
36

βA3

ω2
cos(3ωt)

with

A1 ≡ 1
ω2

(ω2
0 +

3
4
βA3 −H),

B1 ≡ − 1
ω2

(2γωA−G).

If the zeroth order solution is a reasonable starting point, then A1 ' A and B1 = 0.

We can solve for H and G, and remembering that F 2 = G2 + H2, to this order, we can

derive an expression that relates the amplitude A to the driving force F and the phase

φ:

tan(φ) =
G

H
=

2γω

(ω2
0 − ω2) + 3

4βA2
, (3.6)

F 2 =
(

(ω2
0 − ω2)A +

3
4
βA3

)2

+ (2γωA)2. (3.7)

We plot the solution for the amplitude and phases given by Eq. (3.7) and (3.6)

in figure 3.1. The nonlinear resonance curves look similar to those corresponding to

linear resonance curves. For a small drive, the response curve is the familiar Lorentzian

response of the simple harmonic oscillator. For large drives, the resonance curves tilt

to the left; this is equivalent to saying that the nonlinearity has made the resonance

of the system depend on the amplitude of the internal field A. In the high-Q limit
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Figure 3.1: First order nonlinear response curves of a duffing oscillator with finite
damping for 6 different driving forces. The nonlinear resonator variables are Q = 100,
β = −0.001, and the driving forces are equally spaced between 0.25Fc and 1.5Fc. The
resonance curves bend over as the drive amplitude is increased and become multi-valued
for certain drive amplitudes.

(Q = ω0/2γ),3 the following approximations can be made: ω0 + ω ≈ 2ω0 and ω/ω0 ≈

1. These are equivalent to the “slowly varying envelope approximation” explained in

section 2.3.2. Eqs. (3.6) and (3.7) reduce to

tan(φ) =
2γω0

2ω0(ω0 − ω) + 3
4βA2

, (3.8)

F 2 =
(

[2ω0(ω0 − ω) +
3
4
βA2]2 + (2γω0)2

)
A2. (3.9)

I can verify that the analysis of the duffing oscillator is reasonable by setting the non-

linearity parameter to zero in Eq. (3.9). With β = 0, the expression obtained for A2 is

the familiar Lorentzian response of a high-Q SHO with a resonance frequency ω0 and a

linewidth (HFHM) of γ. In the case of β 6= 0, we can define the resonance frequency as
3 In the previous chapter, the quality factor was represented by Q, in order to avoid confusion with

the charge variable Q. However, since that will not be a problem here, I will go back to the usual
convention of representing the quality factor with the variable Q.
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the maximum of the response curve (dA/dω = 0). This condition yields

ω0 − ω +
3β

4ω0

A2

2
= 0 (3.10)

that is, the peak of the resonance curve is shifted by an amount given by 3βA2/8ω.

Note also that for a drive above a critical force value Fc, curves shown in figure 3.1 have

two points at which the slope dA/dω is infinite. It can also been shown that the region

lying between these two points is unstable while the regions outside these two points

correspond to stable solution (Fig. 3.2). This behavior leads to bistability. When we

operate our parametric amplifier, we will operate below the critical point4 so I will not

treat the region of bistability. References [18, 29, 31] and references therein treat the

bistable region.

ææ

ææ
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Figure 3.2: Nonlinear response for a duffing oscillator and a driving force F = 1.5Fc

such that for certain pump frequencies the response is multi-valued. The red-dashed
section represents the unstable solution of the resonator. The dots represent the points
where the slope dA/dω is infinite.

4 Large parametric gain is achieved close to the points where the slope dA/dω = ∞, but in order
to remain stable we need to operate below the critical point with the parameters drive frequency and
power chosen so the Duffing curve does not have a bistable region.
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We can estimate the critical drive by looking for the points that satisfy

dω/dA = 0. (3.11)

This would give me the two points of instability shown in figure 3.2. In addition, we need

d2ω/dA2 = 0 for the two points of instability to coincide. When these two conditions are

satisfied, it is straightforward to derive the following expressions for the critical drive,

critical amplitude and critical frequency detuning:

ωc = ω0 −
√

3γ, (3.12)

F 2
c =

256γ3

9
√

3
ω3

0

|β| , (3.13)

A2
c =

16γ
3
√

3
ω0

|β| . (3.14)

So far I have discussed the response of a nonlinear duffing oscillator without

discussing the origin of the nonlinearity. In the next section I will describe the way we

create our nonlinear resonators.

3.2 General theory of Josephson junctions

As described in the previous section, in order to create a parametric amplifier we

need a non-linear element embedded in an electrical resonator. This nonlinear element

will provide the coupling between the two normal modes of the resonator. In this section

I explain the nonlinear circuit element we will use: the Josephson junction [32].

3.2.1 Simple junction theory

The Josephson junction is made out of two superconducting electrodes separated

by a thin insulating barrier (Fig. 3.3a). In a superconducting metal, the electrons bind

together forming a bosonic condensate of Cooper pairs whose behavior is described by

a single wave function Ψ(r) = |Ψ(r)|eiϕ(r). Due to the small thickness of the insulating

barrier, both wave functions of the superconducting electrodes can overlap, allowing
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Figure 3.3: (a)A Josephson junction consists of two superconducting leads separated
by an insulator layer. Cooper pairs can tunnel through the barrier, generating a dissi-
pationless supercurrent. (b) Circuit element that represents a Josephson junction. In
general, a Josephson junction is pictured as a tunneling element and a capacitor in
parallel. This means that the Josephson junction has an intrinsic resonance frequency,
called the plasma frequency. This plasma frequency is usually in the tens of Gigahertz,
so for our purposes, this extra resonance will be neglected in the analysis.

the tunneling of Cooper pairs. The constitutive relations that describe the current of

Cooper pairs across the barrier are

I(t) = I0 sin(δ(t)), (3.15)

δ(t) =
1
ϕ0

∫ t

−∞
dt′V (t′), (3.16)

where I is the current, V the voltage and δ = ϕ2 − ϕ1 the gauge-invariant phase

difference5 across the junction. In these expressions ϕ0 = ~/2e is the reduced flux

quantum, and I0 is the junction critical current which gives the maximum current that

the junction can support in its superconducting state. At zero magnetic field, the critical

current is given by the Ambegaokar-Baratoff relation

I0 =
π∆(T )
2eRn

tanh(
∆(T )
2kBT

) (3.17)

5 The concept of generalized flux quanta that was introduced in the previous chapter in Eq. (2.18)
is closely related to the condensate phase ϕ at a given node of a superconducting circuit. The two
quantities satisfy the relation

ϕ = φ mod 2π.

For more details on the definition of the generalized flux and its relation to the superconducting phase
ϕ for superconduction circuits, see Ref. [12].
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where ∆(T ) is the superconducting gap of the material used for the electrodes and Rn

is the normal state resistance of the junction. We operate at temperatures much smaller

than the superconducting critical temperature, so we use the T = 0 limit of Eq. (3.17),

I0 = π∆/2eRN .

Now let’s consider the Josephson junction effective impedance. There is some

ambiguity on the definition of the Josephson junction inductance LJ . We start with

V = ϕ0dδ/dt and I(t) = I0 sin(δ). Solving for I in terms of the gauge-invariant phase

difference δ, the voltage can be expressed as

V =
d

dt
(ϕ0 arcsin(I(t)/I0)) . (3.18)

Here is where the two different definitions in the usual literature appear. If we define

the total Josephson inductance LJ as the ratio between the flux ΦJ(t) = ϕ0δ and the

current I(t), LJ ≡ ΦJ(t)/I(t), as done in Refs. [8, 33,34], we obtain

LJ = LJ0
arcsin(I/I0)

I/I0
(3.19)

with

LJ0 = ϕ0/I0. (3.20)

On the other hand, we could perform the differentiation in Eq. (3.18), which leads us

to

V =
ϕ0/I0√

1− (I/I0)2
dI

dt
,

=
LJ0

cos(δ)
dI

dt
,

= L′J
dI

dt
,

where the other definition for the Josephson inductance

L′J =
LJ0

cos(δ)
(3.21)

is then the ratio of the V and dI/dt. Either definition can be used as long as the meaning

is understood. In a sense, the definition of L′J can be considered the effective differential
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inductance. Depending on the context one definition or the other can be more useful.

For example if I wanted to know the effective impedance of the Josephson junction when

probed with a small rf tone, L′J would be more useful. However, to calculate the flux Φ

across a junction, LJ is more convenient.

I will now make a few remarks about the energy associated with the Josephson

junction [35]. Consider a Josephson junction connected to a current source. The energy

change due to the work done by the current generator is given by dE = I(t)V (t)dt,

where I is the current imparted by the source and V is the voltage across the junction.

Using Eq. (3.18), the total energy associated with a biased Josephson junction is given

by:

E =
∫

I(t)
d

dt
(ϕ0 arcsin(I(t)/I0)) dt,

= −EJ cos(δ(t)) + constant (3.22)

where in the second line I have used Eqs. (3.15) and (3.16), and

EJ = ϕ0I0. (3.23)

The constant of integration is usually ignored as it does not influence the dynamic of

the junction.

3.2.2 dc-SQUID

A dc-SQUID (Superconducting Quantum Interference Device)) is created by

combining two Josephson junctions in parallel, as shown in figure 3.4. When a magnetic

field is applied on the SQUID, the maximum supercurrent through the SQUID shows

a periodic behavior. We now explain that behavior. The total current I though the

SQUID is the sum of the current though both branches, and using Eq. (3.15) this is

equal to

I = I01 sin(δ1) + I02 sin(δ2). (3.24)
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I

1 1 1sin( )0I I=            δ

2 2 2sin( )0I I=             δ

1 2I I I= +

Φ

L
1

L
2

loop 1 2L L L= +

ext loop circL IΦ = Φ +

ext BAΦ =

Figure 3.4: A SQUID is formed by two Josephson junctions embedded in a supercon-
ducting wire loop. This loop has an area of A and an intrinsic inductance given by
Lloop = L1 + L2. A magnetic field perpendicular to the loop of magnitude B is applied.
The total flux Φ in the SQUID loop consist of the self-induced and applied flux.

Due to the fact that the total magnetic flux though a superconducting loop must be

quantized, the relation between the gauge-invariant phase differences of each junction

is

δ2 − δ1 = 2πn + 2π
Φ
Φ0

. (3.25)

Eqs. (3.24) and (3.25) can be simplified if some assumptions are made regarding the

critical currents of the Josephson junctions and the loop inductance.

Let’s consider first a SQUID that has asymmetric junctions

I = I01 sin(δ1) + I02 sin(δ1 − 2π
Φ
Φ0

). (3.26)

The analysis is greatly simplified in the case when the loop inductance is negligible. In

that case, the flux threading the SQUID loop only comes from the field Φext applied

(Φ = Φext). At a given Φext, the maximum current, and therefore the equivalent critical

current of the SQUID IS
0 is found by maximizing Eq. (3.26) with respect to δ1. This

yields

IS
0 =

√
I2
01 + I2

02 + 2I01I02 cos
(

2πΦext

Φ0

)
. (3.27)
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If the two junctions have identical critical currents, I01 = I02 = I0, Eq. 3.27 reduces to

IS
0 = 2I0

∣∣∣∣cos
(

πΦ
Φ0

)∣∣∣∣ . (3.28)

The dependance of the SQUID critical current with magnetic field is shown in figure 3.5.

From expressions (3.27) and (3.28), we see that the SQUID will behave as a junction

with tunable current. In the case of a SQUID with asymmetric junctions, the only

difference is that the modulation of the current is not as deep as in the symmetric-

junctions case. The effective SQUID inductance is just given by Eq. (3.19) with I0

replaced by IS
0 .

−2 −1 0 1 2
0

1

2

I 0 S
/I

01

flux (Φ
ext

/Φ
0
)

Figure 3.5: Flux dependance of the critical current of a SQUID for the case of negligible
loop inductance. The two traces shown for the case of I01 = I02 (red) and I01 = 2I02

(blue).

When we include the loop inductance, it turns out that solving exactly for the flux

dependance of the maximum current IS
0 is not possible. It must be found numerically.

For simplicity, let’s assume that I01 = I02 = I0, and the loop inductance Lloop is

symmetrically divided in the loop (L1 = L2 = Lloop/2). If the current divides equally

in the loop, there is no circulating current and the fluxes created by both current will

cancel. In the general case when this does not happen, I1 6= I2, we can define a
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circulating current given

Icirc =
1
2
(I2 − I1).

This current produces a flux given by ΦL = LloopIcirc. The total flux in the loop is the

sum of the applied flux and the self-induced flux:

Φ = Φext +
1
2
LloopI0{sin(δ2)− sin(δ1)}

The phase differences δ1 and δ2 are related by Eq. (3.25):

δ2 = δ1 − 2π

Φ0
[Φext +

1
2
LloopI0{sin(δ2)− sin(δ1)}] (3.29)

In order to obtain IS
0 , we need to solve Eq. (3.29) and (3.26) self-consistently, and

maximizing with respect to δ1. The flux dependance is shown in figure 3.6a. Again,

the modulation of IS
0 is not complete. For small Lloop, the minimum critical current is

approximately given by IS
0,min = πLloopI0/Φ0, as can be observed in figure 3.6b. When

we include the loop inductance in the problem, it turns out that the nonlinear Josephson

inductance is not exactly given by just Eq. 3.19 with I0 just replaced by IS
0 , but for the

parameters of our SQUIDs, it is a good approximation.

3.3 Josephson junction oscillator

Now that I have explained how a Josephson junction can be considered a nonlinear

inductor, we can start analyzing the RLC-nonlinear resonator that includes a Josephson

junction as the inductor. In this section I will first write the EOM that describes the

system. I will approximate the non-linearity of the Josephson inductance to include only

the first non-linear order; this approximation reduces the EOM of the RLC-nonlinear

resonator to the duffing equation (3.1). Then I will analyze the system in a circuit

theory language similar to the one used in section 2.3.1 following closely Refs. [18]

and [31]. Before I calculate the gain performance of the amplifier, I will analyze the

Josephson Duffing oscillator problem applying IOT (2.3.3) on a completely equivalent
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Figure 3.6: (a) Flux dependance of the critical current of a SQUID for the case of
finite loop inductance (πLloopI0/Φ0 = 0.5) and junctions with the same critical current
(blue). For comparison, the negligible loop inductance case is also plotted (red). (b)
The minimum (cyan) and maximum (blue) SQUID critical currents as a function of
loop inductance. The case shown in figure (a) are represented by a circle (IS

0,max) and a
cross (IS

0,min). For small loop inductance, the minimum critical current is approximately
a linear function of Lloop (green).

system of a cavity with a Kerr nonlinearity showing that both approaches are completely

equivalent. I will then derive expressions for the gain of the amplifier, bandwidth and

noise temperature. Finally I will discuss the requirements the resonator needs to fulfill

in order to be a usable JPA.

3.3.1 Circuit theory of a driven Josephson junction in a RLC-resonator

The nonlinear Josephson oscillator is shown in figure 3.7a. The equation that

describes its behavior is similar to Eq. (2.33) except that the current through the linear

inductor is replaced by IJ = sin(Φ/2π) = sin(δ), where I will be using δ = Φ/ϕ0, the

superconducting gauge-invariant phase across the junction as my generalized coordinate:

Cϕ0
d2δ(t)
dt2

+ I0 sin(δ(t)) = I(z = 0, t)
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I0 Cδ

CIJI

IS (t)

Zc
I0

C

V δ

I(z=0,t)

z=0

CIJI

Zc

RS=Zc

VS (t)

Figure 3.7: (a) Josephson junction with a critical current I0 shunted by a capacitor C
connected to a microwave source through a transmission line with an impedance Zc.
The microwave source has a source resistance RS = Zc. (b) Norton equivalent of the
circuit shown in (a).

We can use the Norton equivalent of the circuit (Fig. 3.7b), which yields the following

equation for a current source driving a non-linear RLC resonator:

Cϕ0
d2δ(t)
dt2

+
ϕ0

Zc

dδ(t)
dt

+ I0 sin(δ(t)) = IS(t). (3.30)

where Zc is the characteristic impedance of the transmission line, I0 is the critical

current of the junction and C is the total capacitance shunting the junction and IS(t)

is the microwave power going into the resonator. It will consist of two components: a

large pump and a small signal IS(t) = Ip(t) + is(t). We now approximate the sin(δ)

term by its first two component of the Taylor expansion.

d2δ(t)
dt2

+ 2γ
dδ(t)
dt

+ ω2
0

(
δ(t)− δ3(t)

6

)
− ω2

0

Ip

I0
cos(ωpt) =

2
Cϕ0Zc

vin
s (t) (3.31)

where I have written the signal component in terms of the voltage waves coming into

the resonator from the transmission line. From the point of view of microwave circuits,

it is more convenient to use the incoming and outgoing modes, especially when I analyze

the gain of the amplifier and quantize the noise coming in from the input port. The first

task is to analyze the effect of the large pump on the circuit, so I will set vs = 0. Eq.

(3.31) is just the Duffing equation we studied in section 3.1, with x → δ and β → −ω2
0/6.

Using the same procedure as shown in that section, we assume a zeroth order solution

δp(t) = δa cos(ωpt − φ) and solve of the amplitude δa for a given drive F = ω2
0Ip/I0.
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This is shown in figure 3.8. As in the Duffing oscillator, the resonant response shifts to

lower frequency as the pump amplitude is increase. Using expressions 3.12-3.14, I can

write the equivalent critical expressions for the case of the Josephson resonator:

ωc = ω0 −
√

3γ, (3.32)

I2
p,c =

512γ3

3
√

3ω3
0

I2
0 =

64
3
√

3Q3
I2
0 , (3.33)

δ2
a,c =

32γ√
3ω0

=
16√
3Q

. (3.34)
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0.05

0.1
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∆
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�2
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Figure 3.8: Frequency response of a driven Josephson oscillator as a function of pump
detuning ωp/ω0 for multiple drive powers. The driving amplitudes of the incoming
microwave pump are equally spaced between 0.25Ip,c and 1.5Ip,c. The quality factor is
Q = 100.

We incorporate the signal by treating it as a small perturbation around the so-

lution of the pump (this is equivalent to making an undepleted pump approximation);

that is, δ = δp + δs, where δp is the internal field solution associated with the pump and

is given by the zeroth order solution of the Duffing equation, and δs is the internal field

associated with the small signal. Substituting the pump solution into Eq. (3.31) and

retaining terms only to first order in δs, the following equation for the dynamics of δs
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is obtained [18]:

d2δs(t)
dt2

+ 2γ
dδs(t)

dt
+ ω2

1(δa, t)δs(t) =
2

Cϕ0Zc
vin
s (t) (3.35)

where

ω2
1(δa, t) ≡ ω2

0(1−
δ2
a

4
)
(

1 +
δ2
a

4(1− δ2
a/4)

cos(2ωp − 2φ)
)

(3.36)

and φ is given by Eq. (3.6). Eq. (3.35) describes the dynamic of our small perturbation

δs and consist of a parametrically driven oscillator [13,18,30,31,36], where the resonance

frequency of the system ω(t) = ω2
0(1 + h cos(νt)) is a function of time (h ¿ 1 ). It

explains the origin of the parametric gain we will see in the signals coming in. For a

parametric resonance to be the strongest, the frequency ν needs to be close to twice

ω0 [36]. This of course occurs naturally in our case if our pump is close to the resonance

frequency of the oscillator ωp ' ω0 + δω where the detuning δω is of the order of the

resonator linewidth γ.

3.3.2 Parametric processes in the Josephson junction oscillator

We are now ready to start the derivation of the expressions that describe the

amplifier performance of the JPA. In the following paragraphs, we will see that when

a signal is applied at a frequency ωs, an additional tone will be created at a frequency

ωi = 2ωp − ωs, called the image tone. The creation of this extra tone is a consequence

of the coupling between normal modes in a parametrically driven oscillator. Because

our pump is at a frequency close to our signal tone, the mode of operation of our JPA

is sometimes called four-wave or four-photon mixing [8] since four photons are involved:

one at ωs, one at ωi and two photons of the pump at ωp. Another mode called the three-

wave or three-photon mixing also exists where ωs +ωi = ωp. This requires the energy of

the non-linear element to have at least some odd symmetry in the pump current. This

could be achieved if we were to apply a dc-current to the Josephson junction [8,37]. As

we did not operate our amplifiers in this mode, I will not discuss this case.
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The solution for Eq. (3.35) is easily found in the frequency domain. We define

for our internal field

δs(t) =
∫ ∞

0

dω

2π
δs(ω)e−iωt + H.c.

Taking the fourier transform of Eq. (3.35) and using the convolution theorem yields:

(ω2
0(1− ε)− ω2 − i2γω)δs(ω)− ω2

0ε

2
e2iφδ†s(2ωp − ω) =

4γ
√

Zc

ϕ0

√
~ω
2

ain(ω) (3.37)

where I have used Eq. (2.39) for the input signal vs(t) and defined ε = δ2
a/4. In

deriving equation (3.37), I have used the rotating wave approximation in order to ignore

terms whose frequency is close to 3ω0. Before we move on, I will make the same

high-Q approximation, which essentially is equivalent to the “slowly varying envelope”

approximation described in section 2.3.2 (ωp + ω ≈ 2ωp, ω/ω0 ≈ 1). I will also define

the internal c(ω′) and incoming cin(ω′) mode operators in the rotation frame of the

pump δ(ωp +ω′) =
√
~ω02EJc(ω′) and ain(ωp +ω′) = cin(ω′). In order to make notation

simpler, I will drop the prime symbol from the ω variable, but note that from now on,

ω represents a fourier frequency offset from the pump frequency ωp. Eq. (3.37) reduces

to
(
ω0 − ωp − ω − ω0ε

2
− iγ

)
c(ω)− ω0ε

4
e−2iφc†(−ω) =

√
2γcin(ω). (3.38)

Eq. (3.38) has a very important feature mentioned in the previous chapter: the pump

of this parametric driven system will actively couple the two normal modes c(ω) and

c†(−ω) [13]. We can now solve for the internal field c(ω) in terms of the input fields cin(ω)

and c†in(−ω). However, before I do that I will describe how to derive this expression

within the Input-Output theory framework.

3.3.3 Kerr-medium equivalence of a Josephson junction oscillator

So far we have analyzed the RLC-resonator in a simple circuit language. In

section 2.3.3, I described the method of Input-Output theory that allows to analyze

the same system in an equivalent way. The language used to describe such nonlinear
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systems is slightly different and I discuss it here following closely Refs. [17,38,39]. I put

special attention in showing the equivalence between the two methods.

aout(t) nonlinear cavity

test port γ

ain(t)

†

† †
       

2

H A A

K
A A AA

= ω +h

h

Figure 3.9: A nonlinear cavity is driven by an open port characterized by a linewidth
γ = ω/(2Q). The incoming power is given by Eq. (2.53), Pin = ~ω〈b†in(t)bin(t)〉, with a
similar expression for the outgoing power.

Consider Eq. (3.1). Ignoring dissipation, the system can be described by the

Hamiltonian

H =
p2

2m
+

mω2
0

2
x2 +

mβx4

4
. (3.39)

Using the expressions for the normal modes, Eq. (2.11), this Hamiltonian may be

written in the form of

H = ~ω0A
†A + ~

K

12
(A + A†)4,

' ~ωA†A + ~
K

2
A†A†AA, (3.40)

where I have dropped the zero-point motion term since it does not affect the dynamics

of the system and made the rotating wave approximation to ignore rapidly oscillating

terms in the quartic term. The constant K is referred to as the Kerr constant. In this

case, it is given by

K =
3
4
~β

mω2
0

.

Now lets consider the case when we couple this nonlinear resonator to a port (Fig. 3.9).

Using the IOT theory described in section 2.3.3, we can write the EOM for the cavity

mode A as
dA

dt
= −iω0A− iKA†AA− γA + i

√
2γain(t). (3.41)
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In order to solve this nonlinear problem, we follow an analogue of the procedure de-

scribed in the previous section. We first solve the problem of a large classical pump,

and then linearize the solution for the small signal:

ain = ain,p + ain,s.

Let’s first discuss the classical response to the pump in the absence of any signal. I

write for the incoming and internal fields:

ain,p = bine
−i(ωpt+ψ),

A = Be−i(ωpt+φ).

Since I am only interested in the steady state solutions, bin and B are (real) constants.

Substituting these expressions into Eq. (3.41) yields

(i(ω0 − ωp) + γ)B + iKB3 = −i
√

2γbine
i(φ−ψ). (3.42)

Multiplying Eq. (3.42) by its complex conjugate, one obtains the following equation

where I have defined N = A∗A = B2

K2N3 + 2(ω0 − ωp)KN2 + [(ω0 − ωp)2 + γ2]N = 2γb2
in (3.43)

and for the phase between the pump and the internal field:

tan(φ− ψ) = − γ

ω0 − ω + KN
. (3.44)

Expressions (3.43) and (3.44) are exactly equivalent to 3.8 and 3.9, with F → 2γb2
in,

A2/2 → N and K → 3β/4ω0.6 Therefore we expect the same behavior for the internal

field of the resonator as shown in figures 3.1 and 3.8. Defining our output mode field as

aout = boute
−i(ωt+ψ)

6 Note that these expression have already built in the high-Q approximations, since these approxi-
mations are already assumed in IOT.
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where bout can be complex, we can estimate our reflection coefficient Γ = bout/bin using

the boundary condition Eq. (2.69). Since we have only one port and no intrinsic

loss in the resonator (|Γ(ωp)| = 1), all the information about the resonator is in the

phase of Γ(ωp). This is plotted in figure 3.10 for three different drives where we define

δωp = ωp/ω0 − 1. Equivalent expressions for the critical points are given by:

ωp,c = ω0 +
√

3γ
K

|K| , (3.45)

b2
in,c =

4
3
√

3
γ2

|K| , (3.46)

Nc =
2
√

3γ

3|K| . (3.47)

Using Eq. (2.53), we can then calculate the critical power that we need to apply to our

resonator as Pin,c = ~ωpb
2
in,c
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Figure 3.10: Phase of the reflection coefficient Γ as a function of the pump detuning
δωp = (ωp−ω0)/ω0 for a very low power, 0.5bin,c, 0.9bin,c and 1.25bin,c. For bin = 1.25bin,c,
the unstable solution is shown as a dashed line. The quality factor is Q = 100.

Now, we linearize the equation for a small incoming signal δain. We write the
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incoming and internal fields as

ain = bine
−i(ωpt+ψ) + cin(t)e−iωpt,

aout = boute
−i(ωpt+ψ) + cout(t)e−iωpt,

A = Be−i(ωpt+φ) + c(t)e−iωpt,

and keep only terms linear in cin and c. B and bout constitute the solution to the classical

pump in the absence of any signal. In this case, c(t) and cin(t) are the internal mode and

incoming mode operators in the pump rotating frame and are not constants. Replacing

these expressions in (3.41), we obtain the following linearized equation for c [38]:

dc

dt
= [−i(ω0 − ωp) + γ]c− 2iKNc− iKNe−i2φc† − i

√
2γcin. (3.48)

Eq. (3.48) describes the dynamics of the internal field and it is equivalent to Eq. (3.35),

in the Markovian and “slowly varying envelope” approximation. The equivalence of

both expressions can be more easily seen if we transform Eq. (3.48) into the frequency

domain:

[(ω0 − ωp)− ω − iγ + 2KN ]c(ω) + KNe−i2φBc†(−ω) =
√

2γcin(ω). (3.49)

Eqs. (3.38) and (3.49) can be made identical by replacing KN with its circuit equivalent

−ω0ε/4. So far I have redone the analysis for a Duffing oscillator circuit using quantum

network theory and shown that within the high-Q approximation it is exactly equivalent

to treating a system with a Kerr nonlinearity using IOT. Generalizing the system to

include other nonlinearities as well as loss is much easier using IOT; thus, I will follow

this method. Before continuing, let’s define

W = i(ω0 − ωp) + γ + 2iKN (3.50)

V = iKNe−2iφ (3.51)

Then Eq. (3.49) reduces

−iωc(ω) + Wc(ω) + V c†(−ω) = i
√

2γcin(ω).
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We can solve for the internal field in terms of the input field:

c(ω) =
i
√

2γ
(
cin(ω)(W ∗ − iω)− V c†in(−ω)

)

(−iω + λ0)(−iω + λ1)
, (3.52)

= ν(ω)cin(ω) + µ(ω)c†in(−ω), (3.53)

with

λ0/1 = γ ∓
√

K2N2 − (ω0 − ωp + 2KN)2. (3.54)

It is important to notice that λ0 tends to zero as one approach a point of infinite

susceptibility, Eq. (3.11). This trend represents the slowing dynamics as the parametric

amplifier approaches the critical power. I will come back to this point when I discuss

the bandwidth of the amplifier.

Parametric gain

Using the boundary condition Eq. (2.56), I can solve for the output field cout.

cout(ω) =
(
−1 +

2γ(−iω + W ∗)
(−iω + λ0)(−iω + λ1)

)
cin(ω)

+
2γV

(−iω + λ0)(−iω + λ1)
c†in(−ω) (3.55)

= G(ω)cin(ω) +M(ω)c†in(−ω) (3.56)

where G and M are accordingly defined. It is straightforward to prove that G(ω) and

M(ω) satisfy the expected relations for a degenerate parametric amplifier [2, 8]:

|G(ω)|2 − |M(ω)|2 = 1, (3.57)

G(ω)M(−ω) = G(−ω)M(ω). (3.58)

As explained at the beginning of this section, in a degenerate parametric amplifier, for

a signal at a frequency ω0 + ω another tone at the image frequency ωi = ω0 − ω is also

created. Signal and image gains can be defined by taking the operators cin and cout to

represent classical c-numbers for the input and the output. Let’s define for the signal
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power gain:

Gs(ω) =
cout(ω)
cin(ω)

= |G(ω)|2 (3.59)

and for the image power gain:

Gi(ω) =
cout(ω)
cin(−ω)

= |M(ω)|2. (3.60)

We plot both signal and image gains for different pump detuning and pump

magnitude in figure 3.11a and 3.11b. and signal frequency ω = 0. From expressions

(3.57) and (3.58), it can be shown that the the signal and image gains are symmetric in

terms of the fourier frequency ω.

Gs(ω) = Gs(−ω),

Gi(ω) = Gi(−ω).

This is shown in figure 3.11c and 3.11d for both the signal and image gain, respectively.

When ω = 0, both gains will have in the denominator λ2
0λ

2
1. As we approach the critical

detuning and critical drive, both gains will diverge. It is close to the critical point where

dB/dω diverges that the amplifier achieves the highest gains. Of course, in practice the

gain would never diverge; rather, amplified quantum noise would begin to saturate the

amplifier.

Bandwidth

As we can observe in figure 3.11c and 3.11d, the bandwidth of the amplifier gets

smaller and smaller as we increase its gain. As I mentioned at the beginning of this

section, when we approach a critical point, i.e. for large gains, λ0 sets the bandwidth of

the amplifier. Using Eq. (3.57) in the large gain limit, the expression for Gs ≈ Gi = G

and are approximately given by

G(ω) =
4γV 2

(ω2 + λ2
0)(ω2 + λ2

1)
,

≈ G(0)
1 + ( 2ω

Bω
)2

. (3.61)



63

−2 −1 0 1

−20

0

20

40

∆ω
p
/γ

  G
i  (

dB
)

(b)

−2 −1 0 1

0

20

40

∆ω
p
/γ

  G
s  (

dB
)

(a)

−2 −1 0 1 2

0

20

40

(ω−ω
p
 )/γ

  G
s  (

dB
)

(c)

−2 −1 0 1 2

0

20

40

(ω−ω
p
 )/γ

  G
i  (

dB
)

(d)

Figure 3.11: (a) and (b) Signal and image gain as a function of pump detuning ∆ωp =
ωp − ω0 for a signal frequency of ω = 0 for and incoming power b2

in equal to 0.5bin,c,
0.8bin,c, 0.9bin,c and 0.99b2

in,c. (c) and (d) Signal and image gain as function of signal
frequency ω. The pump detuning was chose by finding the maximum gain from plots
(a) and (b). For b2

in ' b2
in,c, the optimal pump detuning is given by Eq. (3.45).

The 3-dB bandwidth is Bω = 2λ0. Substituting in Eq. (3.54) expressions that are

correct close to a critical point, Eqs. (3.47-3.45), yields

Bω =
4√
3

γ√
G(0)

. (3.62)

This expression shows that the bandwidth of the amplifier is inversely proportional to the

amplitude gain
√

G. This gain-bandwidth compromise is a common property of many

amplifier, including parametric amplifiers both degenerate and non-degenerate. Because

parametric amplifiers usually operate only in a narrow band around a center frequency,
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we decided to develop parametric amplifiers with widely tunable center frequencies.

Squeezing

Squeezed state generation involves the creation of correlations between the signal

ωp+ω and image ωp−ω frequency. When squeezed states are created their spectrum can

go below the vacuum/thermal noise spectrum for a properly chosen phase quadrature.

When describing the generation of squeezing in a cavity parametric amplifier like the

one I am studying, I need to make a distinction between the internal field and the

output field. Confusion regarding this distinction was the origin of the erroneous belief

that cavity parametric amplifiers were bad for squeezing, as early work in the field

claimed that the maximum amount of squeezing was 50% [40]. However, this limit

only applies for the internal field. It was shown that for the output field the squeezing

could be arbitrarily large. This large squeezing in the output field is a consequence

of an interference effect between the reflected field and the squeezed field exiting the

cavity [17,24,40,41].

The kind of squeezing the JPA performs is quadrature squeezing, as explained in

chapter 2. From Eq. (2.73), the intracavity quadrature operators are given by

X1(t) =
1
2
(a(t) + a†(t))

X2(t) =
1
2i

(a(t)− a†(t))

In the following calculations, I will assume that the incoming noise from the test port

shown in figure 3.9 consist of only thermal or vacuum noise. This implies that in a

linear cavity, the variances of both quadratures would be

〈∆X2
1 〉 = 〈∆X2

2 〉 =
1
4

coth(
~ω

kBT
) (3.63)

Now let’s consider our degenerate parametric amplifier. The amplified quadrature is

not necessarily neither X1 or X2 but maybe a combination of them. For that reason, it
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is more convenient to define a rotated quadrature given by

Xθ(t) =
1
2
(e−iθa(t) + eiθa†(t)) (3.64)

Transforming Eq. (3.64) into the frequency domain and into a rotated frame around

the pump frequency the quadrature operator is given by

Xθ(ω) =
1
2
(e−iθc(ω) + eiθc†(−ω)) (3.65)

where ω represents a detuning with respect to the pump frequency ωp (see appendix

A). We can then calculate Xθ(ω) in terms of the input noise using Eq. (3.53). In order

to calculate the spectral density of the quadrature operators, we need to calculate the

anticommutator of X(ω) such as in the case of the spectral density of ain(ω) in Eq.

(2.26) [2,8]. However, within the high-Q approximation, Eq. (2.26) is approximated by

〈{ain(ωp + ω), a†in(ωp + ω′)}〉 ' 2π coth(
~ωp

2kBT
)δ(ω − ω′), (3.66)

= 2πSa,aδ(ω − ω′). (3.67)

In making this approximation, we are assuming that we are dealing with a narrow band

of frequencies ω in the vicinity of ωp. Using Eqs. (3.66) and (3.67), we can then compute

the spectral density of the quadrature operator

SXθ,Xθ
(ω)2πδ(ω − ω′) = 〈{Xθ(ω), X†

θ(ω
′)}〉 (3.68)

=
1
4
Sa,a



|ν(ω)|2 + |ν(−ω)|2 + |µ(ω)|2 + |µ(−ω)|2,

+2Re[e−2θ(ν(ω)µ(−ω) + ν(−ω)µ(ω))]


 .(3.69)

For the intracavity field, in order to estimate the amount of squeezing, we need to

compute 〈∆X2
θ 〉. This can be computed by integrating SXθ,Xθ

(ω) over all frequencies.

I now redefine X1 as Xθ for θ = θ1 that maximizes the internal quadrature variance

and X2 as Xθ for θ = θ2 that minimizes the internal quadrature variance. Defined

this way, X1 is the amplified intracavity quadrature and X2 is the squeezed intracavity
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quadrature. We then can derive the expected variances for the both quadratures which

are given by:

〈∆X2
1 〉 =

∫ ∞

0
dωSX1,X1 =

1
4

coth(
~ωp

2kBT
)

|W |
|W | − |V | , (3.70)

〈∆X2
2 〉 =

1
4

coth(
~ωp

2kBT
)

|W |
|W |+ |V | , (3.71)

where W and V are given by Eqs. (3.50) and (3.51). The limits of integration are based

on the fact that our definition of the quadrature operators in the fourier domain only

include positive frequencies as shown in Eqs. (A.5-A.6). We observe that the maximum

amount of squeezing is given at a critical point given by Eqs. (3.45-3.47), at which

|W | = |V |. At this configuration, 〈∆X2
1 〉 diverges and 〈∆X2

2 〉 = 1/8Sa,a. This implies

that the maximum squeezing for the intracavity field is of only 50%(Fig. 3.12).

Now, let’s consider the output itinerant-wave field. In this case our definition

for the quadrature variables are slightly different as we are considering a traveling-wave

which is intrinsically multimode (see appendix A). We define the multimode quadrature

variable using the same convention as in Refs. [8] and [38] given by:

Xout,θ(ω) =
1
2
(cout(ω)eiθ + c†out(−ω)e−iθ). (3.72)

Again, we calculate the spectral density of the output modes by calculating the anti-

commutator. The result is

SXout,θ,Xout,θ
(ω) =

1
4
Sa,a



|G(ω)|2 + |G(−ω)|2 + |M(ω)|2 + |M(−ω)|2

+2Re[e−2θ(G(ω)M(−ω) + G(−ω)M(ω))]


 . (3.73)

With Eqs. (3.57) and (3.58), we can simplify Eq. (3.73):

SXout,θ,Xout,θ
(ω) = Gθ(ω)

1
2
Sa,a (3.74)

where Gθ(ω) is an effective quadrature gain defined as:

Gθ(ω) = 2Gs(ω)− 1 + 2
√

Gs(ω)(Gs(ω)− 1) cos(2θ + 2φ) (3.75)
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Figure 3.12: Squeezing of the internal field when the incoming thermal noise is that of
a vacuum state (Sa,a = 1). Spectrum for the (a) squeezed and (b) amplified internal
field quadrature for pump amplitudes bin equal to 0, 0.5bin,c and bin,c. In the case of
no pump power, two cases are shown, one for which the quadrature is defined around
a frequency ωp = ω0 (blue) and for the quadrature defined around the critical detuning
ωp = ω0 −

√
3γ (red). For the other two traces, the quadrature is defined around the

critical detuning. (c) Internal field quadrature as a function of incoming pump power.
The pump detuning is defined as the critical detuning. Even at the critical pump
amplitude, the maximum squeezing is only 50%.

where φ here is defined as the angle between the two complex gains G(ω) and M(−ω):

G(ω)M(−ω) =
√

Gs

√
Gs − 1ei2φ.

The angle for which the maximum of the gain Gθ(ω) occurs defines the amplified quadra-

ture, while the minimum defines the squeezed quadrature. Let’s define again X1,out as

the amplified quadrature and X2,out as the squeezed one. Squeezing as a function of the
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pump power is shown in figure 3.13a. Using the expressions for the output field, Eq.

(3.56), it can be shown that close to a critical point where the maximum of the gain for

X1,out occurs (SX1,out,X1,out(ω = 0) = ∞), the spectral density of the squeezed output

field is given by

SX2,out,X2,out(ω) =
ω2

4γ2 + ω2
. (3.76)

Note that this suggest that the output field can be arbitrarily squeezed for frequencies

close to the pump frequency (Fig. 3.13b). Nonetheless, in practice, other issues would

prevent us from achieving arbitrarily high squeezing such as pump depletion or gain

stability issues, since while we are squeezing one quadrature, we are amplifying the

other one. Noise from the losses and gain saturation will limit the maximum degree of

squeezing to be below that theoretically calculated here.

For Gs À 1, Eq. 3.75 reduces to two very simple expressions for X1 and X2:

G1 = 4Gs, (3.77)

G2 =
1

4Gs
. (3.78)

This shows that the quadrature gain is expected to be 6 dB higher than the signal and

image gains and therefore its gain-bandwidth product will be 3 dB higher as the gain

is a factor of two larger but the effective bandwidth reduces to half.

Added noise

It is characteristic of parametric amplifiers that both a signal and an image mode

exist. The energy in both of these modes or channels grows at the expense of the pump

energy. This means that either channel can be used for amplification. The effective

noise performance of the amplifier will be different depending on what kind of linear

combinations of input fourier modes (modes labeled by fourier frequency ω) is inputed

as a signal. Only when the input signal is a linear combinations of fourier frequencies

symmetric around the pump and with the right phase the amplifier is noiseless (Fig.
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Figure 3.13: Squeezing of the external field. (a) Squeezing of the ω = 0 frequency com-
ponent of the noise as a function of pump amplitude bin for a constant pump detuning
equal to the critical pump detuning (blue), and for a variable pump detuning chosen
to maximize the gain Gs as shown in figure 3.11a. By letting the pump detuning vary
the squeezing is optimized for a pump amplitude lower than the critical amplitude.
(b) Spectrum of the squeezed output field. Inset: Squeezed (blue) and amplified (red)
quadrature spectrum for ω = 0 as a function of the quadrature gain GX1 .

3.14a). On the other hand, when the applied signal contains only 1 single frequency

component (Fig. 3.14b), the amplifier behaves as a nondegenerate parametric amplifier,

adding at least half a quantum of noise. In order to prove these statements in the case

of an amplifier with a finite bandwidth we need to consider the fact that the quadrature

of an incoming mode at a frequency ω is given by an expression similar to that of Eq.

(3.72):

Xin,θ(ω) =
1
2
(cin(ω)eiθ + c†in(−ω)e−iθ) (3.79)

where the angle θ is defined with respect to the phase of the pump. When the signal is

applied to both channels (Fig. 3.14b), we are exciting a mode like the one defined by

(Eq. 3.79). In this case, the gain will depend on the phase θ and the added noise of the

amplifier is zero. In the case when the incoming signal is applied to only one channel

(Fig. 3.14a), then the gain will not depend on phase, and in this case the amplifier does

add noise. Next I will explained these claims in more detail.
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Figure 3.14: Spectrum of the two kind of signals applied to the amplifier. (a) For a linear
combination of two fourier-frequency signals symmetric around the pump frequency, the
amplifier will act as a degenerate parametric amplifier. (b) For a single tone detuned
a frequency ω from the pump, the amplifier will add at least half a quantum of noise.
This noise enters the amplifier at the image frequency ωi = −ω. (c) When the signal
is a linear combination of two fourier-frequency tones, depending on the phase between
the two tones, the signal can be pictured as the slow amplitude-fluctuations (blue) or
phase-fluctuations (green) of a small carrier (red). The carrier can be ignored, since all
the information is in its amplitude or phase fluctuations; however, I draw it for clarity.
If the JPA only amplifies the quadrature labeled as X1, then only the projection of the
signal (dashed lines) onto the quadrature X1 is amplified. By setting the phase of the
carrier properly, then the added noise of an ideal JPA can be made arbitrarily small.

In the case of a single-fourier-frequency signal, the JPA acts as a non-degenerate

parametric amplifier, amplifying the signal regardless of the its phase with respect to

the pump7 and adding the half a quantum of noise Haus-Caves theorem states, Eq.

(2.81). Consider the case when one is only interested in the signal that is at a frequency

ω detuned from the pump. In order to compute the noise performance of the amplifier,

we can calculate the output noise of the amplifier at a frequency ω for an incoming

thermal field with a spectral density Sain,ain given by Eq. (3.66). From Eq. (3.56), we

7 In fact, in this case the phase between the signal and the pump is not really defined, since they are
not at the same frequency, and this phase evolves constantly with time.
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can calculate the noise at the output at the frequency ω, Saout,aout(ω) given by

~ωp

2
Saout,aout(ω) = Gs(ω)

~ωp

2
Sain,ain(ω) + Gi(ω)

~ωp

2
Sain,ain(−ω). (3.80)

In this expression, it becomes obvious from where the extra noise is coming. When

looking at the output spectral density at a frequency ω, the parametric amplifier adds

some extra noise that enters the JPA at the image frequency (−ω). Any noise at a

frequency ω is part of the signal so it is not added noise. Using Eqs. (3.57) and (3.58),

we can rewrite Eq. (3.80),

~ωp

2
Saout,aout(ω) = Gs(ω)

~ωp

2
Sain,ain(ω) + (Gs(ω)− 1)

~ωp

2
Sain,ain(−ω),

= Gs(ω)
(
~ωp

2
Sain,ain(ω) + (1− 1

Gs(ω)
)
~ωp

2
Sain,ain(−ω)

)
.(3.81)

Taking ~ωp

2 Sain,ain(ω) as the input noise, then Eq. (3.81) shows that the added noise in

number of quanta is given by

AN =
[
1− 1

G(ω)

]
1
2
Sain,ain(−ω). (3.82)

We make the same approximation as in the previous section, Sain,ain(ω) = Sain,ain(−ω) =

coth(~ωp/2kBT ). Eq. (3.82) becomes

AN =
[
1− 1

G(ω)

]
1
2

coth(
~ωp

kBT
)

which for the case of T = 0, reduces to the quantum limit of a phase preserving amplifier,

Eq. (2.81). On the other hand, note that if we decide to consider the input to be

Sain,ain(ω), but measure at the image frequency −ω, the effective added noise would be

AN =
[
1 +

1
G(ω)

]
1
2

coth(
~ωp

kBT
)

which is again the quantum limit, but for a phase conjugating amplifier.

In the case where our signal consist of two tones as shown in figure 3.14a, then

the gain will depend on the effective phase between the pump and the signal. In order

to quantify the added noise, we can again consider the case when the incoming signal
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is thermal noise. This is exactly the case treated when analyzing squeezing, so we can

use those same expressions. The only difference is that in order to study the amplified

quadrature, we need to consider the case where the angle is rotated 90◦ compared to the

squeezed quadrature. Again for the incoming signal quadrature spectral density being

given by

SXin,Xin =
1
2

coth(
~ωp

2kBT
)

the output amplified quadrature noise is given by

SXout,θ,Xout,θ
(ω) = Gθ(ω)SXin,Xin

where the quadrature gain Gθ(ω) is given by 3.75, where the phase θ is chosen to

maximize the gain. From this expression one thing is obvious: the lack of a term

representing any added noise; thus, the amplifier will not add any noise! This last claim

assumes that the desired information is contained entirely in the amplified quadrature.

For example, if the desired information is encoded as amplitude or phase modulation

of a tone (Fig. 3.14b), all of that information is contained in a single quadrature as

the combination of two fourier frequencies, Eq. (3.79), and can therefore be amplified

noislessly. Otherwise, the noise will be amplified more than the signal and then this

would appear as extra added noise.

3.3.4 Necessary conditions on the amount of non-linearity to have a

good parametric amplifier

After solving the equations of the parametric amplifier, it is worth discussing some

details about the necessary condition to have a device that can perform appropriately.

First, we need to set a limit on how small the nonlinearity can be. Following closely

the line of thought in Ref. [31], consider a slightly different circuit, shown in figure

3.15. The main difference is that I have included an extra inductor in parallel to the

Josephson junction to include the possibility of diluting the nonlinearity by adding extra
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Figure 3.15: Parallel Josephson junction oscillator. An extra inductance has been added
to model extra reactive elements in the circuit. By added this extra inductance, the
nonlinearity is diluted. This is quantified by the participation ratio p = LJ0/Lp. For
the parallel resonator, the nonlinear Josephson junction is separated in a linear term
LJ0 in parallel with a nonlinear term, following the same convention is an in Ref. [31].

linear inductance (effectively β goes from being −ω2
0/6 to being −ω2

0/6 × (Lp/LJ0)).

We use the quantity called participation ratio as defined in [31], p = Lp/LJ0. Using

equation 3.34, we can define, for a small critical amplitude δc, a critical current given

by Ic = I0 sin(δc) ' I0δc. If we want the approximation of the nonlinear inductance to

be accurately modeled by the Taylor expansion up to third order, we need Ic/I0 ¿ 1.

This translates into a restriction on the quality factor and the nonlinearity given by:

4
31/4

1√
Qp

¿ 1 (3.83)

A second condition we need to consider is related to Eq. 3.35. In section 3.1,

I mentioned that the zeroth order solution for the duffing oscillator would be a good

approximation if Eq. (3.5) was satisfied. However this only sets a limit on how accurate

the zeroth order solution is. There is another concern on this non-linear systems which

is the stability of the solution and the possibility for chaotic behavior. The following

results are from Refs. [30, 31,36] and are not derived in this thesis.

In solving Eq. (3.1) and (3.31) we have assumed that they have a solution with

only odd multiples of the driving frequency:

y(t) =
∞∑

k=1

A2k−1 cos((2k − 1)ωt + φ2k−1)

with the coefficients A2k−1 decreasing in magnitude with k. The first harmonic is our

zeroth order solution, and its amplitude is given by Eq. (3.7). It has been observed that
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in the Duffing oscillator, the transition to chaotic behavior can occur via consecutive

period doubling, and period doubling is always preceded by the transition of the solution

from having only odd-harmonics to one containing both odd and even harmonics. In

a sense, the appearance of even-harmonics in the solution is a precursor of chaotic

behavior in the case of the Duffing oscillator [30, 31]. It is usually claimed that we are

in the weak nonlinear regime if our solution only has odd harmonics. The procedure

is similar to the procedure of linearizing the Duffing oscillator for a small perturbation

δs around the large pump solution δp. It implies analyzing the stability regions of the

Mathieu equation 3.35, with vin = 0. I will not embark myself in such an endeavor since

it will takes us far from the goal of this thesis. I only quote the results from Ref. [31].

The restriction in our pump amplitude δa and pump detuning to avoid the instability

regions that would lead us to chaos are

3
2w2

x2 < O(1)
1
2

< w < 1 (3.84)

where w = ωp

ω0
and x =

√
p/6δa. These restrictions define the boundary between the

solution having only odd-harmonics and the generation of even harmonics.

The high gain region of a parametric amplifier happens close to the bifurcation

point. We want to be able to access it assuming that the amplitude of the internal

fields is small enough that the third order approximation of the nonlinearity is accurate

enough, and that at the same time we are far from the instabilities that can cause

chaotic behavior. In Ref. [31] it is shown that we can avoid these issues if we fulfill the

following restrictions:

(1) Quality factor much greater than one.

(2) Large product of participation ratio and quality factor pQ À 1.

(3) Oscillation amplitude δa much smaller than 1.

(4) The relative detuning of the pump is of the order of the linewidth.
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Figure 3.16: (a) and (b) Norton and Thevenin equivalents of a Josephson junction
embedded in an arbitrary microwave network represented by the admittance Y (ω) or
impedance Z(ω). We assume that the microwave networks have a resonance. Close to
that resonance, they can be modeled by parallel or series resonators as shown in figure
(c) and (d).

So far in our analysis, we have just studied the case when a junction is shunted

by a capacitor, and damped via frequency independent resistance R = Zc. This can

be extended to the general case when the Josephson inductance is embedded in a more

general electromagnetic environment with a frequency dependant impedance Z(ω) or

admittance Y (ω) as shown in figure 3.16a and 3.16b. This reactive impedance allows

us to tune the resonance frequency and quality factor of our resonator. For example,

Z(ω) could represent a transmission line resonator in series with a coupling capacitor.

Now, if Z(ω) or Y (ω) have a resonance, close to that resonance frequency they can be

modeled by an effective series or parallel resonator (Fig. 3.16c and Fig. 3.16d), so a lot

of insight can be gained by just analyzing these simpler cases.

The parallel case has already being analyzed in this chapter. The series resonator
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can be studied using the same tools. The EOM of the circuit shown in figure 3.16d is

V (t) =

[
Le +

LJ0√
1− (dq(t)/dt)2/I2

0

]
d2q(t)
dt2

+ Re
dq(t)
dt

+
q(t)
C

(3.85)

=

[
Le + LJ0 +

LJ0

I2
0

(
dq(t)
dt

)2
]

d2q(t)
dt2

+ Re
dq(t)
dt

+
q(t)
C

(3.86)

where q is the charge on the capacitor and in the second line I have made an approxi-

mation to second order in dq/dt.

Making an analogy with the mechanical harmonic oscillator, in Eq. 3.86 would

be equivalent to one where the nonlinearity does not affect the restoring force but the

mass of the particle. Even though it is not a Duffing oscillator, it can be shown that at

low drives, large Q and the single harmonic approximation in the solution, we recover

the same dynamics as in the Duffing oscillator [31]. Similar performance as parametric

amplifiers is expected and equivalent restrictions can be derived regarding the conditions

that the electromagnetic environments must satisfy. For more details see Ref. [31].



Chapter 4

Previous and other current work on Josephson parametric amplifiers

4.1 Noise rise

In the 1970’s there was a strong effort to develop Josephson parametric amplifiers.

Because of their theoretically predicted low added noise, they were expected to have

promising performance for practical applications such as microwave/millimeter-wave de-

tection in microwave astronomy and analog signal processing [42]. JPAs achieved good

signal gain in 1-100 GHz band, but unfortunately these amplifiers proved impractical

because of a poorly understood difficulty with their added noise [43, 44]. It was found

that for moderate to high gains, the amplifiers’ noise temperatures were significantly

larger than the environment temperature. This noise problem is referred to in the lit-

erature as “noise rise.” As the bias point was varied, the output noise of the device

had a number of sharp peaks whose origin was unknown [45]. This behavior was found

in most implementations. However the literature does contain examples of JPAs op-

erated with low noise temperatures between 10 and 30 K and signal gains exceeding

20 dB [34,46–48]. Nonetheless, good performance was only attainable if the parameters

that controlled the amplifier gain such as current through the Josephson junctions or

magnetic field applied to the SQUID loops were tuned to a narrow range. It was not

understood why the amplifier only obtained good performance on a narrow range of
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parameters.1

The phenomenon referred to as “noise rise” was also observed to have the feature

that the noise temperature Tn was directly proportional to gain [44]. There were dif-

ferent theories that tried to explain the “noise rise” problem and they can be roughly

divided in three different groups:2

(1) Amplified noise, possibly including amplified thermal radiation that saturated

the amplifier.

(2) Instability caused by noise in the parameters that determine the operating point,

e.g. fluctuations in the pump power.

(3) Intrinsic instabilities and chaotic behavior associated with the nonlinear dynam-

ics of pumped Josephson junctions.

The first case seems self-explanatory, and except for some papers published in the late

1970’s (see Ref. [44] and references therein), this line of thought does not seem to have

been given much continuity. Regarding the second group of theories, the intuitive notion

is that when an amplifier is biased for high gain, the gain itself must be very sensitive

to external influences that vary the operating point. Therefore, the amplifier is more

“unstable”, meaning small changes in the pump power can cause large fluctuations in

the operating point of the amplifier. Feldman and coworkers predicted that these large

fluctuations would cause a noise temperature proportional to the gain [45].

The group of theories that seemed to have more support from the community were

the ones that considered the “noise rise” problem a consequence of intrinsic nonlinear

dynamics of these systems. These explanations included phase instabilities, hopping
1 Also, some attention was given to the effect of saturation due to thermal noise from room tem-

perature [47] which raises the question of maybe inappropriate filtering as a possible root of stability
problems specially in the 3-photon mode of operation where a stable dc-bias needs to be applied.

2 However, it is not entirely clear that all the excess noise found in these first experiments had this
feature and more than one theory may be needed to explain all the issues regarding the poor noise
performance on JPAs [44].
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between coexisting attractors, deterministic chaos, and universal features of systems

operated near certain types of bifurcations. Next is a brief description of all these

hypothesis.

Regarding deterministic chaos, Huberman and coworkers suggested that the large

broad-band noise-rise phenomenon could be understood in terms of the existence of

chaotic solutions to the full nonlinear junction dynamics, associated with the appearance

of a strange attractor in phase space [49]. We have seen in section 3.3.1 that in the

limit of small amplitudes of phase oscillations δ, it is possible to study the stability of

equation (3.30) by converting it into a Mathieu type equation, 3.35. They show that

as δ increases, the first two terms of the Taylor expansion of the sin δ term lead to a

cascade of bifurcations into a chaotic regime which cannot be obtained via perturbation

theory [49]. Pederson and coworkers also suggested similar arguments agreeing that the

so called noise-rise observed in connection with high gains in almost all JPAs had its

origin in chaos [50]. On the other hand, other people working in the field asserted that

chaotic behavior could not account for noise temperature proportional to gain. Instead

they argue that noise rise should occurs with no gain. In fact noise rise without any

gain has been experimentally observed (see for example Ref. [51]).

The phase instability theories [44, 51], noise-induced hopping between coexist-

ing attractors [52] and universal behavior near instabilities or bifurcations [53, 54] are

somewhat similar. The essential ingredients of these theories is that the amplifier dy-

namics can have multiple solutions (coexisting attractors) and external noise can kick

the system back and forth between stable solutions. Bryant and Yurke in Ref. [54] show

qualitative agreement between their theory and experiment, and a correlation at high

enough gains between the increase of noise and the increase of signal gain close to the

bifurcation point. The details of each theory are outside the scope of this thesis and

the reader is referred to the literature.
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4.2 Previous successful implementations

In spite of the “noise-rise issue” attempts to fabricate low-noise JPAs continued

with some of those attempts being somewhat successful [55]. Smith and coworkers

created the lowest noise temperature microwave amplifier, other than maser based am-

plifiers, and published their results in 1985. They used an rf-SQUID and operated at 8

GHz reaching a noise temperature of 6 K similar to the temperature of operation (4.2

K) [42]. This opened the possibility to generate squeezed states of microwave light and

operate amplifiers with quantum-limited performance.

4.2.1 Squeezing of thermal and vacuum noise

L

Zs Zp

C

L
s

-I
c +I

c

Iφ

J LCJ

L
s

Figure 4.1: Circuit schematic of the device used in Refs. [6] and [7]. Two Josephson
junctions form a dc-SQUID. Magnetic flux is coupled into this SQUID via the inductors
Ls through the +Ic -Ic current bias line, adjusting the critical current of the SQUID
formed by the parallel combination of the 2 junctions. The phase δ of the effective
junction is controlled via the current bias line Iφ. Two transmission line with different
impedances are used for the pump and for the signals. The JPA is operated as a
reflection amplifier.

Yurke and coworkers were one of the few groups that continued their research

on JPAs. The device studied consisted on a RLC-circuit as the one shown in figure

4.1. Their main goal was the generation of squeezed states of microwave fields. The

JPA was operated in both modes three-photon and four-photon mode [8]. In the case
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of squeezing, it was operated in the three-photon mode where the applied pump had

a frequency of 38.8 GHz. In the first experiment that showed squeezing of microwave

fields, 42 % squeezing of 4.2 K thermal noise was demonstrated and a noise temperature

of Tn = 0.28 K [7]. This noise temperature implied that the JPA exhibited less internally

generated noise than a linear phase insensitive amplifier. However, in this case, they

reported that at 4.2 K, the highest gain achieved before the generation of excess noise

due to the onset of chaos was 12 dB [8].

They also demonstrated squeezing of quantum noise at 19.16 GHz [6]. Operating

in the degenerate mode (the pump frequency being twice the signal carrier frequency),

they demonstrated squeezing of 47 % below the vacuum-noise floor. A noise temperature

of 0.446 K is accounted by the vacuum noise emitted by the losses. In this same paper,

they reported that they have operated the amplifier with gains as high as 37 dB and

with a noise temperature of TN = 0.5 K [6, 54]. The device used had, according to the

authors, the same design as the one used earlier to do classical squeezing of thermal

noise. However, they do not provide details on why this new sample shows a better

performance.

4.2.2 Parametric amplifier with Josephson junction arrays

Zc ZJ

l    14 λ_~

Figure 4.2: A Josephson transmission line made out of 1000 Junctions is directly coupled
to a 50 Ω transmission line at one end and shorted at the other end. Due to the
Josephson non-linearity, the Josephson transmission line will act as a “distributed”
parametric amplifier operated in reflection.

Most of the JPA implementations consisted of resonant circuits as the one shown
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in 4.1. One drawback of such implementations is their narrow bandwidth. In order

to obtain large bandwidths, it is desirable to avoid the use of resonant structures to

impedance match the signals from a 50 Ohm transmission line to the low impedance ex-

hibited by a Josephson junction. It had been realized that impedance matching problems

could be circumvented through the use of a series array Josephson junctions. Arrays of

Josephson junctions had been used previously for JPAs, but with sizes small enough to

still treat them as lumped elements [34, 46, 47]. In this new configuration suggested by

Sweeny and Mahler [56], the array was significantly larger than the wavelength of the

microwave field, and constituted a distributed parametric amplifier.

Yurke and coworkers implemented this idea, fabricating an array of 1000 Joseph-

son junctions and a length of 9 mm, which greatly exceeded the wavelength of 0.65 mm

for the 19 GHz signals. The amplifier was pumped at the signal carrier frequency, that

is, it was operated in the four-photon mode [57]. With a critical current of I0 = 12 µA

per junction, the zero-current inductance per unit length was Ll = 34.5 µH/m. The

capacitance per unit length was Cl = 187 pF/m which resulted in a characteristic trans-

mission line impedance of 430 ohms and a phase velocity of v = 1.25 × 107 m/s. 3

They then terminated one end with a short (Fig. 4.2).4 The Josephson transmission

line was operated at zero bias as a reflection parametric amplifier, where a single port

was used for both pump and signal.

In this implementation, they demonstrated very low noise performance of Tn =

0.5 K consistent with internally generated noise from losses. Their implementation also

showed a bandwidth of 125 MHz with a gain of 12 dB, or an equivalent gain-bandwidth

product of 500 MHz. However, some peculiar behavior regarding the noise and gain
3 The phase velocity and impedance given here are the same as the ones given in Ref. [57]. How-

ever, they do not agree with the critical current of the junctions the authors claim, I0 = 12 µA. The
inconsistency is fixed if a critical current of I0 = 1.2 µA is assumed instead.

4 I believe it is debatable calling this implementation a non-resonant parametric amplifier, as the
impedance mismatch of both transmission lines is large enough to be able to create well defined resonant
modes inside the Josephson transmission line. However the amplifier would be operated at an unusually
large mode of the resonator.



83

performance were also observed. As the pump power was increased from low values,

the gain of the amplifier first increased and then, after passing through a maximum, it

decreased. They called this point at which the maximum gain is achieved the threshold

value [57]. Good noise performance is reported only past the threshold point. Below

threshold the amplified showed excess noise as large as an extra 6 K.

4.3 Current work on Josephson parametric amplifiers

After the promising results of vacuum noise squeezing and large gain with low

noise performance shown in Ref. [7], research on Josephson parametric amplifiers dwin-

dled. However, the interest in them has been growing the past few years with several

groups interested in developing low-noise microwave parametric amplifiers for quantum

information applications and quantum limited detection of microwave signals [9, 11].

Next I describe some of the most successful recent implementations.

4.3.1 Josephson ring modulator

The Josephson ring modulator has been developed by N. Bergeal and collabo-

rators for quantum computing applications [58]. The four-photon mode operation of

the JPA implies the presence of a large pump tone in the middle of the amplifier band

which for some applications can be a problem. For some applications, it is necessary

to separate the modes associated with the signal, idler5 and pump so that all three

tones are at a very different frequency. One approach is to fabricate a nondegenerate

parametric amplifier where each of the modes correspond to a different resonator. The

Josephson ring modulator (JRM) archives this by separating all 3 modes as observed in

figure 4.3a. The JRM consists of four nominally identical Josephson junctions designed

into a ring threaded by a magnetic flux Φ. The ring has only three orthogonal electrical

modes that couple to the junctions: two differential ones, X and Y , and a common one,
5 In non-degenerate parametric amplifiers the image tone is usually referred as the idler tone.
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Figure 4.3: (a) Lumped element circuit schematic of the Josephson ring modulator. The
ring modulator is coupled to two LC resonators and a pump drive. (b) There are four
orthogonal modes, but only three of them couple to the Josephson junctions: the two
differential modes X and Y used to couple to the two LC resonators, and the common
Z mode is used for the pump drive.

Z (Fig. 4.3b). In the circuit schematic shown in figure 4.3a, the two resonator circuits

X and Y are used as the signal and the idler modes, while the input Z for the pump

drives the common mode.

The JRM amplifier is operated usually at a flux of Φ = Φ0/2. At this flux bias,

and for mode intensities δX , δY and δZ much smaller than 1, the ring hamiltonian has

approximately the following form:

Hring ∝
[
δXδY δZ − δ2

X + δ2
Y + δ2

Z

2

]

where terms of order higher than three have been neglected. The second term corre-

sponds to a “contamination term” whose only effect is to renormalize the resonance

frequency of the resonators. The first part is a pure nonlinearity that couples all three

modes, and in the coupling each mode appears only linearly. The bridge configuration
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proposed by Bergel, et. al. has the advantage of eliminating unwanted terms like

δ2
XδZ , δ2

Y δZ , δ2
XδY and δ2

Y δX which would introduce other, unwanted types of mixing.

One interesting consequence is that the resonance frequency of the circuit used for the

signal mode will not have the observed change in frequency as a function of amplitude

of internal fields, as the one observed in the Duffing oscillator. This implementation can

theoretically achieve the minimum added noise limit set by Haus-Caves theorem (2.81).

4.3.2 Flux driven Josephson parametric amplifier

Cc

Zc

Φ

pump

4
l

λ
~

dc flux bias

(a) (b)

0.50
0/Φ Φ

0f
02f

signal in 

signal out 

Figure 4.4: (a) The flux-driven parametric amplifier consists of a transmission line
resonator terminated by dc-SQUID. By applying a dc flux bias, the boundary condition
of the cavity resonator changes, modifying the resonance frequency. A microwave pump
tone is inductively applied to the SQUID which modifies the resonance frequency at
fpump = 2f0 parametrically amplifiying a signal applied at the input port through the
coupling capacitor Cc. (b) In order to operate this amplifier in a three-wave mixing
mode, a dc flux bias must be applied to break the even symmetry of f0 versus flux.

This implementation of the Josephson parametric amplifier has been studied by

T. Yamamoto and collaborators [59]. It consist of a superconducting transmission-line

resonator terminated by a dc-SQUID (Fig. 4.4). Unlike our implementation, their pump

does not modulate the current through the SQUID, but it is applied as a flux modulation.

A dc-flux bias breaks the even-symmetry of the resonance frequency-versus-flux relation.

Applying a microwave pump at twice the resonance frequency fpump = 2f0 ∼ 20 GHz

to the inductively coupled pump line makes the cavity’s resonance to oscillate at 2f0.
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This modulation does parametric work on a signal applied at the input port of the

cavity. As the pump is applied at twice the resonance frequency of the JPA, this type

of operation is a three-wave mixing or degenerate mode, as opposed to the four-wave

mixing or doubly degenerate mode.

We can distinguish an important difference between our implementation and this

one. As the signal and the pump are very different in frequency (fpump = 2fsignal), and

applied at different ports, it is simpler to separate the amplified signal from the pump.

Also, the cavity resonator is a quarter-wave resonator and the next resonance mode is at

a frequency f1 ' 3f0, so the leakage of the pump microwave power into the signal port is

small due to the absence of a resonance close to the pump frequency. The performance

of the amplifier has been described in Ref. [59]. They have observed a maximum gain

of 17 dB. For the noise performance they have estimated an upper bound in the noise

temperature of TN < 0.87 or in terms of added quanta, AN < 1.7 quanta.

4.3.3 dc-SQUID stripline resonator

signal +

pump1 in 
signal out

Φ

dc flux bias +

pump2

~ 3
c

l λ

Figure 4.5: The device consist of circular microstrip resonator with a dc-SQUID located
in a current antinode of the third resonance mode. The parametric amplifier is operated
in two different ways. First in the double degenerate mode with the pump applied close
the signal frequency and at the same port as the signal (pump1). The second mode is
the three wave mixing, where the pump is applied in the flux line (pump2).
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This implementation is in principle very similar to the previous one. The JPA

consists of a stripline microwave superconducting resonator integrated with a dc-SQUID

[60] (Fig. 4.5). The dc-SQUID sits at a current antinode of the third mode resonance.

Abdo, et. al. studied the signal and image gain as a function of pump power observing

gains as high as 24 dB.

They studied the noise behavior as function of pump power showing instabilities

close to the critical pump power. They suggest that the reason is due to the fact

that at high critical powers, the amplitude of the current inside the cavity is large

compared to the critical current of the SQUID (IS
0 ) [60]. This would suggest that this

implementation does not satisfy all the requirements given by Ref. [31] and described

previously in section 3.3.4 .

In addition, they also operate their amplifier in the three-photon mode, where the

pump is applied as a microwave flux bias, similar to Ref. [59]. They show a signal gain

of 38 dB but with a lot of other tones at other harmonics. They also show a signal to

noise improvement of around 23 dB. Yet, without a noise temperature of the amplifier

chain it is not possible to estimate the added noise of their JPA.

4.3.4 Josephson bifurcation amplifier

Developed by Siddiqi and coworkers [61, 62], the Josephson bifurcation amplifier

consists of a nonlinear oscillator formed by a capacitively shunted Josephson junction

(Fig. 4.6a). This is exactly the same circuit we have been analyzing so far and we know

it behaves as a parametric amplifier. The name Josephson bifurcation amplifier (JBA)

distinguishes the regime in which it is operated. The resonant circuit is biased with a

strong microwave current to access the nonlinear regime as shown in figure 4.6b. The

pump power and pump detuning are set in the parameter space to be in the bistable

regime. In this regime, two possible dynamical states are accessible. A weak signal is

then coupled to the amplifier junction critical current, where figure 4.6a shows just one
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Figure 4.6: (a) Circuit schematic of a possible implementation of the Josephson bifurca-
tion amplifier. The input line is inductively coupled to critical current of the Josephson
element in the JBA. A large pump rf-bias the resonator in the nonlinear regime where
two dynamical states are possible for the JBA. (b) Nonlinear resonant curve of the
JBA showing a possible bias point for the JBA (solid line). A small signal coupled to
the critical current will make the resonance frequency, and consequently its response,
change (dashed line). If properly biased, the oscillator will change from a low amplitude
state (OL) to a high-amplitude state (OH). Inset: Phase of the reflected pump tone for
the given pump power. The two possible dynamical states are indicated (red and green
dots), showing the large and detectable change in phase that allows the JBA to measure
a weak signal due to small changes in the effective critical current of the junction.

example of a possible implementation of the signal-I0 coupling. This signal coupling

results in a dispersive shift of the circuit resonance frequency and consequently in the

oscillator evolving from the state OL to OH , thus realizing a sensitive threshold detector

for I0. The dynamical state of the JBA can be measured by the large difference in phase

of the reflected pump as can be observed on the inset of figure 4.6b.

However, the JBA can be operated as a Josephson parametric amplifier: instead of

coupling an input signal to the critical current of the Josephson junction, we can apply

a weak signal at the same port as the pump and amplify that signal as a reflection

amplifier. Vijayaraghavan has operated the JBA in the parametric amplifier regime.

His results have not been published, but are available in Ref. [18]. He reported a gain of

over 25 dB and a gain-bandwidth product of 280 MHz. The estimated noise temperature
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in the nondegenerate mode was Tn = 0.08−0.15 K, which compared to quantum-limited

value of 0.072 K, it implies a performance close to the theoretical limit. They have also

measured squeezing of vacuum noise.

4.3.5 Parametric amplification with superconducting resonators and

weak-links

Figure 4.7: Picture of the sample used by Tholén, et. al. to study parametric ampli-
fication. The resonators are made of Niobium and 10 weak-links are fabricated at the
center of the resonator where there is a current antinode. Reproduced with permission
from Ref. [63].

It is a known phenomenon that thin superconducting films present nonlinear ef-

fects at high enough currents [64]. These nonlinear effects arise from current induced

magnetic field penetration into the superconducting thin films and give rise to a non-

linear inductance. This current dependent kinetic inductance can be modeled as an

effective kerr nonlinearity [38]. Tholén and collaborators have used this Kerr effect in

superconducting films to fabricate nonlinear cavities that can be used for parametric

amplification [65]. Using the intrinsic nonlinearity in superconducting transmission line

resonators in their first implementation they achieved 22.4 dB of maximum gain (signal

and image gain). Due to a lack of calibrated noise source, they were unable to estimate
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the added noise of the amplification process.

In order to increase the nonlinearity of their resonators, in their second implemen-

tation they fabricated a parametric amplifier based on the nonlinear kinetic inductance

of a weak link (Fig. 4.7). A weak link consists of a Josephson element where the weak

electrical contact between superconducting electrodes is provided by some small metallic

constriction with dimensions of the order of the superconducting coherence-length [66].

The name is used to distinguish non-tunnel from tunnel junctions Josephson elements.

This type of Josephson element also behaves as a non-dissipative nonlinear inductance.

However the strength of the nonlinearity is a strong function of the geometry and the

current-phase relation is not necessarily a sinusoidal function as in Eq. (3.15) for a

simple tunneling junction. In this second implementation of parametric amplifiers,

Tholén reports an improved performance with a maximum signal and image gain of

25 dB [63].



Chapter 5

Design of JPA

In this chapter I describe the process of designing our Josephson parametric am-

plifier. I will begin by discussing microwave cavity resonators including the process

of coupling power to them. I will also discuss some non-ideal features present in our

devices such as loss. In the second part of the chapter, I discuss the integration of

the Josephson junction into the microwave cavities. I will then generalize the results

of chapter 3 to include both loss and the presence of additional ports. Finally, I will

discuss the effect of these extra ports in the performance of the amplifier.

5.1 Microwave environment design

In chapter 3, I discussed the case of a lumped-element parallel Josephson resonator

and its behavior as an amplifier. However, at microwave frequencies the wavelengths

are not necessarily much bigger than the size of the circuits elements that are used. At

these frequencies, the electrical response of a structure becomes highly dependent on its

geometry. Thus, in order to fabricate microwave resonators, we use distributed elements

in the form of transmission lines, instead of using lumped elements such as capacitor

and inductors. I next discuss the two types of transmission line resonators that we use

in the experiments.
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5.1.1 Transmission line resonators

Consider figure 5.1a. Assume that there exists a right traveling wave with a

phasor representation given by VR = V R
0 e−jkz. We have seen that the ratio of voltage

to current for such a transmission line is the characteristic impedance Zc. But when the

line is terminated in an arbitrary load, ZL 6= Zc, the ratio of voltage to current must be

ZL. Thus a reflected wave needs to be created with the appropriate amplitude and phase

to satisfy this condition. The incident and reflected waves will interfere destructively

and constructively generating a standing wave pattern through the transmission line.

This pattern can be found by calculating the reflection coefficient Γ for a given load

(Eq. 2.37).

V (z) = V R
0 e−jkz + V L

0 ejkz,

= V R
0 (e−jkz + Γejkz), (5.1)

I(z) =
V R

0

Zc
e−jkz − V L

0

Zc
ejkz,

=
V R

0

Zc
(e−jkz − Γejkz). (5.2)

From the definition of impedance, Z = I/V , we can see that the observed impedance

looking into the transmission line must vary with position. At a distance z = −l from

the load, the input impedance is given by

Zin =
1 + Γe−2jkl

1− Γe−2jkl
Zc, (5.3)

= Zc
ZL + jZc tan(kl)
Zc + jZL tan(kl)

. (5.4)

The boundary condition imposed at both z = −l and at z = 0 define the impedance

seen and the type of resonator we have created.

Short-circuited quarter-wavelength resonator

Figure 5.1 shows a transmission line terminated at one end in a load impedance

ZL = 0, which is usually referred as a short circuit. The other end is left open. This
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Figure 5.1: (a) A short-circuited transmission line of length l = λ/4. (b) A parallel
RLC-resonator. In the high-Q limit, the impedance Zin of the resonator will resemble
the impedance Zin of the short-circuited section of transmission line shown in (a).

configuration creates a standing wave resonance for a signal whose wavelength is λ =

4l/n for n an odd integer. We will discuss only the case for n = 1, since it is the mode

we will use. Therefore, l = λ/4 and this resonator is called a quarter-wavelength (λ/4)

resonator. To make the analysis more accurate, I will consider a lossy transmission line.

The only change in the previous expression is to replace jkl with (α + jk)l, where α is

the attenuation constant of the transmission line and whose origin can be either losses

in the conductor or dielectric of the line. For a shorted end, the input impedance seen

at z = −l is given, from Eq. (5.4) by:

Zin = Zc tanh(αl + jkl), (5.5)

= Zc
1− j tanh(αl) cot(kl)
tanh(αl)− j cot(kl)

. (5.6)

We can then assume that l = λ/4 at ω = ω0, and ω = ω0 +∆ω. With these assumptions

kl =
π

2
+

π∆ω

2ω0
.

For a small amount of loss, tanh(αl) ≈ αl, and expanding to first order in ∆ω/ω0

Zin = Zc
1 + jαlπ∆ω/2ω0

αl + jπ∆ω/2ω0
,

≈ Zc

αl + jπ∆ω/2ω0
. (5.7)
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Eq. (5.7) has the same form as the impedance of a parallel RLC resonator circuit in

the high-Q limit (Fig. 5.1b)

ZRLC
in =

1
1/R + 2j∆ωC

.

Note that in this expression, we have included internal losses of the circuit as a resistor R.

This resistor R is not related with the characteristic impedance Zc of the transmission

line coupled to our resonator. We can identify the resistance, capacitance, inductance,

and quality factor of the equivalent circuit as:

R = Zc/αl. (5.8)

C =
π

4ω0Zc
. (5.9)

L =
1

ω2
0C

. (5.10)

Ql = ω0RC =
π

4αl
, (5.11)

showing that the quality factor Ql decreases as the attenuation of the line α increases.

Here, Ql is the intrinsic quality factor associated with internal losses of the resonator,

and not the coupling quality factor Q we used in Chapter 2. In the next section, I will

describe how we couple power to these resonators.

Open-circuited half-wavelength resonator
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λ
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( ),  ( )V z I z

0z =-lz =

Figure 5.2: An open-circuited length of transmission line. For lengths of l = nλ/2, this
transmission line will be a resonator.
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Another kind of resonator we will be using is the open-circuited half-wavelength

(λ/2) resonator, as shown in figure 5.2. Such a resonator will behave as well as a parallel

resonant circuit, when the length is l = λ/2 or multiples of λ/2. The input impedance

is given by

Zin = Zc coth(αljkl).

In this case,

kl = π +
π∆ω

ω0
.

Doing similar approximations to the ones done for the λ/4 resonator, the input impedance

seen at z = −l is

Zin =
Zc

αl + j∆ωπ/ω0
. (5.12)

Again, comparing it with the impedance of a parallel RLC resonator, the equivalent

values for the resistance, capacitance, inductance and quality factor are

R = Zc/αl, (5.13)

C =
π

2ω0Zc
, (5.14)

L =
1

ω2
0C

, (5.15)

Ql = ω0RC =
π

2αl
. (5.16)

5.1.2 Coplanar waveguide transmission lines

So far the description of the transmission line resonator has been rather general,

without describing what kind of structure we are using. In any physical implementation

of a transmission line, the geometry must be chosen to best fulfill our needs. Due

to several reasons, our choice was to use coplanar waveguide transmission lines (Fig.

5.3). A first advantage arises from the fact that the signal ground and conductors lie

in the same plane, which makes it simple to create an electrical short on a chip. In

addition the dimensions of the coplanar waveguide can be scaled while preserving the
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Figure 5.3: Coplanar waveguide geometry. (a) Ideal case, where the ground planes and
the dielectric are assumed to extend to infinity. (b) A more realistic case of a coplanar
waveguide transmission line where both the ground planes and the dielectric are finite.
The dielectric is backed by a ground plane.

wave impedance. As we will see, the impedance of the transmission line depends on the

ratio of the width of the center conductor to the gaps. As long as that ratio is kept

the same, the geometry of the transmission line can be scaled from large structures to

which we can attach macroscopic wires down to very small structures compatible with

the micron size of the Josephson junctions.

The ideal coplanar waveguide (CPW) consists of two slots each of width W =

(b − a)/2 printed on a dielectric substrate (Fig. 5.3a) . The spacing between the

slots is denoted by a. The ground plates extend to infinity as well as the dielectric

(infinitely thick substrate). While any physical implementation can be treated using

the equations that describe a transmission line, the exact expressions for the phase

velocity and impedance depend on the geometry. Approximate expressions for both the

impedance and the phase velocity can be found using conformal transformations [67].

Assuming non-magnetic substrates for which µ = µ0, for the ideal coplanar waveguide
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shown in figure 5.3a the expressions are

εre =
εr + 1

2
, (5.17)

v =
c√
εre

, (5.18)

Zc =
30π√
εre

K ′(κ1)
K(κ1)

, (5.19)

with K and K ′ being the complete elliptic integral of the first kind and its complement,

and

κ1 =
a

b
.

If we introduce the necessary modifications to include the fact that our dielectric is not

infinite and neither are the ground planes (Fig. 5.3b), the expressions are sligthly more

complicated [67]. Defining κ2 and κ3 as

κ2 =
a

b

√
1− b2/c2

1− a2/c2
,

κ3 =
sinh(πa/2h)
sinh(πb/2h)

√
1− sinh2(πb/2h)/ sinh2(πc/2h)
1− sinh2(πa/2h)/ sinh2(πc/2h)

.

The new expressions for the phase velocity and characteristic impedance are

εre = 1 +
εr − 1

2
K(κ3)
K ′(κ3)

K ′(κ2)
K(κ2)

, (5.20)

v =
c√
εre

, (5.21)

Zc =
30π√
εre

K ′(κ2)
K(κ2)

. (5.22)

For our resonators, we designed our coplanar waveguide with ground planes of

reduced width, as can be seen in figure 5.4. The main reason that we used such reduced-

width ground planes is to reduce the potential influence of trapped vortices of magnetic

flux. To elaborate, superconductors will exhibit a characteristic referred to as Meissner

effect which consists of the expulsion of a magnetic field from the superconductor [33].

In general, however, superconductors rarely exhibit a complete field expulsion; grain

boundaries, normal inclusions, and other defects serve to trap magnetic flux within
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Figure 5.4: Pictures of the two kind of devices discussed in chapter 6. In both cases
5 µm-wide ground planes were used in order to avoid flux trapping close to the SQUIDs.

the superconductor. Flux expulsion can be further decreased by the geometry of the

sample. Thus, for actual experiments, the Meissner effect is typically incomplete and

strongly dependent on sample preparation and geometry. In our case, this concern is

very important as flux trapped in the ground planes close to the SQUIDs could introduce

flux noise in the SQUID loops. Although the resonators will in general be kept in a

low-magnetic field environment, the situation is always critical as the superconductor

is cooled though the critical temperature Tc. In Ref. [68], the authors studied flux

expulsion in the case of a thin-film superconducting strip of width W when a strip is

cooled through Tc. In that Letter, it is shown that such a strip exhibits a complete

Meissner expulsion of vortices below a critical field Bm, independent of the details of

material parameters. Furthermore, this expulsion has a universal characteristic, with

Bm = Φ0/W 2. For a width of 5 µm, this maximum field for vortex expulsion is

0.8 gauss, slightly bigger than the 0.3-0.6 gauss of Earth’s magnetic field. We designed

the CPW so that we could cooldown through Tc with a magnetic field equal to that

of the Earth’s magnetic field without having trapped vortices close to the SQUIDs. In

order to further protect the sample we have two levels of magnetic shielding: a cryoperm

shield around the sample that sits at 15 mK and a µ-metal shield at room temperature.
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5.1.3 Coupling a cavity to a transmission line

As yet I have not described the way we will excite the resonators. We could di-

rectly connect a transmission line to the resonator, as it was done in chapter 2. However,

this would allow the energy stored in the cavity to leak out too quickly; that is, the

resonator would be heavily loaded, and the Q would be too low. To reduce the coupling

strength, we use a small capacitor to connect the resonator to the transmission line we

use to launch signals as shown in figure 5.5. The impedance mismatch that the capaci-

tor represents is analogous to a dielectric mirror that is partially transparent. Since an

ideal capacitor is lossless, but transmits a small amount of power, we can inject power

to the cavity or allow energy to leak out of the cavity through this “microwave mirror.”

Another advantage over directly connecting the resonator and the transmission line is

that the coupling capacitor serves as a dc-filter for the Josephson junctions that will be

inside the cavity.

In order to derive an expression for the quality factor Q, there are a variety of

approaches, of which I will describe two for being the most useful. First I will consider

the case of a lossy λ/4 resonator and then a lossless λ/2 resonator. The reason for this

is that by comparing the final expression of the two resonators, it will become obvious

that the intrinsic loss of the resonator can be modeled as just an extra port. This

fictitious port allows energy to leak out of the cavity (through dissipation) as well as

admits energy in the form of thermal noise.

Single port

Next we consider a λ/4 short-circuited resonator coupled to a transmission line

through a capacitor C1 (Fig. 5.5a). The normalized input impedance seen by the

feedline with impedance Zc is

z(ω) =
j

Zc

(
Zr tan(kl)− 1

bc

)
(5.23)
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Figure 5.5: (a) λ/4-resonator coupled to a transmission line of impedance Zc by a
capacitor. (b) λ/2-resonator coupled to two transmission lines of impedance Zc by two
capacitor. Port 1 is defined as the strongly coupled port and port 2 is the weakly coupled
port.

where bc = ZcωC1 is the normalized susceptance of the coupling capacitor. Resonance

occurs when

cot(kl)− bc = 0.

Solutions to this transcendental equation can only be found numerically. However, in

practice bc ¿ 1. This is equivalent to saying that the coupling quality factor from port 1
√

Q1 À 1. This requirement allows us to assume that the new resonance frequency will

be close to the frequency for which kl = π/2 (the first resonance frequency of the

unloaded resonator ω0). By doing a Taylor expansion around the new loaded resonance

frequency ωr, it can be shown that the normalized impedance is given by

z(ω) = j
π

2ωrZcZr(ωrC1)2
(ω − ωr).

So far we have not included losses. For high-Q cavities, loss can be easily included

following the common recipe of replacing the resonant frequency ωr with the complex

resonance frequency ωr(1 + j/2Ql) [13,16]. In this substitution, Ql is the quality factor
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associated with the intrinsic loss of the resonator, Eq. (5.11). Then, the normalized

impedance of the lossy λ/4 resonator is

z(ω) =
Q1

Ql

(
1 + 2jQl

(ω − ωr)
ωr

)
(5.24)

where the quality factor associated with the coupling port Q1 is given by

Q1 =
π

4
1

ZcZr(ωrC1)2
(5.25)

I can then calculate the reflection coefficient using Eq. (5.24),

Γ =
Γ0 + 2jQδω

1 + 2jQδω
(5.26)

where δω = (ωr − ω)/ωr, Q is the total quality factor

1
Q

=
1

Q1
+

1
Ql

(5.27)

and Γ0 is the reflection coefficient at the resonance frequency, and it is given by

Γ0 =
Q1 −Ql

Q1 + Ql
. (5.28)

Note also that in this case, there are two types of quality factors we are interested

in: the internal quality factor, Qi and the coupling quality factor, Q1. Defining the

coupling coefficient g as

g =
Ql

Q1
(5.29)

we find there are three different cases.

(1) g < 1 The resonator is undercoupled to the feedline.

(2) g = 1 The resonator is critically coupled to the feedline.

(3) g > 1 The resonator is overcoupled to the feedline.

The reflection coefficient will be very different depending on the value of g as can be

seen in figure 5.6.
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Figure 5.6: (a) Parametric plot of the real and imaginary part of the reflection coefficient
Γ as a function of frequency for different values of coupling coefficient: g = ∞ (blue),
g = 3 (red), g = 1 (green) and g = 1/3 (black). (b) Phase of Γ as of function of the
detuning δω = (ω − ωr)/(ωr) for the same coupling coefficients as in (a). Regardless of
the exact value, for g > 1 the phase evolves a full 360◦ as we sweep the frequency. This
is not the case for g ≤ 1, in which the phase only evolves 180◦ or less as we sweep the
frequency through resonance.

Double port

We could use a similar method to the one described above for the single port

to calculate the coupling quality factors associated with the two ports connected via

coupling capacitors to a λ/2-resonator as shown in figure 5.5b. However, I will use

energy consideration so that the meaning of quality factor becomes obvious [69]. For

now, let’s assume a lossless transmission line. This loading (or coupling) calculation

yields the coupling quality factors, Qj , where j = 1, 2 denotes the port.

Let’s assume that the resonator has been initially excited, and some energy is

stored. Due to the coupling, this energy is going to leak out through the capacitors. In

a λ/2-resonator we have seen that the voltage antinodes are located at the end of the

resonator, where the capacitors are located, and using the shape of the voltage standing
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wave we can estimate the electric energy stored inside.

Ec =
1
2
Cl

∫ 0

−l
dz〈V 2(z, t)〉

where the averaging 〈V 2(z, t)〉 is done over one cycle of oscillation. Assuming that

the coupling is weak enough that the normal modes of the resonator are close to the

unperturbed one, the shape is just one half of a sinusoidal wave, so we can perform the

integration. Furthermore, on resonance, the electric and magnetic energy stored in the

transmission line are the same, so the total energy is given by

E =
1
2
Cll〈V 2(t)〉

where the extra factor of 2 is from the space integration. In order to calculate the

power dissipated through the coupled ports, we calculate the current flowing in the

transmission line, P = 〈(I2
1 + I2

2 )〉Zc, where Ij indicates the current flowing out of port

j. Assuming that the coupling capacitors are the dominant impedance (basically that

Zc ¿ 1/ωCj), Ij ≈ V ωCj , and the power dissipated is then

P = 〈(C1V (t)2 + C2V (t)2)〉ωZc.

The total quality factor Q of the resonator is defined as [16]

Q = ω
average energy stored
energy loss/second

= ω0
1/2Cll〈V 2(t)〉

〈(C1V (t)2 + C2V (t)2)〉ωZc

This expression reduces to
1
Q

=
1

Q1
+

1
Q2

(5.30)

with the coupling Qj given by

Qj =
Cll

2ZcC2
j ω0

(5.31)

=
π

2ZrZc(Cjω0)2
. (5.32)
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Comparing Eqs. (5.30) and (5.27), we can see that in terms of the total quality factor,

port 2 just looks like extra loss. This is even more obvious when we calculate the

reflection coefficient S11.1 S11 can be calculated by doing a similar procedure to

estimate the impedance of the λ/2 resonator close to the new loaded resonance frequency

ωr as it was discussed for the λ/4 resonator. The result is

S11 =
Γ0 + 2jQδω

1 + 2jQδω
(5.33)

where Γ0 is given by

Γ0 =
Q1 −Q2

Q1 + Q2
.

The fact that loss can be modeled as an extra port will simplify the analysis of the

nonlinear resonator in the next section.

Intrinsic Resonator Losses

The measured Q of a resonator is expected to depend on the total energy loss

per cycle of the resonator. We expect energy to leak out through several paths. Some

paths, like one through the coupling capacitor, are designed by us, while others, like

the loss of energy to electromagnetic radiation, are governed by geometry and material

parameters. The quality factors loss terms add as follows:2

1
Q

=
1

Q1
+

∑

all other paths

1
Qj

.

Ideally the quality factor of a resonator would be something that we would completely

control by adjusting the coupling capacitors. However, this is not necessarily the case.

There are three primary mechanisms of loss in superconducting microwave resonators:
1 For the λ/2-resonator, I will use S11 to refer to the reflection coefficient as opposed to Γ as in

the λ/4-resonator. This is done to distinguish the fact that in the λ/2-resonator, there is actually two
possible scattering parameters we will measure, S11 and S12.

2 The equivalent expression for the linewidths is simpler as they just add:

γ = γ1 +
X

all other paths

γj .
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resistive, dielectric and radiative losses. In principle, resistive losses should be negligible

as we are dealing with superconducting devices. It has been shown that radiative losses

would limit the quality factor of a resonator like the ones studied in this thesis to

106 [69], so we do not consider them as limiting factors as they are several orders of

magnitude larger than our designed coupling Qs.

Dielectric loss can also affect the Q of the resonator. Microwave materials are

usually characterized by specifying the real permittivity and the loss tangent all as a

complex number

ε = ε′ − jε′′ = ε′(1− j tan δ)

where tan δ is referred to as the loss tangent. In order to reduce these losses, we use high-

resistivity silicon for our resonators, which have been shown to achieve Qs as high as

100,000 [70]. However, due to the trilayer process used to fabricate the second generation

of devices (see appendix C), we need a layer of deposited SiO2 as an insulating layer.

This layer is known to be extremely lossy (see for example, Ref. [59]) and could be a

limiting factor for our internal quality factor.

5.2 Cavity JPA

If we were to put a Josephson junction inside a microwave cavity resonator, the

analysis of the JPA could be done in terms of the quantum network theory described

in sections 2.3.1 and 3.3.1. Close to the resonance frequency the full circuit could be

mapped into one of the two circuits shown in figure 3.16. Such an implementation has

been used in the bifurcation limit as the JBA explained in section 4.3.4 [71]. However,

one of the problems with such amplifiers is that they will have a very narrow band-

width. In order to partially circumvent this problem, a SQUID (or maybe even a few

SQUIDS) instead of a Josephson junction can be used. This modification provides some

tunability to the resonance frequency, and thus in the amplified band of the JPA [72,73].
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Nevertheless, in such implementations, the Josephson inductance is heavily diluted by

the geometrical inductance of the microwave cavity (small participation ratio p). Thus,

for low magnetic flux (Φ close to zero), the resonance frequency is rather insensitive to

flux and it is only when the applied flux is close to Φ0/2 that large changes of resonance

frequency can be achieved. Yet, for such fluxes, the critical current of the SQUID is

very small, and therefore the critical power of the resonator is very small as well. Very

small critical power has the effect of making the amplifier saturation power too small

to be useful as an amplifier. In addition, in those implementations, it has also been ob-

served that close to Φ0/2, the intrinsic losses of the resonator increase. This additional

loss would hurt the performance of the amplifier [72, 73]. When we were designing our

parametric amplifier, we were trying to fabricate a JPA that could be used over a wide

range of frequencies without a large degradation of the amplifier performance. I next

describe our approach.

5.2.1 Widely tunable resonator

In order to create an amplifier with a tunable band, we decided to create a

transmission line whose phase velocity across the whole resonator could be tuned by

an external knob that we had control over. Then for a fixed length of a transmission

line resonator, by adjusting the phase velocity we could adjust the resonance frequency.

Therefore, instead of embedding 1 or a few SQUIDs inside a cavity, our approach was to

take a CPW transmission line and replace the center conductor with a long series array

of SQUIDs (Fig. 5.7a). We have seen in section 3.2 that the small signal inductance of

a Josephson junction is given by LJ0 = φ0/I0. I also showed that the critical current of

a SQUID IS
0 can be tuned by applying a magnetic field. Therefore, a resonator made

out of a transmission line like the one shown in figure 5.7a would allow us to adjust the

phase velocity and the resonator resonance frequency [74]. By adjusting the resonance

frequency, we adjust the amplified band of the JPA. This feature will allow us to use
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the amplifier over the whole tunable band.
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Figure 5.7: (a) Lumped element model of the series array of SQUIDs used to fabricate
a JPA. In each cell, the capacitance to ground of the center conductor is modeled by
the geometrical capacitance Cl∆z of the CPW. The inductance of the cell is modeled
by the Josephson inductance of the SQUID and the small geometrical inductance Ll∆z
of the CPW. (b) The behavior of such periodic structure can be easily described by
calculating the ABCD-matrix of each cell and calculating the total ABCD-matrix of
the whole array.

At microwave frequencies the SQUIDs are spaced much less than a wavelength

apart, so we treat the array as a continuous medium with flux tunable and intensity

dependent phase velocity (c.f. an optical Kerr medium). We call this nonlinear effective

medium a Josephson metamaterial. The resonance frequency (fres) of this cavity is

proportional to the phase velocity. As the inductance per unit length Ll and therefore

the phase velocity are nonlinear functions of the currents due to the SQUIDs in the

center conductor, fres is a function of the intensity of the microwave field stored in the

cavity. When a large tone (the pump) is applied through the coupled port close to the

resonance frequency of the cavity, it makes the resonance frequency oscillate at twice

the pump frequency just as in the case of a lumped-element resonator (Eq. 3.35). This
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process creates parametric gain [13].

Josephson parametric amplifiers using series arrays have been suggested in the

literature [56] and even implemented [48, 57]. However, in Ref. [48], the array was

treated as a lumped element rather than as a medium. In Refs. [56, 57], the array is

treated as a nonlinear medium, as in our case. Nonetheless, in their implementation

Josephson junctions instead of SQUIDs were used. In Ref. [57], it is argued that by

using a distributed parametric amplifier with a nonlinear medium, the problem of a

small bandwidth is eliminated. However, distributed parametric amplifiers still have a

limited gain-bandwidth product [57] and other concerns such as matching the Joseph-

son metamaterial to the feedline transmission line arise.3 In addition a distributed

parametric amplifier requires at least one junction per wavelength, and length of several

wavelengths. From a fabrication point of view, it is hard to do at microwave frequencies

on a chip.

In order to estimate the magnetic field dependance of the resonator and justify

treating the array as a continuous medium, we model the cells as shown in figure 5.7a,

where we have included the small geometrical inductance that the cells have (for this

analysis only the linear part of the SQUID inductance is used). The arrays are made

out of hundreds of such cells, with the last of these cells loaded by a boundary condition

that will depend on the type of resonator we are building. As an example we will model

a shorted λ/4 resonator. Such periodic structures as the one shown in figure 5.7a, can

be easily analyzed using the method of ABCD matrix [16]. (Fig. 5.7b). The ABCD

matrix consist of a 2×2 transmission matrix defined only for a two-port network. For a

microwave network that consists of a cascade connection of multiple two-port networks

as the one shown in figure 5.7, the analysis is simplified by using this approach. The
3 If the characteristic impedance of the transmission line used to send and recover the signals from

the distributed JPA and the characteristic impedance of the Josephson metamaterial are too different,
well defined standing waves modes appear and the Josephson metamaterial would just be a very strongly
coupled microwave cavity JPA.
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ABCD matrix of the whole network is found by multiplying the ABCD matrices of its

components. The components of the ABCD matrix are defined using the convention

shown in figure 5.7b

V1 = A1V2 + B1I2,

I1 = C1V2 + D1I2.

The full network is then given by



AT BT

CT DT


 =




A1 B1

C1 D1







A2 B2

C2 D2


 ...




AN BN

CN DN


 . (5.34)

For a simple cell as shown in figure 5.8a, the ABDC matrix can be easily calculated:



A B

C D


 =




1 + Z1/Z2 Z1

1/Z2 1


 (5.35)

where Z1 consists of the total inductance of the cell, the small geometrical inductance

Ll∆z and the linear part of the SQUID inductance LS
J0; and Z2 is the small capacitance

to ground of the transmission line Cl∆z. For the simple case where all the cells are

exactly the same, it is possible to show that a large enough array can be treated as a

continuous medium with an effective phase velocity approximately given by

vp =
∆z√

(LS
J0 + Ll∆z)(Cl∆z)

(5.36)

where I have assumed that the wavelength of microwave modes we are interested in is

much bigger than the cell spacing ∆z.4 In this case, a simple expression can be found

for the resonance frequency

fres(Φ) = f0
res

√
LT,0

Ll∆z + LS
J0(Φ)

, (5.37)

= f0
res

√
L0

T

Ll∆z + LS,0
J0 /| cos(πΦ/Φ0)|

, (5.38)

4 We can make an analogy with a similar system such as a one-dimensional array of masses connected
with springs as the one studied in the context of phonons. In that case, for very large wavelength phonons
or frequencies much smaller than the Debye frequency of the system, it can be shown that the dispersion
relation reduces to a linear expression between the frequency and the wavelength. Eq. 5.36 is completely
equivalent to this limit in the phonon case.
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where LT,0 = Ll∆z + LS
J0(Φ = 0), LS,0

J0 = LS
J0(Φ = 0) and in the second line I have

assumed the most ideal case, which implies identical junctions and negligible loop in-

ductance. In order to take into account loop inductance or different junctions in the

SQUID, we only need to substitute the appropriate flux-dependant value LS
J0(Φ) in Eq.

(5.37). Examples for the ideal case, Eq. (5.38), and the case of finite loop inductance

are plotted in figure 5.9.
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LJ2

∆z2

Cl ∆z2

Figure 5.8: (a) The unit cell of the microwave network used for the ABCD matrix
analysis in the ideal case of completely uniform cells. (b) A more complicated case
consist of a network with two different kind of cells (both the length of the cell and the
SQUIDs are different). The primitive cell consists of two of such smaller cells grouped
together.

Asymmetries in the junctions, or finite loop inductance only prevent a complete

suppression of the critical current of the SQUIDs (and therefore, put a limit on the

lowest achievable resonance frequency). However, other more serious problems can

arise in such large arrays. One in particular that we have observed is the case of non-
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identical SQUID areas. For example, one of the devices discussed in chapter 6 exhibited

this problem. The analysis with ABCD matrices can be done similarly as in the previous

case, as long as in the matrix-multiplication we consider the fact that there are going

to be two different ABCD matrices, one for each cell. It is also possible to consider a

larger cell of size ∆zT = ∆z1 + ∆z2 that encompasses both cells (Fig. 5.8b). Again, in

the case where the wavelength is much larger than the cell size, the array will behave

as a continuous medium with a phase velocity approximately given by

vp =
∆zT√

(LJ2 + LJ1 + Ll∆zT )(Cl∆zT )
,

from which the resonance frequency can be easily obtained.
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Figure 5.9: Resonance frequency fres as function of flux for there different networks: an
uniform array with identical junctions and negligible loop inductance (blue), an uniform
array with identical junctions and LloopI0/Φ0 = 0.1 (red), and an array that presents
two size of cells, ∆z1 = 1.67∆z2 (green).

5.2.2 SQUID arrays: a metamaterial with a Kerr-nonlinearity

So far we have only considered the linear limit of the Josephson junction array

resonator. In order to consider the nonlinear limit, microwave circuit theory becomes
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extremely cumbersome if we want to analyze the 400 degrees of freedom that describe

the 400 SQUIDs. Instead, we use the formalism of IOT. In order to do that, we model

the Josephson metamaterial as a Kerr-medium. We will estimate the effective Kerr

constant following closely Ref. [38] where they use the methods of quantum network

theory (Ref. [15]) to analyze a nonlinear transmission line.

The Lagrangian of a lossless transmission line with a length l is given by Eq.

(2.19)

L =
∫ 0

−l
dz

Cl

2

(
∂φ(z, t)

∂t

)2

− 1
2L′l

(
∂φ(z, t)

∂z

)2

,

=
1
2

∫ 0

−l
dzClV

2 − L′lI
2, (5.39)

where Cl and L′l are the capacitance and inductance per unit length. However, in this

case L′l is a nonlinear function of the current in the transmission line given by

L′l = Ll0 + ∆Ll

(
I

I0

)2

(5.40)

where I is the current in the transmission line, and I0 is the critical current of the

medium.5 The quantization of Eq. (5.39) is described in [38] and is not reproduced

here, but only briefly described. As in the linear resonators, the imposed boundary

conditions set the resonance frequency as well as the basis used for expanding I(z, t):

I(z, t) =
∑
n

vn(t)un(z).

The normal modes in the z-coordinate are the solutions of

d

dz

(
1
Cl

dun

dz

)
= −ω2

nLl0un (5.41)

with the following orthonormalization condition:
∫ 0

−l
Ll0unum = δn,m.

5 Reference [38] was meant to study the parametric gain observed in resonators made out of thin-film
superconductors which exhibit a nonlinearity described by Eq. (5.40). In that case I0 is just a parameter
that describes the nonlinearity of the film and it is a function of geometry and current distribution in
the superconducting film [64]. In our case, the nonlinearity of the medium comes primarily from the
nonlinear Josephson inductance of the SQUIDs and therefore, I0 will be given by the critical current of
the SQUIDs IS

0 .
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In Eq. (5.41), Cl and Ll0 can be space-dependant. Nonuniform transmission lines can be

used to to avoid strong intermode coupling when the resonators are driven non-linear,

as the different n-modes would not be equally spaced. However, the resonators that

we studied had uniform transmission lines. Ignoring the intermode coupling and all the

other modes of the resonator except for the first mode, the Hamiltonian is approximately

given by an expression similar to Eq. (3.40)

H = ~ω0A
†A +

~
2
KA†A†AA

where K is the effective Kerr constant. K is given by [38]

K = −~ω
2
0

I2
0

∫ l

0
dzu0(z)4∆Ll. (5.42)

For the the half-wavelength resonator, the boundary conditions used are

u0(0) = u0(−l) = 0,

and for the quarter-wavelength resonator

u0(−l) =
du0(0)

dz
= 0.

However, the final result for the Kerr constant K is equal for both cases, assuming an

uniform transmission line, and it is given by

K = −3
2
~ω2

0

I2
0

∆Ll

L2
l0l

(5.43)

In order to determine the Kerr constant for a series array of SQUIDs (Fig. 5.7a),

let’s first consider the Lagrangian per cell of an array of Josephson junctions:

Cl∆z
V 2

2
− Ll∆z

I2

2
+ EJ cos(δ).

In the previous expression, I used Eq. (3.22) for the energy of the Josephson junction

and Ll is the geometrical linear inductance per unit length of the transmission line.

Again, doing a Taylor expansion and ignoring the constant terms that do not affect
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the dynamics of the system, we obtain that the Lagrangian for a cell of size ∆z with a

Josephson junction is

Cl∆z
V 2

2
− I2

2

[
Ll∆z + LJ0 +

LJ0

4

(
I

I0

)2
]

. (5.44)

Comparing Eq. (5.44) with Eq. (5.40), we deduce that in our case in the continuum-

medium limit

Ll0 ≈ Ll +
LJ0

∆z
, (5.45)

∆Ll ≈ LJ0

4∆z
. (5.46)

In the case of a SQUID, the Kerr constant will be a function of the magnetic flux

through its dependance of the SQUID critical current (Eq. 3.23). In the case that the

self inductance of the SQUID loop is negligible compared to the Josephson inductances

of the SQUID junctions, the SQUID can be described as a single junction with effective

flux-dependent Josephson energy [75]:

ES
J =

√
E2

J,1 + E2
J,2 + 2EJ,1EJ,2 cos

(
2πΦext

Φ0

)
,

where EJ,i is the Josephson energy of the i = 1, 2 junction. We then would obtain

similar expressions to Eqs. (5.44-5.46), with I0 → IS
0 (Φ) and LJ0 → LS

J0(Φ).

Once we have estimated the effective nonlinearity of our Josephson metamaterial,

we can derive equivalent conditions to those explained in section 3.3.4. The main restric-

tion comes form the need of having the current through the SQUIDs be much smaller

than their critical currents when the amplifier is operated close to the bifurcation point.

Assuming a current standing wave with an amplitude Ia, the total energy inside the

resonator can be calculated by integrating over the standing wave shape. This yields:

E =
1
4
(lLl)I2

a

where I have assumed I(z) = Ia cos(πz/2l) and averaged over a cycle of oscillation. This

energy is also equal to the number of photons inside the resonator times the energy per
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photon, E = ~ω0N . Using Eq. (3.47) for the critical number of photons, Nc, as well as

Eq. (5.43) for the Kerr constant, I can then derive a condition similar to Eq. (3.83) so

that Ia/I0 ¿ 1. This restriction is:

Ia

I0
=

√
16

3
√

3
γ

ω0

Ll0

∆Ll
¿ 1 (5.47)

Defining an effective participation ratio6

p =
LJ0

Ll∆z + LJ0
,

then the restriction on the product of participation ratio and quality factor of the

resonator is √
32

3
√

3
1

Qp
¿ 1.

Note that this expression is, except for a factor of the order of unity, equal to Eq. (3.83).

The extra numerical factor is related to the averaging over the mode shape.

5.2.3 Loss and other ports

a1,out(t)

nonlinear cavitytest port 1 γ
1

a1,in(t) †

† †
       

2

H A A

K
A A AA

= ω +

anl,in(t)

nonlinear dissipationγ
nl

anl,out(t)

al,in(t)

linear dissipationγ
l

al,out(t)

a2,out(t)

test port 2 γ
2

a2,in(t)

h

h

Figure 5.10: Nonlinear cavity coupled to two ports plus two additional loss ports: a
linear loss port characterized by a coupling γl and a nonlinear loss port characterized
by a coupling γnl.

The inclusion of loss in the theory is easily done with the methods of IOT. As it

was shown in section 5.1.1 when we compared the results of the λ/4 and λ/2 resonator,
6 The participation ratio defined here is similar to the one expected for a series RLC-resonator as

the one shown in figure 3.16d (see Ref. [31]).
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the loss behaves as an extra port (one whose only input is noise). Therefore, we model

a resonator with loss by adding an extra port as shown in figure 5.10. The analysis is

very similar to the one port case, with the only difference being that the sum in Eqs.

(2.59) and (2.60) is done over all the n-ports (including the loss-ports). The analysis of

the critical points gives similar results to Eqs. (3.45-3.47)

ωp,c = ω0 +
√

3γ
K

|K| , (5.48)

(bc
i,in)

2 =
4

3
√

3
γ3

γi|K| , (5.49)

Nc =
2
√

3γ

3|K| , (5.50)

where i denotes the index port (i = 1, 2), and γ = γ1 + γ2 + γl.

For simplicity, I will consider the case where there is one driving port and one

loss-port. In that case, it can be shown that the equivalent equation to Eq. (3.56) is

given by

c1,out(ω) =
(
−1 +

2γ1(−iω + W ∗)
(−iω + λ0)(−iω + λ1)

)
c1,in(ω) +

2γ1V

(−iω + λ0)(−iω + λ1)
c†1,in(−ω) +

(
2
√

γ1γl(−iω + W ∗)
(−iω + λ0)(−iω + λ1)

)
cl,in(ω) +

2
√

γ1γlV

(−iω + λ0)(−iω + λ1)
c†l,in(−ω) (5.51)

= G1c1,in(ω) +M1c
†
1,in(−ω) + Glcl,in(ω) +Mlc

†
l,in(−ω). (5.52)

The signal and image gain are still defined the same way as in Eqs. (3.59) and

(3.60). From the amplifier’s point of view, the effect of linear loss (or even extra ports

such as in a lossless λ/2 resonator) is to generate extra-added noise as well as to reduce

the amount of squeezing. Calculating the spectral density of the output quadrature

operator (Eq. 3.72), I obtain

SXout,θ,Xout,θ
(ω) =

1
4
Sa1,in,a1,in

(
|eiθG1(−ω) + e−iθM∗

1(ω)|2 + |eiθG1(ω) + e−iθM∗
1(−ω)|2

)

1
4
Sal,in,al,in

(
|eiθGl(−ω) + e−iθM∗

l (ω)|2 + |eiθGl(ω) + e−iθM∗
l (−ω)|2

)

(5.53)
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where Sa1,in,a1,in is the spectrum of the incoming field of port 1 and Sal,in,al,in
is the

spectrum for the incoming field of the port representing the intrinsic resonator loss.

These spectrums are given by Eq. (3.67). Eq. (5.53) allow us to compute the noise-

power spectrum at any quadrature Xθ for any set of device parameters. It is important

to point out that due to the inclusion of loss, the signal gain G1 and image gain M1 will

not fulfill anymore the relations (3.57) and (3.58). Eq. (5.53) can be further simplified

in the case of ω = 0:

SXout,θ,Xout,θ
(0) =

1
2
Sa1,in,a1,in |eiθG1 + e−iθM∗

1|2

+
1
2
Sal,in,al,in

|eiθGl + e−iθM∗
l |2, (5.54)

=
1
2
Sa1,in,a1,inGθ +

1
2
Sal,in,al,in

Gl,θ. (5.55)

Eq. (5.55) will allow us to calculate the added noise of the amplifier as well as the

maximum amount of squeezing. In general, the added noise and squeezing will not only

depend on the gain of the maximum amplified quadrature G1 = Gθ=θ1 as in the case

of the lossless JPA, but it will also depend on the pump-detuning and pump powers;

that is, for the same gain G1, there is more than one possible value of squeezing and

added noise. This is shown in figure 5.12. However, the maximum squeezing and added

noise become single-valued in the limit of high gain. For the amplified quadrature, in

the high-gain limit, the added noise is given by:7

AN =
1
2

(
γl

γ1
coth(

~ωp

2kBTl
)
)

. (5.56)

For the case of multiple ports, Eq. (5.56) is easy generalized to

AN =
1

2γ1


∑

j 6=1

γj coth(
~ωp

2kBTj
) + γl coth(

~ωp

2kBTl
)


 . (5.57)

From Eq. (5.57) we can conclude that increasing the number of ports will just hurt the

noise-performance of the amplifier. It can be tempting to add a second port so that we
7 Note that we are using a single-sided spectral density and AN is really the added noise per unit-

bandwidth as defined in appendix A. In this convention, the added noise per quadrature per unit-
bandwidth of a quantum-limited phase-insensitive amplifier is 1/2.
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have a port dedicated for the pump (port 2) and another for only the signals (port 1).

However, if such a thing is necessary or desired, care must be taken to make the ports

highly asymmetric so that γ2/γ1 ¿ 1.

In the case of squeezing, again for large gains and ω = 0, Eq. 5.55 simplifies to

SXout,2,Xout,2(0) =
γl

γ

(
1
2

coth(
~ωp

2kBTl
)
)

(5.58)

where the output is specified in number of quanta. Eq. (5.58) shows the effect of loss in

the squeezing. In the case of Sa1,in,a1,in = Sal,in,al,in
, the maximum squeezing is given by

ξ = γl/γ (Eq. 2.87). The generalization to multiple ports is easily done by adding to

Eq. (5.58) the noise at the input of each extra ports multiplied by γi/γ. An interesting

thing, however, is that regardless of the number of ports, the maximum squeezing of

the internal field is always 50%, just as in the case of a single-port lossless parametric

amplifier.

η

Lossless

JPA

S
in

S
out

S
loss

S
loss

Figure 5.11: Loss model for a JPA where the loss is included as a beam splitter at the
input of a lossless amplifier (see Ref. [8]).

The inclusion of loss has complicated the expressions for the squeezing and added

noise, specially since they do not have a simple closed form unless we are in the large-

gain limit. There is another way to include loss that is somewhat simpler. Following

the model used by Yurke, et. al., in Ref. [8], the losses of an amplifier could be modeled

by placing a beam splitter at the input of the amplifier. In chapter 7, I will discuss
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more details of how inefficiencies of an amplifier can be modeled with a beam splitter.

For now, let’s just assume it is possible to model it this way. The effect of a beam

splitter is described by the relation between the input and output ports of the beam

splitter [26,28,76,77].



a′

b′


 =




√
η −√1− η

√
1− η

√
η







a

b


 (5.59)

where a represents the operator of the modes we want to amplify, and b the operator

of the noise that always accompanies dissipation. The effect of an amplifier with losses

on an input signal is then modeled as an ideal lossless JPA with a beam splitter at its

input, as shown in figure 5.11. One port is the signal port and the other port is just a

noise-port (this can also be considered a model for an attenuator). Assuming that both

noise-ports have the same spectrum (same temperature Tl), the output power at the

quadrature Xθ(ω) is given by

SXout,θ,Xout,θ
(ω) = η2Gθ(ω)

1
2
Sa1,in,a1,in + (1− η)(ηGθ(ω) + 1)

1
2
Sal,in,al,in

(5.60)

where Gθ is given by the lossless case of a JPA, Eq. (3.75). For the amplified quadrature,

X1, and large gains, the added noise is given by

AN =
SXout,θ,Xout,θ

η2G1

' 1− η

η
Sal,in,al,in

(5.61)

where the second line has been expanded to the leading order in G1. For the squeezed

quadrature X2, again in the case of large gain, the output quadrature noise is

SXout,θ,Xout,θ
' (1− η)Sal,in,al,in

. (5.62)

Both equations, Eqs. (5.61) and (5.62) can model Eqs. (5.56) and (5.58) by setting the

value of the beam splitting transmission to

η =
γ1

γ
.
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Note, however, that this is only valid at high gains. The functional form of the output

power spectrum evaluated from Eqs. (5.54) and (5.60) will in general not be identical.

The exact form depends on where the losses are embedded in the microwave network [8].

However, the beam splitter model has the advantage of having closed forms that can be

used to understand semi-quantitatively the effect of losses in the detection of a signal

and the squeezing of noise.
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Figure 5.12: (a) Squeezing ξ as a function quadrature gain G1 for the case of cavity
with loss γ1 = 13.6γl. The blue-shaded area represents all the possible values that ξ can
take for a given gain. The dashed-black line represent the theoretical high-gain limit
given by Eq. (5.58) and the red line represents the squeezing ξ according to the loss
model of a beam-splitter. η is given by γ1/γ. (b) Added noise AN as a function of G1

for the same case as in (b). The dashed-black line represents the theoretical high-gain
limit according to Eq. (5.56). The dashed-cyan line represents the effective added noise
a linear cavity would have just due to its attenuation on resonance |Γ0|2, where Γ0 is
given by Eq. (5.28). The value of γ1 = 13.6γl was chosen based on the fact that most
of the data shown in chapter 6 for the λ/2-resonator was for a frequency at which the
resonator linewidths had these particular values.

Finally, one phenomenon that has been observed in these microwave cavities is

power-dependant loss. Power-dependant loss has been observed in superconducting res-

onators [69,70,78] where the loss decreases as the power of the probing tone is increased.

However, the effect observed in our resonators has the opposite power-dependance: as

we increase the probing microwave tone power, the loss of the resonator seems to in-



121

crease. We do not have an explanation of this phenomenon. Although we do not know

the specific process that causes this nonlinear loss, we can still model it as it is done

in Ref. [38]. The most obvious effect of this nonlinear loss is a deviation from the ex-

pected behavior of the resonance frequency (Fig. 5.13). In a nonlinear resonator with

only linear loss, as we increase the pump power, the Kerr nonlinearity makes the res-

onance frequency decrease according to the equation ω0 − ωm + KN = 0, where ωm

is the frequency at which Γ is minimum, K is the Kerr constant, and N is the energy

stored in the resonator in number of quanta [38]. In the case of zero non-linear loss, the

pump-amplitude dependance of the resonance frequency would be purely quadratic:

ωm − ω0 = − 8γ

3
√

3

(
b1,in

bc
1,in

)2

where bc
1,in is the critical amplitude of the pump given by (5.49). Nonlinear loss is

modeled by defining a nonlinear loss coefficient γnl such that the total loss is given by

γ = γ1 + γl + γnlN.

In this case the simple quadratic dependance of the resonance frequency ωm is no longer

valid, and it then becomes a slightly more complicated expression:

ωm − ω0 = − γ

3ε
[g(x)− 2] (5.63)

where ε = γnl/|K| (See Ref. [38]). The function g(x) is given by:

g(x) =
1 + (|x| − √x2 − 1)2/3

(|x| − √x2 − 1)1/3

and x is given by

x = − 36√
3
ε

1 + ε2

(1−√3ε)3

(
b1,in

bc
1,in

)2

− 1.

The observed effect due to nonlinear loss in the first experiments using aluminum res-

onator was not small, thus a nonlinear term was included in their analysis. However,

for the second generation of devices (niobium resonators) the nonlinear loss was small

so I will not include it in their analysis.
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Figure 5.13: (a) Parametric plot of the real and imaginary part of the reflection co-
efficient Γ as a function of frequency for 4 different values of pump amplitude b1,in:
b1,in/bc

1,in ' 0 (blue), b1,in/bc
1,in = 0.5 (red), b1,in/bc

1,in = 0.75 (green), and b1,in/bc
1,in = 1

(black). The resonator does not have any linear loss, γl = 0, and the nonlinear loss is
ε = 0.2. As the the pump power is increased, the circle that represents the reflection
coefficient shows an increase of the losses represented by the reduction in size of the cir-
cle. (b) Change of resonance frequency ωm as function of normalized pump amplitude
b1,in/bc

1,in for ε = 0 (red) and ε = 0.2 (blue).



Chapter 6

Experimental results of JPAs

In previous chapters I have laid the necessary background to understand the ex-

periments that I will now describe. But before I describe the experiment, it is necessary

to discuss the different experimental techniques used to characterize the amplifier.

The experiments I now discuss are, in a sense, very similar to quantum optic

experiments, with the very important difference of the frequency of light used. Maxwell’s

equations do not show a preference for a particular frequency, but practical issues do

matter when it comes to doing the experiments. The frequency band where we operate

is between 4 to 8 GHz. Higher microwave frequencies imply a more challenging design,

as parasitic reactances are harder to prevent and parasitic resonance modes can affect

the measurement of the Josephson parametric amplifiers. Lower microwave frequencies

could be used. However at much lower frequencies, even at the temperatures of a dilution

refrigerator (Tfridge = 10 mK) it would not be possible to achieve a true vacuum state

of the electromagnetic environment (kBTfridge/~ ' 2π × 200 MHz).

In this chapter I will first discuss the requirements to make our measurements

at cryogenic temperatures and the apparatus used to analyze the measurements at

room temperature. Then I will discuss, in general terms, all the measurements used

to characterize the Josephson parametric amplifier, and then discuss individually the

different samples that we have tested.
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6.1 Instrumentation and measurement techniques

Performing quantum optics experiments at GHz frequency demands careful fil-

tering and attenuation of microwave signals generated a room temperature. First the

thermal energy at room temperatures kBTroom is much greater than photon energy ~ω

at microwave frequencies (300 GHz> ω >300 MHz). In addition, Josephson junctions,

which provide the crucial dissipationless nonlinearity at microwave frequencies, only

work at low enough temperatures for the metal used in the fabrication to become a su-

perconductor. These facts imply that the experiments discussed here are all performed

at cryogenic temperatures, with temperatures as low as 10 mK. Thus, there are strict

filtering requirements in order to ensure that the electromagnetic environment that the

sample sees is mostly devoid of thermal photons.

6.1.1 Microwave measurement at ultra-low temperatures

(a) (b)

4K plate

Still (800 mK)

100mK plate

mixing chamber

plate (15 mK)

Figure 6.1: The dilution cryostat is a Cryoconcept system. (a) The full cryostat is
shown with a typical measurement setup. The metallic cylinder around the dewar is a
µ-metal magnetic shield. (b) The main part of the fridge sits inside a vacuum can (not
shown). The sample is located at the coldest stage, the mixing-chamber plate.
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All the experiments I describe in this thesis were performed in a Cryoconcept

200 µW dilution cryostat with a base temperature of 10 mK (Fig. 6.1). The cryostat

contained a Nb-Ti magnet capable of generating magnetic fields as high as 9 T. But

it was only used to apply small fields (a few gauss) to tune the critical current of the

SQUIDs inside the resonator. However, for the most recent experiments, the 9-tesla

magnet was removed and replaced by a much smaller magnet manually built using

superconducting wire with a copper core (Fig. 7.8). Due to certain problems with

the cryostat, its performance is somewhat degraded and the base temperature is only

15 mK.

Launching and sample box

The sample was placed at the mixing chamber stage (Fig. 6.1b). The chip which

contained the device was located inside a light-tight sample box where a printed circuit

board (PCB) with the appropriate traces was located (see Fig. 6.2a). The sample box

is a gold-plated OFHC (oxygen-free-high-conductivity) copper enclosure that provides

a shielded environment to the chip as well as to the circuit board to which the chip is

wirebonded (Fig. 6.2b).

The main purpose of the PCB is to implement the transition of the signals from

the semirigid coaxial cables that transport them, via connectors, to the circuit board.

The transition from the cables to the circuit board is accomplished using a right angle

surface mount SMP connector from Rosenberger. These connectors have good perfor-

mance up to 20 GHz. In order to suppress parasitic modes between the ground planes,

the top ground plane is shunted periodically to the bottom plate using vias as shown

in figure 6.2b. However, this does not prevent possible microwave sample-box modes.

Initially, we had not been concerned about this possibility, but measurements performed

by other members of our group [79] found that the sample box initially used for the

measurements did contain 3 resonant modes in the 4-9 GHz range (Fig. 6.2c). Another
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Figure 6.2: The sample box is a light-tight enclosure. It was built out of high-
conductivity-oxygen-free copper and gold-plated for maximal thermal conductivity. The
circuit board has 4 coplanar waveguide lines, 3 lines for coaxial dc-lines, and 8 lines for
dc-wires. This last lines have not been used yet, so a copper plate is screwed on the lid
of the sample box to keep it light-tight. (b) A chip is glued down to the sample box with
GE-varnish or rubber cement. It is electrically connected to the PCB with aluminum
wirebonds. The chip is placed in a cut-out in the circuit board to align the traces on
the PCB and on the chip as closely as possible. (c) The sample box was cooled down to
77 K with no PCB or chip inside. Using ports (1) and (2) shown in (a) the transmission
parameter S21 was measured showing three well defined resonant modes of the sample
box.
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concern is the impedance mismatches when coupling to the chip using wirebonds. The

inductance of these wirebonds is approximately proportional to their length. Their in-

ductance per unit length is of the order of the free space value, µ0 = 4π × 10−7 H/m.

In order to minimize the length of the bonds as much as possible as well as match the

modes of the chip and circuit board as closely as possible, the CPW traces of the chip

are aligned to the CPW traces in the PCB (Fig. 6.2b). Also, the chip is located in a

hole cut out in the circuit board that closely matches the size of the chip (Fig. 6.2a).

The circuit board is connected to the chip using as many wirebonds as we can fit around

in the center connector (2-3 wirebonds depending on the graduate student wirebonding

skills) and the skinny ground-planes (5-8 wirebonds in each skinny-ground-plane), to

lower the inductance as much as possible.

Filtering and attenuation

As I mentioned at the beginning of the chapter, filtering is an integral part of any

cryogenic experiment. In our experiments, all the signals (both dc and rf signals) are

carried using semi-rigid coaxial cable. Even though the sample box provides a shielded

environment, the cables provide a path for the noise to couple to the JPA. In general,

we only have rf-lines. However, for some diagnostic measurements, we use dc-lines.

The rf-lines are divided into input and output lines. The filtering and attenua-

tion of input rf-lines is related to the removal thermal noise from room temperature.

At frequencies of interest (4-8 GHz), the power has an exponential dependance with

temperature. Hence the filtering requirements become very important. At a frequency

of 8 GHz and temperatures above 400 mK, thermal Johnson noise will be significant.

Since the signal and noise are in the same band, in the case of the rf-lines rather than

filtering we attenuate the noise coming from room temperature. The amount of atten-

uation implies a compromise, as the more attenuation one puts, the more power one

has to be able to generate at room temperature to send down the heavily attenuated
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input lines. Also, if too much attenuation is used, that means there will be a significant

amount of power dissipated at the different cold stages of the cryostat. This dissipated

power may be so large, that the temperature of the cryostat may increase substantially.

Ideally, the necessary attenuation is the ratio of the black body spectra at the two

temperatures [80] of interest, 10 mK and 290 K

A(f) = −10 log

(
ehf/kBT1 − 1
ehf/kBT2 − 1

)
.

A frequency of f = 8 Ghz implies a total of 140 dB of attenuation, which is from a prac-

tical point of view, impossible. The attenuation that we use is much less than that. Nev-

ertheless, the estimated quanta of noise per unit bandwidth.SX,X = 1/2 coth(hf/kBT )

is still close to the 1/2 of vacuum noise1 In order to go from room temperature (290 K)

to liquid helium temperature (4 K), a 20 dB attenuator is placed at the 4 K plate.

To go from 4 K to 15 mK another 20-40 dB of attenuation was used, depending on

the experiment. The attenuators were placed at the mixing-chamber plate. The cables

provide an additional 10 dB of attenuation, for a total of 50-70 dB. In spite of the large

amount of attenuation, the power of the tones sent to probe the JPA was low enough

that heating of the mixing chamber stage was not observed. When only 40 dB of atten-

uation was used, the estimated incident noise in the device was Sin = 0.65−0.7 quanta.

When 60 dB was used, the thermal noise due to the attenuated noise coming from room

temperature was insignificant, with Sin = 0.502 quanta.2

The attenuation of the rf-input lines is required to remove classical noise from

microwave tones. In our case, we use an Agilent E8257D microwave analog signal

generator. However, the signals at the output of these microwave generators are not

coherent states, having large amount of phase and amplitude noise, as can be observed in
1 In the rest of chapter 6, 7 and appendix B, I will change the convention to name the single-sided

spectral densities of a quadrature SX,X . The main reason is that I will use the subscript index to refer
to the different possible locations in the experiment setup.

2 As we will see in this chapter, depending on the attenuation used for the noise-calibration line, the
main source of thermal noise can be the losses of the microwave switch used to estimate the added noise
of the amplifier.
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their data sheet [81]. In order to obtain a coherent state at the sample inside the dilution

refrigerator, we must attenuate the output of the microwave generator to remove this

extra phase and amplitude noise. The amplitude and phase noise are defined relative

to the carrier, in units of dBc/Hz. Thus, they are approximately independent of the

carrier power. Nonetheless, the voltage fluctuations associated with the AM or PM

noise do depend on carrier power. It is the critical power of the parametric amplifier

that determines the amount of attenuation required to reduce the amplitude and phase

noise of the generator below the level of vacuum fluctuations. In the case of the Niobium

resonators, the critical power using the strongly coupled port in the case of the half-

wavelength resonator, or using the only port in the quarter-wavelength resonator, is

about -90 dBm or less. From the data sheet of the signal generator, for an 8 GHz

carrier tone the manufacturer’s estimate of phase noise is -120 dBc/Hz at 100 kHz

offset from the carrier. The phase noise decreases at larger offset frequencies; i.e. it is

-140 dBc/Hz at a 500 kHz offset. The amplitude noise is always smaller than the phase

noise. The question is how does the amplitude and phase noise of a -90 dBm carrier

tone compare to the noise of vacuum flucuations at 8 GHz, ~ω/2 = 2.65×10−24 W/Hz?

At 100 kHz, -210 dBm/Hz is 1 × 10−24 W/Hz, or slightly more than 1/3 of vacuum

noise. However, at 500 kHz, the extra phase noise is 2 orders of magnitude smaller,

which for our purpose is rather insignificant.3

Filtering of the dc-lines is very different. The only kind of dc-measurement we

performed was current versus voltage (I-V) curves. These measurements do not require

high bandwidth, but they employ much higher voltages. We use low pass filters with

very low attenuation at dc, but very large attenuation at microwave frequencies where

most of the thermal noise power is located. There are many different types of low pass
3 Note however that when performing a homodyne measurement with a mixer, if both the LO and

pump of the JPA come from the same signal generator, we become immune to the phase noise in the
detection, but when two different signal generators are used, we will filter the low frequency phase noise
at the output of the detector.



130

10
6

10
8

10
10

-100

-50

0

|S
2
1
| (

d
B

)

frequency (Hz)

(a) (b)

Figure 6.3: (a) Picture of one of the low pass powder filters (PF) used for the dc-
measurements in our cryostat. (b) |S21| as a function of frequency for the filter shown
in (a). Transmission data from 100 MHz to 40 GHz was taken with the Anritsu 37269B
network analyzer. Data below 100 MHz was taken with a Hewlett Packard 8712B net-
work analyzer. While this data was taken at room temperature, there is only a small
change in when used at cryogenic temperatures.

filters available but for this experiment we use copper powder filters (Fig. 6.3a) [82].

These filters consist of a long (1 m) copper wire that is coiled and immersed in epoxy

(Emmons and Cummins 2150) and copper mesh powder (spherical APS 10 microns)

mixture. This structure is housed in a copper box with SMA connectors at both ends.

The high frequency loss comes from the powder itself, and the filters achieve attenuation

greater than 80 dB at frequencies greater than 1 GHz (Fig. 6.3b). These filters have a

cutoff at around 5-10MHz.

Separation of input and output signals

The Josephson parametric amplifier is operated as a reflection amplifier, and in

order to characterize it, we need to be able to separate the incoming and outgoing sig-

nals in the same cable. This is accomplished using directional couplers and microwave

circulator. Directional couplers are passive microwave components used for power divi-

sion or power combining (Fig. 6.4a). A directional coupler is a four port network with
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Figure 6.4: For the separation of the input and output signals, two microwave devices
are used. (a) The directional coupler is characterized by the coupling C, the directivity
D and the isolation Is. The coupling indicates the fraction of the input power P1 that
is coupled to port 3 (P3). The isolation is a measure of the directional coupler’s ability
to avoid power-leakage from port 1 into port 4 (P1/P4) as is the directivity (P3/P4).
The ideal directional coupler would have infinite directivity and isolation, so it would
be completely characterized by the coupling factor C. (b) A circulator is a passive
non-reciprocal three-port device. Power entering any port is ideally only transmitted to
the next port in rotation. In reality, some power leaks to the other port. The amount
of leakage power is determined by the isolation Is of the circulator.

one of the ports usually terminated with a 50 Ω resistor; it is the microwave analog of

a beam splitter. The basic operation of an ideal directional coupler is the following.

Power supplied to port 1 is coupled to port 3 with the coupling factor of C, while the

remainder (1−C) is delivered to port 2. In an ideal directional coupler, no power is de-

livered to port 4. The directional coupler used in our experiment was a MAC C2056-20,

with C = 0.01 = −20 dB of coupling.

A circulator is a three-port non-reciprocal device (Fig. 6.4b). In an ideal circula-

tor, all the power entering port 1 will exit port 2, powering entering port 2 will exit port

3 and powering entering port 3 will exit port 1. And assuming all ports are matched, no

power flows in the reverse direction. The nonreciprocal nature of the circulator requires

a magnetized material to break time reversal symmetry; therefore, they emit large stray

magnetic fields.4 For that reason, we place them outside the magnetic shield far from
4 Shielded circulators can be purchased, but the shielding is big and bulky. This bulk can be a
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the sample. The circulator used at low temperatures is a Pamtech CTH-1394K. It is

specified to work at low temperatures. It provides 18-30 dB (a specified minimum of

18 dB) of isolation and has a bandwidth of one octave (4-8 GHz).

Low temperature amplification

(b) (c)

=
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Figure 6.5: (a) The effective noise temperature of the whole chain of amplifiers is cal-
culated by referring each amplifier’s noise to the input of the entire chain. Ideally, the
first amplifier has enough gain that it sets the noise-floor. (b) Picture of the HEMT
amplifier. It was purchased from Sandy Weinreb’s group in Caltech. (c) Gain and noise
temperature measured by the manufacturer at 12 K of both HEMTs our group owns.
The used amplifier performance is shown as the red-trace.

As I mentioned in chapter 2, any phase-preserving amplification must necessarily

result in an increase in the noise of the measurement. If there are several amplifiers in

series, the first stage of amplification is the most important in determining the noise

nuisance in the small space inside a dilution refrigerator.
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of the measurement. Ignoring possible losses between different amplifiers, the added

noise of the amplifier chain with n amplifiers can be calculated by referring the total

output noise at the output of the chain to the input of the first amplifier (Fig. 6.5a). By

dividing the total output noise by the total gain, then it is easy to see that the effective

added noise Asys is given by

Asys = AN,1 +
AN,2

G1
+ ... +

AN,n

G1G2...Gn−1
.

Ideally, the first amplifier is operated with high enough gain such that it sets the noise

floor of the detector, Asys ' AN,1.

Our first amplifier (ignoring the JPA) is a high-electron-mobility-transistor (HEMT)

amplifier with a noise temperature of TN = 5− 10 K, depending on the frequency (Fig.

6.5b). We did the appropriate tests to ensure that less than three percent of the system

noise was contributed by the amplifiers and components that follow the HEMT ampli-

fier. It is thermally anchored to the 4 K plate, the lowest temperature at which it is

possible to dissipate the 20 mW of amplifier bias power without raising the temperature.

In order to prevent the noise emitted by the input of the HEMT amplifier from exciting

the JPA, a circulator with the third port terminated with a 50 Ω resistor is placed at

base temperature (in this configuration, the circulators are called isolators). Thus, the

noise seen by the device would ideally be the Johnson noise of the 50 Ω resistor.

Thermal anchoring

One final situation that deserves some discussion is the thermal anchoring of

the cables. At low temperatures, thermal conductivity, especially due to phonons, is

substantially reduced. This means that care must be taken to ensure that cables and

components are properly heat sunk. The outside of the cables is easily heat-sunk to

the different stages5 by using brackets that are attached to the plates of the cryostat
5 The outer conductor is anchored to the all the plates 4 K, still, 100mK as well as the mixing

chamber in order to minimize the total heat load.
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as shown in figure 6.6a. However, a constant problem is how to heat-sink the center

conductor of the cables. The attenuators provide a resistive connection through which

heat can be dissipated from the center pin to the cable shield (and cryostat). Both the

outside shield and center pin of the circulators are heat-sunk as well. The outside is

heat-sunk using copper braid and copper brackets, and the center pin is heat-sunk when

they are used as isolators as the third port is terminated with a 50 Ω resistor to ground.

This termination is anchored to the base temperature. In the case of the dc-lines, the

heat-sinking is accomplished via the filtering elements. The copper powder filters allow

the center pin to come to thermal equilibrium.

In some instances, we need to thermalize the center conductor of a coaxial cable

without using an attenuator. In those cases, we use a microwave component called bias

tee. Bias tees consist of an inductor and a capacitor connected as shown in figure 6.6b

and are usually used to supply dc currents or voltages to rf-devices. However, we use

it to heat-sink the center conductors by shorting the dc-port to the fridge ground. The

rf-signals are injected though the rf-port and come out of the rf+dc port with very low

attenuation. The insertion loss of the the bias tee used for this purpose (Anritsu K250)

is about 0.5 dB at room temperature at the frequencies we used.

In order to thermally isolate the different stages of the fridge the choice of semi-

rigid cable is also important. For this purpose, we can divide the cryostat in 4 sections.

For the cables from room temperature to the liquid-helium bath, we use stainless steel

outer, silver-plated-copper-weld (SPCW) inner conductor. In the helium bath, we used

cable with copper outer and copper, or SPCW, inner conductor. The cables chosen to

go between the 4 K plate to the mixing chamber must be of a low thermal conductance

material for both the center pin and the outer conductor. Stainless steel inner and

outer conductor (ss-ss) cables were used for the input lines. Unfortunately, its high

thermal resistance comes with a large electrical resistance making them quite lossy, and
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attenuating a signal around 2 dB/ft at 8 GHz.6 This extra attenuation is not a concern

for the input lines, but in the output lines it would increase the noise temperature of

the amplifying chain. For the output lines, superconductor cables, niobium, or niobium-

titanium (NbTi) alloy, were used to avoid the attenuation of the stainless steel cables.

Copper heat-sinks

Stainless steel 

coaxial cable

NbTi coaxial cable

HEMT

rf

dc

rf+dc

(b)(a)

Figure 6.6: (b) Heatsinking of the semi-rigid cables is done using copper-brackets ma-
chined from OHFC copper. The HEMT is heatsunk with a copper bracket for the outer
shell. The center pin is thermalized to 4-K using a bias-tee with the dc-lines short-
circuited. (a) Picture and schematic of a bias tee used for thermal sinking. The model
used is an Anritsu K250.

6.1.2 Microwave measurements at room temperature

The generation of microwave tones, in order to probe the behavior of the JPAs,

is accomplished either using the microwave signal generators I described in the previ-

ous section, or using a vector network analyzer (Anrtisu 37269B). The vector network

analyzer is a two-channel microwave receiver, which is used to measure the scattering

parameters of a microwave network. It is designed to provide phase and magnitude
6 This value was estimated based on a ss-ss cable cooled down to 77 K.
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information by generating a signal at one of its ports and analyzing the power transmit-

ted to a second port and the power reflected back to the first port. However, for most

of our measurements, the microwave tones are created by signal generators. To cre-

ate multiple copies of the same tone, we split the generators output using 3-dB power

splitters and we attenuate and phase-shift the tones for their different purposes: the

pump, the mixer LO, the small gain-calibration tone and the carrier-cancelation tone.

For the carrier cancelation tones used in experiments described in chapter 7, variable

attenuators Arra 5814-20A-1A and variable phase shifter Arra 9425A are used to set

the appropriate amplitude and phase.

X2
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(b)(a)
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High-frequency  
microwave tone

IF

amplitude-modulated
(am) test tone

Low-frequency  
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Figure 6.7: (a) Up-conversion using a mixer. A low frequency tone enters the IF-port
and is multiplied by a the local oscillator (LO). The output of the mixer is an amplitude
modulated signal with power in its spectrum at frequencies ωLO±ωIF . (b) In principle,
two different kind of modulated signals can be used to probe the phase-dependent gain
of the JPA: amplitude-modulated (blue) and phase-modulated (red) tones. For our
experiments, we only used AM-tones. However, in chapter 8, the signal I will amplify
using a JPA consists of phase-modulated information on top of a large carrier (red).
The only difference is a 90◦ phase shift in the phase dependance of the JPA gain.

For the detection of the signals at room temperature, we use commercial spectrum

and network analyzers. A spectrum analyzer gives a frequency-domain representation

of an input signal and displays the average power spectral density as a function of
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frequency. The spectrum analyzer we used was Hewlett Packard E4407B spectrum

analyzer. We also implement our own analyzer using a mixer and digitalization cards.

A mixer is a device used to provide frequency conversion between an input signal and

an output signal. We use mixers for both up-conversion and down-conversion. Up-

conversion refers to the process of taking a low-frequency signal and transforming it into

a higher frequency one (Fig. 6.7a). There are two options to do this, using amplitude

modulated or phase modulated signals (Fig. 6.7b). We chose amplitude modulated

signals for the test-tone to measure the phase-dependant gain (the only difference in

using a phase modulated signal is that the maximum gain would occur with a 90◦ phase-

shift in the LO). The output of the mixer is an AM microwave tone with the carrier

strongly suppressed. It is basically the same as the AM-tone shown in figure 6.7b, with

the exception that the modulation amplitude is large compared to the average value of

the carrier (indicated by the red phasor). The up-conversion in the case of an AM-tone

is equivalent to multiplying the LO tone by the input of the IF-port. The output port in

the up-conversion is the RF-port. The microwave tone at the RF-port A(t) cos(ωLO+φ)

is given by

A(t) cos(ωLO + φ) = cos(ωIF)× cos(ωLO + φ) (6.1)

=
1
2

[cos(ωLO − ωIF + φ) + cos(ωLO + ωIF + φ)] . (6.2)

In Eq. (6.1), it is clear that even though the signal consists of two tones at different

frequencies ωLO ± ωIF, the phase of the signal is given by the LO phase φ, and the

amplitude of the signal is A(t) = cos(ωIF), a slow function of time (ωIF ¿ ωLO). The

AM-tone generated allows us to apply a signal with the appropriate linear combination

of input fourier modes (Eq. 3.79) in order to measure the phase-dependance of the JPA

gain Gθ. The mixer used for the up-conversion is a Mini-Circuits ZMX-10G.

For the detection of microwave fields, the mixer is used for down-conversion. In

the down-conversion process, the input is the RF port and the output is the IF port.
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Next a brief and qualitative description of the down-conversion operation of a mixer is

discussed; for a full explanation of the operation of a mixer, the reader is referred to

Ref. [16]. For a given RF and LO microwave tone frequencies, two nominally equal-

amplitude output signals are produced at the sum and at the difference of the RF and

LO frequencies. This is effectively the same as saying that the mixer output consists of

the result of multiplying the input signal A cos(ωst + φ) by the LO

A cos(ωst + φ)× cos(ωLOt) =
1
2
A [cos([ωs − ωLO]t + φ) + cos([ωs + ωLO]t + φ)] .

In the down conversion process, the second term is removed by a low pass filter. In

most of our cases ωLO = ωs. This case is usually referred in the literature as homodyne

detection, and the case where ωLO 6= ωs is called heterodyne detection. We use a pair of

mixers configured in a particular way to form a so-called IQ-mixer. In this configuratoin,

the LO is split in two tones and one of them is phase-shifted by 90◦. Then, the input

signal at the RF-port is also split in two and each multiplied by the two LO-tones. The

two output ports are given by

I(t) = B(A(t) cos(φ)) (6.3)

Q(t) = B(A(t) sin(φ)) (6.4)

where B is just the mixer gain.7 From Eqs. (6.3) and (6.4), we can then deduce that

the I-port just gives the X1 quadrature and the Q-port the X2 quadrature relative to

the LO (Fig. 6.8). With this down-conversion process, the amplitude and phase of the

original signal have been mapped onto two lower frequency signals. Both, the amplitude
7 In reality, the IQ-mixers are not ideal and contain both phase and amplitude unbalance. That is

that the real outputs of the I and Q port are given by

I = I0 + BIA(t) cos(φ)

Q = Q0 + BQA(t) sin(φ + ϑ)

where I0 and Q0 are dc-offsets, BI 6= BQ and ϑ 6= 0. In the cases that it is necessary, such as when
implementing a network analyzer with the mixer, this imperfections are corrected in the computer by
calibrating the mixer before taking the data. The calibration is similar to the one explained in appendix
F of Ref. [83].
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A (AM-tone) and the phase φ (PM-tone) of the signal can be a slow (compared to ωs)

function of time (Fig. 6.8b). In this case, the spectral content associated with the slow

variations in A(t) and φ(t) appear with a frequency offset ω as the spectral content at

the I and Q ports of the mixer (Fig. 6.8b). The mixers used for the down-conversion

are Marki Microwave IQ0307LXP and IQ4509LXP.

The output of the I and Q ports are first amplified (to compensate for the 6 dB

conversion-loss of the mixer), low-passed filtered by an anti-alising filter that sets the

bandwidth of the measurement, and then digitized using a digitizer card (DAC). For

all the experiments in this chapter, a NI-6122 and an Acquiris DP-240 card were used.

The NI-6122 had a maximum sampling rate of 500 kHz and a 16-bit resolution. This

card was used for the aluminium resonators, which had much smaller bandwidth. The

Acquiris DP-240 was used for the niobium resonators since it had a maximum sampling

rate of 1 GHz, but it was an 8-bit resolution card. For the experiments of chapter 7, an

Alazar ATS460 card with 14-bit resolution was used in order to improve the linearity

and accuracy of the measurements.

6.2 Characterization of the resonator

In order to characterize the resonators, we need to perform multiple kinds of

measurements. The first ones I will describe are dc-measurements of test junctions. I

will then describe the measurements done on the JPA that test only its linear and non

linear resonator behavior. Finally I will describe all the tests made to characterize the

amplifier performance.

6.2.1 dc-Characterization of Josephson junctions

In order to estimate the resonance frequency of the resonator, I need to know the

total inductance of the Josephson junctions. For that, we placed a few test junctions in

the chip. Once fabrication is completed, whether it is done by me or our colleagues at
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Figure 6.8: (a) Signal entering the RF-port of the mixer. Besides the carrier (red
phasor), the signal contains information in the form of amplitude modulation (blue)
and phase modulation (red). The projections of those modulations onto the I-axis are
shown. (b) Down-conversion process. A tone is applied to the RF-port of the mixer.
Regardless of whether it is phase or amplitude modulated, its spectrum has two tones
equally spaced from the main carrier. After going through the mixer the information
contained in those tones are shifted down in frequency. The main carrier (red) will
appear at dc (ω = 0), while the side-tones will appear at a frequency ω. The magnitude
of the power at ω will be proportional to the projection of the modulation onto the I
or Q channel.
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NIST, these test junctions are probed at room temperature to ensure that the resistances

are as designed. This is done with a probe station connected to the same equipment

used for the dc-measurements in the cryogenic experiments (Fig. 6.9a). Two kind of test

structures were probed: single SQUIDs and series arrays of SQUIDs. Particular care

must be taken not to damage the devices with electrostatic discharge during handling

and dc measurement. Single SQUID test structures are the most susceptible to damage.

The arrays are more robust.

The dc measurements setup is shown in figure 6.9a. All measurements were

single-ended using coaxial cables (either BNC when probing the junctions at room

temperature, or semi-rigid cable with SMA or SMP connectors when tested in the

cryostat). The devices are wirebonded to the cryostat ground through the PBC ground.

The I-V curves are taken by measuring the voltage drop across a series bias resistor at

room temperature. In order to have a very stable dc-bias, a Yokogawa 7651 dc-voltage

source is used. Using low noise instrumentation amplifiers, the voltage across the bias

resistor and across the device are measured with Agilent 34401A digital multimeters.

When their I-V curves are measured at 15 mK, we can observe the characteristic features

of Superconducting-Insulator-Superconducting junctions (Fig. 6.9b).

There are essentially three distinct regimes. The first region is the dissipationless

supercurrent at V = 0. In the second region, the subgap region 0 < |V | < 2∆/e, the

current drops many orders of magnitude. As the voltage bias reaches 2∆/e, there is

a sudden increase of quasiparticle tunneling current. At higher voltages, the dynamic

resistance asymptotically approaches the normal state resistance Rn of the junction

above the transition temperature Tc [33]. Our dc-measurement measures all three re-

gions, providing a direct measurement of the two main parameters for characterizing

a junction, Rn and I0. Yet, there is a few caveats I should mention. The two sharp

features of the I-V curves, the gap-rise current at V = 2∆/e and the supercurrent at

V = 0 are very susceptible to noise. Specifically, the supercurrent itself is an extremely
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Figure 6.9: (a) Setup for the dc-measurements of the test SQUIDs. The output of a
floating voltage source (Yokogawa 7651 dc-voltage source) is sent to a “bias-box”, shown
as the blue dashed-line box in the figure. In the bias-box, the voltage is attenuated with
a voltage resistive-divider. The attenuated voltage is then connected to the device
under test (DUT) via a bias resistor Rbias. The voltages across the bias resistor and
the device are amplified for simultaneous measurement of the current and voltage and
measured with two digital multimeters (DMM) Agilent 34401A. The output of the bias-
box is also splitted and sent to two unity-gain-isolation amplifiers, referred to as the
iso-box (and shown as the red dashed-line box in the figure). The iso-box is used to
prevent a ground-loop between the oscilloscope and the cryostat. (b) Characteristic I-V
curve of Superconducting-Insulator-Superconducting junction with a normal resistance
of Rn, (blue) and the expected linear response of a resistor with the same value. The
measurement of the I-V curve using the setup just described would use a load-line
(green) with a slope of 1/Rbias.

sensitive threshold detector and spurious noise can make the junction to switch from the

supercurrent state to a dissipative state prematurely, that is before the current reaches

the theoretical maximum of I0. Likewise, the gap-rise also represents a sharp feature

that can easily be rounded. In some cases, due to self-heating, the gap-rise shows a

“backbend” caused by an excess of quasiparticles, locally reducing the gap.8 There-
8 This is particularly true in the SQUID arrays.
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fore, it is important to distinguish the measured maximum supercurrent and the one

that we would theoretically expect from the junction resistance and Eq. (3.17). Also,

there will be features that I will miss in the measured I-V curve, as the load line of

the measurement will determine exactly how close to the supercurrent one can stably

bias (Fig. 6.9b). In order to estimate the Josephson inductance, the resistance of the

junction and Eq. (3.20) is used.

6.2.2 Linear measurements of the resonators

Anritsu
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20 dB4.1 K
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Figure 6.10: Simplified schematic used to measure the S-parameters and nonlinear be-
havior of the resonator with a Network analyzer. The JPA is measured in a cryostat
held at 15 mK. We can send the testing signal to port 1 or 2 of the resonator to measure
S11 or S12. In the case of a quarter-wave resonator, it only has one port. Hence only
S11 is measured.

The linear parameters of the resonators are measured using a vector network an-

alyzer using a probing signal with very low power (compared to the critical power of the

resonator). By measuring the reflection and transmission coefficient of the resonators,

we can estimate the linear coupling parameters γi and the loss γl. Depending on the
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kind of resonator (λ/4 or λ/2), only the reflection coefficient S11, or both the reflec-

tion and transmission S12 coefficient can be measured. A simplified schematic of the

measuring setup is shown in figure 6.10.

Extraction of linewidths, or equivalently the quality factors Q = ω0/2γ, based on

the S-parameters is done by fitting the S-parameters to the expected transmission and

reflection expression. For transmission, we expect a Lorentzian response

S12 =
T0

1 + 2jQ(ω − ω0)/ω0
(6.5)

where Q is the total quality factor given by

1
Q

=
1

Q1
+

1
Q2

+
1
Ql

and T0 is given by

T0 =
2QcQl√

Q1Q2(Qc + Ql)
.

Qi, i = 1, 2, is the quality factor associated with the ports 1 and 2, Ql represents the

internal losses of the resonator, and Qc is the coupling quality factor associated with

both ports

Qc =
Q1Q2

Q1 + Q2
.

As it was describe in chapter 5, the expected reflection response, is given by

S11 =
Γ0 + 2jQ(ω − ω0)/ω0

1 + 2jQ(ω − ω0)/ω0
(6.6)

where Γ0 is given by

Γ0 =
1/Q2 + 1/Ql − 1/Q1

1/Q2 + 1/Ql + 1/Q1
.

In the case of a single ended cavity, there is not transmission coefficient S21 to measure.

But S11 has the same response, with Q2 → ∞. In order to more accurately estimate

the reflection coefficient S11 and remove delay effects due to the finite length of the

signal path, we first calibrate the latter by tuning the resonator out of the measurement

frequency range. This is done by applying a current to the magnetic coil that tunes
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the resonance frequency of the resonator. By applying a large enough current, we move

the resonance frequency several linewidths from the frequency range of interest. Then,

the resonator behaves as a mirror, reflecting all the signal and allowing us to calibrate

the signal path. Then the resonance frequency is tuned back to the expected frequency.

Finally the two traces are divided.

6.2.3 Non-linear characterization

The final feature of our resonators to probe are its nonlinear characteristics: Kerr

constant and the nonlinear loss [38]. Both of these characteristics are estimated based

on the power dependence of the resonance frequency. The measuring setup is exactly

the same as the one to measure the S-parameters, the only difference being that we vary

the power of the probing signal. As we increase the pump power, the Kerr nonlinearity

makes the resonance frequency decrease according to the equation ω0 − ωm + KN = 0,

where ωm is the frequency at which Γ is minimum, K is the Kerr constant, and N is

the energy stored in the resonator in number of quanta [38]. Defining, K ′ = K/~ω0,

then the change in resonance frequency is given by

ω0 − ωm + K ′E = 0,

where E is the energy of the resonator in energy units and ~K ′ is a unit-less number.

Above the critical power Pc, S11 and S12 are discontinuous, and the resonators response

is bistable. From the onset of this bi-stability we can estimate the critical power, and

hence the Kerr constant using Eq. (5.49).

P c
i,in = ~ω(bc

i,in)
2,

=
4~ω
3
√

3
γ3

γi|K| ,

=
4

3
√

3
γ3

γi|K ′| . (6.7)

Then nonlinear loss is estimated based on Eq. (5.63): when the loss is only linear,
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the pump-amplitude dependance of the resonance frequency would be purely quadratic:

ωm − ω0 = − 8γ

3
√

3

(
b1,in

bc
1,in

)2

where bc
1,in is the critical amplitude of the pump given by (5.49). However, when there

exist non-linear loss, this simple quadratic dependance is no longer valid. From that

deviation, we can estimate ε = γnl/|K| (See Ref. [38]).

6.3 Characterizing the amplifier

The analysis of the parametric amplifier closely follows the theory developed by

Yurke and Buks for parametric amplification in superconducting resonators [38]. In

their model, the Kerr nonlinearity is provided by the intrinsic kinetic inductance of a

superconducting film, while in our case it arises from the nonlinear Josephson inductance

of the SQUIDs. The full characterization of the amplifier implies measuring the signal

Gs and image Gi gain, measuring the correlation between these two gains by observing

the phase-dependance of the quadrature gain Gθ, measuring the added noise of the

amplifier, the squeezing of noise on one of the quadratures and finally the saturation of

the amplifier. Next is a brief description of each measurement.

6.3.1 Signal and image gain

Once the critical power has been found by finding the bifurcation point, then we

can set the pump power as close to it as we want in order to generate the appropriate

gain. Then, it is a matter of sending a small test signal to measure the amplifier gain.

The setup used is shown in figure 6.11. The schematic is drawn assuming a λ/2-resonator

and pumping the resonator through the weakly coupled port. However, the pump could

also be applied though the signal port. This is the way the λ/4-resonator is pumped.

The only change in the setup is the requirement to use a power-splitter to add the two

tones, the test signal and the pump, outside the cryostat. Two signal generators create
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Figure 6.11: Schematic of the setup used to measure the signal and image gain. Two
microwave generators are used to study the JPA. One generator creates the pump,
while the second creates a gain-test tone. The pump tone is injected through port 2
of the JPA, while the calibration tone is incident on port 1 of the JPA through a 20
dB direction coupler. Signals emerging from port 1 pass through a circulator and are
then amplified by a HEMT amplifier and a room temperature amplifier before entering
input of a spectrum analyzer. Another setup to measure the gain only uses one signal
generator and a network analyzer. The generation of the probing tone and its detection
is done by the network analyzer.

two tones, a pump at frequency fp and a signal at fs. The two tones are injected into

the dilution refrigerator. The pump is attenuated by 20 dB at 4 K and at 15 mK.

The signal is attenuated by 20 dB at 4 K and a directional coupler at 15 mK provides

an additional 20 dB of attenuation and separates the incident tones from the reflected

tones.

The image gain Gi and signal gain Gs can be predicted from the resonator’s

parameters measured using the S-parameters. We define Gs as the ratio between the

reflected signal power with the pump on and the incident signal power; Gi is the ratio

between the image tone and the incident signal. Initially, I used a spectrum analyzer to

do the measurement. This way I could measure both the direct and image gain. Yet,
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since both give us the same information, we found it was simpler and faster to use the

network analyzer to measure Gs only. Our network analyzer is not capable of measuring

the tone at the image frequency 2ωs − ωp, making it unable to measure Gi. In order

to calibrate the gain, we do a similar procedure as the one to measure the reflection

coefficient. Once the amplified signal is measured, the resonance frequency is tuned out

of the frequency range of interest by applying a different current to the coil, therefore,

changing the flux in SQUID loops. Then, we measure the signal reflected from the

resonator to calibrate the signal path.

We generally do two kind of signals and image gain measurements: a bandwidth

vs gain where we observe the expected behavior of limited gain-bandwidth product

(Eq. 3.62); and a measurement of gain versus pump-detuning, which it is only used to

compare it with the theory from Ref. [38] described in the previous chapters.

6.3.2 Phase dependence gain

The phase dependance gain is a consequence of the correlation between the signal

and image gain. This correlation is measured using the setup shown in figure 6.12a.

The correlation between Gi and Gs can be measured by applying a single tone slightly

detuned from the pump and measuring the output in either the I-channel or Q-channel.

The power gain in the I-channel is then given by

Gmixer ∝ (Gs + Gi + 2
√

Gs

√
Gi cos(2θ + 2ψ)) (6.8)

where θ is the LO-phase [8]. The proportionality constant consist of the the gain of

the whole amplifier chain after the JPA and the term between parenthesis is the phase-

dependant quadrature gain of the JPA (Gθ). ψ is a phase offset that depends on the

signal-path length and the difference in phase between the signal and image amplitude-

gain. Without loss of generality and for simplicity, in the rest of the chapter I will assume

ψ = 0. Another way to measure these correlations is to apply the appropriate linear
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Figure 6.12: (a) The schematic used to measure the phase dependant gain, the added
noise of the amplifier and squeezing is very similar to the one used to measure the
signal and image gain. The main change is the incorporation of a mixer to perform
homodyne detection of the output of the JPA. The pump tone is injected through port
2 of the JPA, while the calibration tone is incident on port 1 of the JPA through a
20 dB direction coupler. Signals emerging from port 1 pass through a circulator and
are then amplified by a cryogenic high-electron-mobility transistor amplifier (HEMT)
and a room temperature amplifier before entering the radio-frequency (rf) port of a
mixer. The noise incident on port 1 of the JPA which comes primarily from the isolated
port of the circulator can be switched (sw) to come from two different resistors held at
different temperatures. The mixer LO comes from either the same signal generator as
the pump, in which case the phase is tuned by a manual phase-shifter or from another
phase-locked signal generator. In the latter case, the phase is changed by using the
phase-knob of the apparatus. (b) The calibration tone can be a single frequency tone or
a linear combination of two fourier frequencies around the carrier frequency fpump. The
latter is realized by using a mixer as an up-converter. By using a two-fourier-frequency
signal, we can measure the phase-dependant gain of the JPA. (c) The noise model for
the input noise-power of the JPA consist of two calibrated noise generators in the form
of two resistor connected to a switch. The switch located at 4 K has a loss ρ that adds
(1 − ρ)1/2 coth(~ω/kBT4K) of thermal noise. The output of the switch is attenuated
by an attenuator and the loss of the circulator and goes into the port 1 of a directional
coupler. At the output of the directional coupler and the input of the JPA, the noise is
formed by 99% of the input noise plus 1% of the noise coming from the 4 K plate. This
noise, plus the added noise of the JPA is amplified by the JPA and the amplifier chain,
down-converted by the mixer and appears at the output I and Q channels. Considering
only one of the channels (say I), the noise spectral density measured Sθ

out is chosen by
the angle θ of the LO. To measure the amplified quadrature, θ = 0, while to measure
the squeezed quadrature, θ = π/2.
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combination of input fourier modes (Eq. 3.79). As I mentioned in section 6.1.2, there

are two options to do this: using amplitude modulated or phase modulated signals. We

chose amplitude modulated signals with suppressed carrier to test the phase-dependance

gain. The setup to generate this AM-tone is shown in figure 6.12b. The LO of the mixer

used to generate the test-am-tone is assumed to have the same frequency as the JPA

pump; in fact, both tones come from the same signal generator. In Eq. (6.1), it was

shown that even though the signal consists of two tones at different frequencies ωp±ωIF,

the phase of the signal is given by the LO phase φ, and the effective amplitude of the

signal, A(t) is just a slow function of time (in our case ωIF = 10− 200 kHz). Note that,

even though the two ways of measuring the correlations of the signal and image gain are

completely equivalent, it is only for signal modes that correspond to particular linear

combinations of frequencies above and below the pump (Eq. 6.2), that the JPA will not

be quantum limited; that is, it will be able to amplify those signal with less added noise

than a quantum-limited amplifier.

6.3.3 Noise measurements

The correlations measured in the phase-dependant gain can also manifest them-

selves in the form of noise squeezing and amplification, depending of what quadrature

of the JPA we measured. So far the analysis of the mixer as done in section 6.1.2 was

rather classical. Now, I use a quantum-language (where the physics variables are now

considered operators) to explain the effect of an ideal homodyne detector. Imagine we

could have an ideal mixer right at the output of a JPA operated in the homodyne mode

in which ωLO = ωp are equal and in which the input at both the signal frequency ωp +ω

and image frequency signal frequency ωp − ω are both regarded as the signal. The

output of the I port in the frequency domain is given by

I(ω) = B[b(ω)eiθ + b†(−ω)e−iθ]
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where B is just a normalization factor [8, 84, 85]. If we chose the normalization factor

so that the expected value of the anticommutator of I of a vacuum state is (assuming

a single-sided spectral density convention)

〈0|{I†(ω), I(ω)}|0〉 =
~ω
2

,

then I gives the quadrature Xθ of the field at the input of the mixer (Fig. 6.13).

I(ω) = X1(ω) cos θ −X2(ω) sin θ.

where Xj(ω) are defined as in appendix A. However, at microwave frequencies, there

is not such a thing as an ideal mixer, and homodyne detections are far from quantum-

limited. Besides, the mixer is not at all located right at the output of the JPA. Instead,

at the output of the I and Q-port of the mixer, what we really have is

I(ω) =
√

GT (X̂1(ω) cos θ − X̂2(ω) sin θ + χI)

and

Q(ω) =
√

GT (X̂1(ω) sin θ + X̂2(ω) cos θ + χQ),

where GT is the total power gain of the commercial amplifiers and mixer, θ is the phase

between the pump and the LO, and χI and χQ are random variables whose variance are

the spectral density of the noise of the amplifier chain. Both will have a variance with

an average value of AT , where AT is the noise number [2] of the commercial amplifier

chain expressed as noise added at the output of the JPA.

Let’s consider first the amplified quadrature, and study the JPA’s added noise

and the total noise of the amplifier chain as a function of the JPA gain. In these

measurements, the LO and pump come from the same signal generator, and a manual

phase shifter is used to send all the amplified quadrature into the I channel of the mixer.

By switching between two calibrated noise sources (Fig. 6.12a and c), we can change the

incident noise on the JPA. This method to estimate the added noise of an amplifier is
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Figure 6.13: (a) This diagram represents the operation of an ideal degenerate parametric
amplifier which transforms an input state (red circle) into an output state (green ellipse)
by amplifying the X1 component by

√
G1 and squeezing the X2 component by

√
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G1. The mixer projects the output state into axes rotated by θ.

called Y -factor measurement. The microwave switch used for our Y -factor measurement

is a Radiall R573423600. The change in noise power at the output of the mixer allows

us to estimate the noise AJ just added by the JPA, the JPA gain9 GJ ≡ G1, the total

added noise of both the JPA and the commercial amplifier chain Asys (i.e., the total

noise referred to the input of the JPA), and the total gain GJ × GH × β = GJ × GT ,

where GT = βGH is the effective gain taking into account the loss between the JPA and

the HEMT. The calibrated noise sources are derived from two resistors held at different

temperatures. The resistances are matched to the wave impedance of the cables that

carry signals to the JPA input. The noise emitted by both resistors is attenuated by an

attenuator held at a temperature Tα = 15 mK and then passed to the JPA through a

microwave circulator which separates the incident and reflected signals from the JPA.

Ideally, the power spectral density in units of noise quanta incident on the JPA through
9 During the rest of this chapter, I define GJ as the maximum quadrature gain of the JPA G1.
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the circulator is

Sin(Tload) =
1
2
(α coth

~ω
2kBTα

+ (1− α) coth
~ω

2kBTload
)

=
1
2

+ α
1

e
~ω

kBTα − 1
+ (1− α)

1

e
~ω

kBTload − 1
, (6.9)

where Tload = Tc = 15 mK or Tload = Th = 4.1 K depending on the position of the

switch shown in Fig. 6.12a and c, and α is the attenuation that we have intentionally

placed in the mixing chamber to prevent saturation of the JPA with thermal noise when

the Y -factor measurement is done at high gains.

The attenuation α also reduces the thermal noise originated in the loss of the

switch. This loss can actually be a problem since even in the case of the switch being

positioned in the cold load, the finite (unknown) loss of the switch can be large enough

to generate significant thermal noise. The first term in equation (6.9) is the quantum

noise, while the second and third terms are the thermal noise which is small compared

to the quantum noise at Tload = Tc. Yet, due to loss of the circulator, the attenuation

α of Eq. (6.9) needs to be replaced by an α′ > α that takes into account this extra

sources of loss. Also, a small amount of noise that comes from the coupled port of the

directional coupler as shown in figure 6.12c needs to be added.10 Hence, the complete

expression for the noise incident on the JPA when the non-ideal behavior of the all the

microwave components is taken into account includes contributions from: thermal noise

introduced with the calibration tone via the directional coupled port, the insertion loss

from the circulator, directional coupler and the switch. Expression (6.9) then becomes

S′in(Tload) =
1
2
[
(

(ρ coth
~ω

2kBTload
+ (1− ρ) coth

~ω
2kB4.1

)α′ + (1− α′) coth
~ω

2kBTcry

)
×

(1− C) + C coth
~ω

2kBT4K
] (6.10)

The unknown insertion loss at cryogenic temperatures of the circulator and of the mi-

crowave switch are the dominant uncertainties in the added noise and squeezing mea-
10 When an extra 20 dB are placed between the attenuator at the 4 K plate and the directional

coupler, the noise coming through the 20 dB-coupled port is negligible, as it is possible to model it as
extra attenuation at 15 mK whose added noise is just vacuum noise.
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surements. In the data shown in the following sections, the extreme values represented

by the error bars are derived by assuming: first, that there in no insertion loss, and then,

that the insertion loss has not changed between room temperature and the operating

temperature. In the case of the circulator, the data-sheet specifies the maximum loss

at 77 K.

By selecting θ = 0, the amplified quadrature appears at the I port of the mixer

(Fig. 6.12a). We measure the ratio Y of the noise power at the output I with the hot

load incident on the JPA divided by the noise power with the cold load incident on the

JPA. This Y -factor measurement allows us to extract

Asys = (S′in(Th)− Y S′in(Tc))/(Y − 1) (6.11)

and the total gain GJGT . We then adjust the cavity’s resonance frequency about 10

linewidths away from the LO frequency and turn off the pump. Because the JPA now

acts as a passive mirror, we can perform a Y -factor measurement on our commercial

amplifier chain, finding AT and GT . From both measurements, we extract the JPA

gain GJ and AJ (Fig. 6.12c). To avoid unknown loss and noise in the cables carrying

the calibrate noise signals, superconducting Niobium coaxial cables were used to carry

these signals between the 15 mK region of the refrigerator and 4 K region. A calibrated

ruthenium oxide thermometer measured the refrigerators base temperature and the

temperature of the helium bath (4.1 K), to which the 4 K resistor and microwave switch

were thermally anchored. A calibration tone, (Fig. 6.12a) is used to verify the gain

inferred from the Y -factor measurements.

6.3.4 Squeezing

We now turn our attention to the squeezed quadrature X2 when the incident

noise is mostly quantum noise (Tload = Tc). When θ = 0, X2 appears at the Q port

(Fig. 6.13). The noise at the Q port referred to the input of the HEMT is composed
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of the effective added noise of the commercial amplifiers (AH/β = AT ≈ 26) and

noise in the rotated quadrature Xθ+π/2 coming from the JPA, ∆X2
θ+π/2 = ∆X2

1 sin2 θ +

∆X2
2 cos2 θ (Fig. 6.13). In order to illustrate the JPA’s unequal effect on the noise of both

quadratures, we re-define the quantity ξ(θ) = (∆X2
θ+π/2)pump on/(∆X2

θ+π/2)pump off . In

order to measure (∆X2
θ+π/2)pump off , I turn the JPA pump off and adjust its resonance

frequency so that the resonator behaves as a mirror. When θ = 0, we will observe

that ξ < 1 which means that the noise at the output of the JPA has been squeezed. If

instead θ = π/2 radians, we will find ξ ≈ GJ > 1. For an ideal JPA ξ(π/2) = GJ [8].

(Because a small fraction of the incident noise on port 2 is either lost through port 1

or absorbed in the cavity, for our device there is a small difference between ξ(π/2) and

GJ .) We also measured the squeezing ξ as a function of gain GJ and compare it with

theory (Ref. [38]).

In this measurement, we tested both setups shown in figure 6.12a, using the same

signal generator for the pump and the LO, and a manual phase shifter to change the

phase in the LO . We also used a different signal generators (with their internal clocks

locked) and change the phase with the built-in phase option of the generators. In both

cases we got the same answer, but in the second option the measurement could be

automated so we chose the second option. Another advantage is that all manual phase

shifters have some phase-dependance insertion loss as high as 0.2 dB, which could affect

the “observed squeezing” unless care was taken in adding another signal to monitored

the conversion-loss of the mixer as the phase (and hence the LO power) was changed.

We do not have this problem if we use two different signal generators as the output

power does not depend on its output phase. One caveat, though, is that when two

signal generators are used, the phase-noise of the signal generators is observed at the

output of the mixer. This phase noise looks like a phase-dependance noise on top of the

noise at the input of the mixer. This would not look like squeezing in the sense that

it would not make the noise to go below the vacuum noise level. However, if it is large
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enough, it could prevent us from measuring squeezing. In our case, for frequencies larger

than 100 kHz, the phase noise of the signal generators is not an issue. A calibration

tone was added to the measurement chain to measure the gain of the squeezer and to

ensure that the noise reduction arises from genuine squeezing and not saturation of the

amplifiers.

6.3.5 Amplifier saturation

The amplifier saturation was measured using the same setup used to measure the

amplifier’s gain with a network analyzer as shown in figure 6.11. We measure the direct

gain as a function of the signal power as we increase it. We cannot compare it with theory

as the theory used to analyze the amplifier assumes an undepleted-pump approximation.

The effect of saturation on parametric amplifiers has not been extensively treated in

the literature, with only a few exceptions for very particular implementations [47,86].

6.4 Aluminum resonators

This sample was fabricated in March, 2006, with the original idea of testing phase

transition physics in arrays of Josephson junctions. We cooled it down first on April,

2006 and then again in January 2007. This device was fabricated out of aluminum, and

the SQUIDs were made from aluminum-aluminum oxide-aluminum junctions. They

were fabricated using traditional electron beam lithography techniques using a double-

angle evaporation (Dolan bridge technique [87]). A picture of a similar device to the

one measured is shown in figure 6.14a. The details of the fabrication are described

in appendix C. Next I discuss all the measurements done on this particular sample.

It consists of a quarter-wave CPW resonator whose center conductor is an array of

400 SQUIDs in series (Fig. 6.14). Typically, the resistance of the device tends to

increase over time. This was definitely observed in this sample as the critical current

per SQUID dropped from 1.9 to 1.5 µA. In the first cooldown, only its linear properties
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Figure 6.14: (a) Image of a test sample. An array is also shown on the left of the
device. However, the I-V curves at 15 mK were taken from an array exactly as the
one used for the rf-measurements (including the ground planes) with the only difference
being that the capacitance was replaced by a short circuit. (b) Zoom-in of the array,
where the two periodicity of the SQUID loop size is shown. This imperfection in the
fabrication is responsible for the “beating” manifested in the magnetic-field dependance
of the resonance frequency. (c) The tested device is a CPW transmission line resonator
where the center conductor is a series array of 400 SQUIDs. The associated dimensions
of the CPW are shown in the figure. The resonator’s ground plane is made out of
aluminum, and the SQUIDs are made from Al/AlOx/Al junctions. They are fabricated
using e-beam lithography and double angle evaporation on an oxidized silicon substrate.
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were tested while in the second cooldown, we measured its performance as a parametric

amplifier. All the data shown is from the second cooldown where the device was used

as an amplifier, unless it is specifically stated that it is from the first cooldown. The

resonance frequency can be adjusted over an octave in frequency, between 4 and 7.8

GHz by applying a magnetic field (4.5 and 8.8 GHz before the junctions aged).

6.4.1 dc-measurements
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Figure 6.15: (a) IV characteristic of an array of 400 SQUIDs measured in the super-
conducting state at 15 mK. Data from both cooldowns is plotted in order to show the
observed aging of the junctions. Three I-V curves for three different applied magnetic
fields is shown for the case of R = 71 kΩ to show the modulation of the critical current
of the SQUIDs. An offset has been added to the I-V curve of the R = 89 kΩ case for
clarity. (b) IV curve of a co-processed SET (2 junctions in series) at 15 mK. From this
IV curve, the size of the superconducting gap was estimated to be ∆ = 215 µeV.

We performed dc-measurements as described in section 6.2.1. We measured arrays

of SQUIDs to find the average resistance of the junctions. There were two type of arrays,

some small ones like the ones shown on the left of the resonator in figure 6.14a, and

other arrays that were identical to the resonators, but with the capacitor replaced with a
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short-circuit. Only the latter were measured at 15 mK. The IV-curves for both cooldown

are shown in figure 6.15. The estimated total resistance per SQUID is that of the array

divided by the 400 SQUIDs per array. The size of the superconducting gap is measured

using the I-V curves of a co-fabricated single-electron-transistor (SET), in a different

chip (Fig. 6.15b), from which we estimate ∆ = 215 µeV. Using Eq. (3.17), we estimate

the critical current I0
c for one SQUID to be 1.5 µA (1.9 µA for the SQUIDs in the

first cooldown). When one measures a single SQUID or an series array of SQUIDs, the

maximum measured current at V = 0, that is, the current at which the junctions switch

from the supercurrent branch to a resisitive state is not a way to estimate Ic since it

dependes on how well isolated the junction is. Instead, I will use the resistance of the

SQUID and the Ambegaokar-Baratoff expression for the critical current, Eq. (3.17).

From the dc measurements, we estimate that the resulting metamaterial has a

zero-flux inductance per unit length of Ll = 0.9 mH/m ≈ 700µ0. The CPW was

designed to have a capacitance per unit length of Cl = 0.11 nF/m, yielding a zero-flux

phase velocity of vph = 1/
√

LlCl = 0.01c and a zero-flux characteristic impedance of

Zc = 2.9 kΩ. The reason for the rather large characteristic impedance of this sample is

that it was originally designed to study phase transitions in Josephson junction arrays

[72,74].

6.4.2 Linear measurements of the resonator

Since this device was a quarter-wave resonator, we only measure its reflection

coefficient Γ using the setup shown in figure 6.10. We apply a low enough incident

power P , in order to assure that the resonator response is linear (by low enough power I

mean that I only use P < Pc/1000). From the imaginary and real part of Γ, the quality

factors associated with losses Ql and capacitively coupled port Q1 are calculated. In this

device, both turn out to be very similar (the resonator is slightly overcoupled). Hence,

the resonance frequency fres is easily identified by a dip in |Γ|. Figure 6.16(a) shows how
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Figure 6.16: Linear measurements for the aluminum resonator made on April, 2006. (a)
Resonance frequency as a function of flux. (b) Magnitude of the reflection coefficient
showing the expected Lorentzian behavior. Data shown in blue and fitting in red. From
the fitting, the quality factors are calculated: Q1 = 1530 and Ql = 2170.

the resonance frequency behaved as a function of the applied magnetic field B in the first

cooldown of this device. A few things are worth mentioning. In figure 6.14b is easy to

see that the SQUIDs loops are not uniform but have two different sizes, consequence of

a small difference in the two angles of evaporation during the fabrication. This creates a

bimodal distribution in the SQUID-loop area that manifests as a two-periodicity in the

magnetic field dependance of the critical currents of the SQUID array and the resonance

frequency of the resonator. This is observed in the figure 6.16a. In this plot, it is also

obvious that there are certain frequency ranges (7.3-8.2 GHz) where the plot does not

show measured resonance frequencies. The reason for that is that we were unable to

see a resonance frequency in that region,11 which we refer to as the “desert.” For

frequencies close to them, the resonators losses rise significantly. We do not understand

this behavior. However, away from these regions, the resonator behaved normally. The
11 There were other regions where a resonance frequency was not observed only at certain higher

magnetic fields. For example, in the second (small) lobe around B = 40 G, no resonance frequency was
observed below 5.8 Ghz, even though they could be observed in the first and third large lobes. This,
however, is thought to be related with a large increase in internal losses when the magnetic field was
close to half a flux quantum for some of the SQUIDs.



161

reflection coefficient Γ for a particular field is plotted in figure 6.16b. Based on the

measured reflection coefficient and Eq. (6.6), we extract the quality factors Q1 and Ql.

For this case, the values of quality factor are Q1 = 1530 and Ql = 2170. In general,

the internal quality factors were over 2000, except for regions close to the desert and

at magnetic fields close to half a flux quantum for both types of SQUIDs (basically for

fres < 5.2 Ghz). The origin of the desert is not yet understood.
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Figure 6.17: (a) Resonance frequency as a function of flux for the second cooldown of
the device. Due to aging, the zero-flux resonance frequency decreased from 8.8 to 7.8
GHz. At first sight, the “desert” seemed to have disappeared. However, if we looked
more carefully in the regions enclosed by the square, we find that at B = 11 G a strange
feature appears (b). We believe this feature is the same as the one that we called the
“desert” in the previous cooldown, but that it has changed due to the aging of the
junctions.

As mentioned at the beginning of this section, we cooled down this same device

10 months later and it showed signs of aging. However, the increase of the resistance

was not the only change. The desert itself changed also as it is shown in figure 6.17,

assuming the feature called previously as the desert and this one are the same. Again,

we do not understand it, but it seems to be something intrinsic to the resonator, as it

changes with the aging of the junctions. We did not look into this feature as we were

more interested in studying it as a parametric amplifier. Therefore, we stayed away
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from this feature at B = 11 G. We estimated the quality factors and the linewidths

(HWHM) γ = ω0/2Q. For example, for a flux of Φ = 0.2Φ0, we find the resonator’s

linear parameters fres = 6.952 GHz, Q1 = 1830, and Ql = 3160 (Fig. 6.18a). To

demonstrate the tunability of the JPA, we also test the performance of the amplifier at

lower frequencies. For example, for Φ = 0.35Φ0, the resonance frequency is ω0/2π =

5.203 GHz. A similar analysis as the one described for Φ = 0.2Φ0 gives the following

parameters: Q1 = 2740, Ql = 3060 (Fig. 6.18b). The quality factors did not change

dramatically from the previous cooldown, except in the regions close to the desert, where

now the high-loss is only reduced to a small range of only ∼ 100 MHz (Fig. 6.17b).

Nonetheless, we still do not have an explanation for the losses in this resonator.
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Figure 6.18: Linear measurements for the aluminum resonator made on January,
2007 (second cooldown). Magnitude of the reflection coefficient showing the expected
Lorentzian behavior for 2 different resonance frequencies. Data shown in blue and fitting
in red. From the fitting, the quality factors are calculated. (a) At fres = 6.951 GHz,
Q1 = 1650 and Ql = 3170. (b) At fres = 5.202 GHz, Q1 = 3160 and Ql = 3200.

6.4.3 Non-linear characterization

From the frequency and power dependence of Γ, we estimate the critical power

and (modified) Kerr constant K ′ as defined by Eq. (6.7). We performed this test at
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Figure 6.19: Power dependance of the resonance circuit. (a) Reflection coefficient mag-
nitude as a function of frequency at different pump powers for B = 14.4 G. (b) By doing
a fitting to the expected power dependance of the resonance frequency, Eq. (5.63), the
ratio of nonlinear loss and kerr constant γnl/|K| is estimated. For this case, from the
fitting we estimate that γnl/|K| = 0.03

three different frequencies. At Φ = 0.2Φ0 and fres = 6.952 GHz, the critical power and

Kerr constant were Pc = 3±1.3 fW and ~K ′ = −1.6±0.7×10−5, respectively. The large

uncertainty comes from the 4 dB uncertainty of the incident power on the resonator.

From appendix A in Ref. [38], we can calculate our estimate for the Kerr constant

using Eqs. (5.44-5.46). The expected value for the Kerr constant is ~K ′ = −1× 10−5,

in agreement with our measurement. To model more completely the behavior of the

resonator, we also include a nonlinear dissipation term γnl = 0.03 |K|.

A similar analysis as the one described for Φ = 0.2Φ0 gives the following param-

eters for Φ = 0.05Φ0: fres = 7.756 GHz, the critical power was Pc = 3.5 ± 1.5 fW, the

Kerr constant was ~K ′ = −1.9± 0.8× 10−5 and the nonlinear loss was γnl = 0.02 |K|.

For Φ = 0.35Φ0, the resonance frequency is ω0/2π = 5.203 GHz and the nonlinear

parameters are: Pc = 0.5 ± 0.2 fW, ~K ′ = −9 ± 4 × 10−5 and γ3 = 0.145 |K|. For

frequencies of 5.5 GHz and below, we have observed an increase of the nonlinear loss,

which starts affecting the performance of the amplifier.
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Since this device has very small critical powers, the phase noise of the generator

is not an issue, as can be easily proved by seeing that at 10 kHz, the phase noise is the

same as at 100 kHz [81], which compared to the vacuum noise is of the order of 0.1%.

6.4.4 Gain measurements
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Figure 6.20: Performance of the amplifier. (a) and (b) Gs and Gi as functions of signal
detuning (points) and predictions of Ref. [38] (lines) for two different pump powers. Gs

and Gi for P = 0.9 Pc (black) and for P = 0.75 Pc (red). (c) and (d) Gs and Gi as
functions of pump detuning (points) for P = 0.95 Pc (blue) and P = 0.5 Pc (red) and
prediction (lines) of Ref. [38].

The parametric amplifier is operated in reflection mode, as shown in Fig. 6.11(a).

We operate it first by applying a calibrating tone slightly detuned from the pump and

measure the frequency dependence of both gains in two different ways. In the first case,

the signal and the pump frequencies are different. In the first test, we apply the pump

at a frequency close to ωm and analyze Gs and Gi as we detune the signal frequency
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from the pump by an amount ∆f . In Figs. 6.20(a) and 6.20(b), we plot both Gs and

Gi as a function ∆f = fsignal − fpump for two different pump powers. We also plot the

predictions from the theory in Ref. [38] where the parameters in the theory are extracted

from the measurements of Γ. From this plot, we estimate the 3 dB bandwidth to be

about 300 kHz when Gs and Gi are 18 dB. Next, we measure Gi and Gs as a function

of pump detuning, i.e., the difference in frequency between the applied pump and fres.

In this test, the signal and the pump frequency differ by a fixed amount, ∆f = 10 kHz,

(Figs. 6.20(c) and 6.20(d)). The agreement seen in Fig. 6.20 between the data and

theory explained in chapter 3 and 5, suggests that Ref. [38] provides an appropriate

model for our device.

In the second test, for fres = 6.95 GHz we measured the phase dependance of

the gain of the degenerate parametric amplifier. In this case the the pump and the

signal frequencies are the same (Fig. 6.12a and b). The gain of the parametric amplifier

is sensitive to the phase between the pump and the signal. To measure this phase

dependence, we amplitude modulate the signal at 20 kHz and adjust the phase of the

pump relative to the signal. We define the gain as the ratio of the am-modulation

sideband power with the pump on and pump off. From Eq. (6.8), for Gs ∼ Gi À 1,

the quadrature gain GJ is 6 dB larger GJ ≡ GX1 ≈ 4Gs, (see Eq. 3.77), if the phase

between the pump and signal is tuned for maximum gain. The phase dependence of the

gain for a pump power close to Pc is shown in Fig. 6.21(a); there, it is evident that we

see deamplification, a hallmark of degenerate parametric amplifiers.

To demonstrate the tunability of the JPA, we also test the performance of the

amplifier at lower frequencies. However, as mentioned above, the performance is greatly

affected for resonance frequencies fres < 5.2 GHz due to the onset of large nonlinear

loss. This increase of nonlinear loss made the measured gains smaller than the ones at

6.95 GHz. The highest Gi and Gs observed at this frequency are both 12 dB.
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6.4.5 Estimate of the added noise of the amplifier
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Figure 6.21: (a) Gain as a function of the phase between the pump and the signal
(points) and prediction (line) from Ref. [38] showing the expected behavior for degen-
erate parametric amplifiers (P = 0.9Pc). (b) Power spectral density of the demodulator
output for the cases when the pump is on (P = 0.95Pc) and off. The gain in this case
is 630 (28 dB). The applied signal power is 1.6± 0.7× 10−20 watts.

In Fig. 6.21(b), we plot the power spectral density (PSD) of the demodulated

signal with the pump off and pump on for P = 0.95Pc, where the signal-pump phase

has been adjusted for maximum gain (28 dB). At this gain, the HEMT amplifier’s input

noise is overwhelmed by the noise at the output of the parametric amplifier, effectively

improving the signal-to-noise ratio (S/N) by 16 dB. A definitive measurement of the

noise added by our parametric amplifier requires a calibrated noise source. In this

cooldown, we did not have such calibrated noise source. However, by measuring the

S/N with the pump off, we find that the noise referred to the input of the HEMT

is TN = 12 ± 5 K. From the S/N improvement with the pump on, we estimate the

total noise referred to the input of the JPA as 300 ± 130 mK. This value suggests

that the parametric amplifier adds an amount of noise comparable to the vacuum noise

(hfres/2kB = 166 mK), which must be present at the input of the JPA. The error bars

were estimated based on the losses of the semi-rigid cables. We measure their loss at
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room temperature and then at 77 K.

6.4.6 Final comments

With this aluminum sample, we demonstrated a widely tunable parametric am-

plifier based on a coplanar waveguide resonator whose inner conductor is made from a

SQUID array. We observed good gains and performance that was understood within

the theory frame of Ref. [38]. Although some features were not understood, such as the

origin of the loss in this superconducting devices, or the region called the “desert,” it

still performed well enough to act as a low noise preamplifier for the quietest commercial

amplifier available. For the next generation of devices, we increased the critical power

of the resonators by increasing the critical current of the junctions and we increased the

bandwidth by using a much larger coupling capacitor. Also, the devices were made out

of niobium, which has a larger critical temperature than aluminum. We do not have the

capability of making niobium Josephson junctions at JILA so for this new generation

of resonators we collaborated with Kent Irwin’s group from NIST.

6.5 Niobium resonators

In this case, two different realization of a JPA were measured, a quarter-wavelength

and a half-wavelength cavity. The inductance per unit length of this transmission line

comes mostly from the nonlinear Josephson inductance of the SQUIDs, but unlike the

aluminum device, at zero-flux the geometrical inductance does provide a non-negligible

amount of inductance (30% at zero flux). Unless, explicitly said, the data shown is from

the half-wavelength resonator. We create the half-wavelength microwave cavity from

this metamaterial by interrupting the center conductor with two capacitors, one much

bigger than the other, thus creating a strongly coupled port and a weakly coupled port

(Fig. 6.22).
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6.5.1 Description of the device

(a) (b)

30 µm

Figure 6.22: Images of the device. (a) The images are a picture of the full device, and
a magnified image of the weakly coupled port, a few SQUIDS and the strongly coupled
port. (b) SEM picture of a pair of SQUIDs (picture courtesy of Leila Vale).

Devices were fabricated at NIST Boulder on a high purity uncompensated silicon

wafer with resistivity > 17 kΩcm. Standard Nb/AlOx/Nb trilayer process [88] was used,

modified by eliminating the shunt resistor layer and minimizing deposited oxides [89]

(see appendix C). The device studied here was coprocessed with 10 other devices used

for dc characterization. Initially, only a µ-metal shield was used. Recently, a cryoperm

metal shield from the company Amuneal has been added at the mixing chamber in order

to increase the supression of external magnetic noise. The center conductor is a series

array of 480 SQUIDs (in the case of the quarter-wave resonator, the array contains 250

SQUIDs). Next is a summary of the multiple tests performed on these devices.

6.5.2 dc-Characterization of Josephson Junctions

A total of 92 chips were fabricated with three different values of overlap (junction)

size. The reason for the three “flavors” of SQUIDs was that the fabrication process for

this junctions was somewhat different from the usual process used at NIST. Since we

were trying to get Ic = 30 µA per SQUID, the three different junction sizes gave us a
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Figure 6.23: I-V curves of test niobium devices. (a) I-V curve of a single SQUID for B =
0. From this measurement we estimate the resistance per SQUID to be Rn ' 73 Ω. The
measured superconducting gap was 2∆ = 2.9 mV. (b) I-V curve of an array. The blue
curve was sweep increasingly in voltage and the red curve the opposite direction, showing
hysteresis. The measured resistance and superconducting gap were not consistent with
the expected number of SQUIDs (250) but with a significantly smaller number. We
suspect some of the Josephson junctions turned into short-circuits. The reason why
some of the SQUIDs are dying to short circuits is not understood.

larger target to shoot at. The junction with the closest value had a size of 2× 2 µm2.

The dc-measurements on single SQUIDs indicate an average resistance 73 Ω and a

superconducting gap of 2∆ = 2.9 mV. This implies an average critical current Ic per

SQUID in the JPA of 31 µA (Fig. 6.23a). The transmission lines from which the cavities

were built were designed to have a capacitance per unit length of Cl = 0.15 nF/m and

a geometrical inductance per unit length of Ll = 0.49 µH/m. For Ic = 31 µA, the

Josephson inductance per SQUID is LJ = 10.6 pH and each cell had a length of 7

µm. These values imply a zero-flux impedance of Zc = 117 Ω. In the case of the

half-wavelength resonator, these values predicts a first-mode resonance frequency of

8.23 GHz when the loading the capacitors is included, and when no flux is applied.

This value is within 3% of the observed value. A slightly smaller resonance frequency is

expected for the quarter-wavelength as it is more strongly loaded by the large capacitor.
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While this particular device worked well, the device yield from the wafer was

poor. Of the 92 chips, one half had the right value of junction size. However, only 3

chips were found to have working resonators. We have also observed problems with the

test devices fabricated for dc-measurement. We measured arrays of 250 SQUIDs, as

shown in figure 6.23b. These measurements show that if we assume that there are 250

SQUIDs, the resistance per SQUID is less than the expected value. In the case of the

array shown in figure 6.23b with a total resistance of 10.3 kΩ, a resistance per SQUID of

41 Ω would be then estimated if we assumed that the array had 250 working SQUIDs.

But if we measure the superconducting gap, then this would also suggest a much smaller

gap, 2∆ = 1.6 mV. This reduction of the superconducting gap seems much bigger than

what could be explained by an increase in the temperature on the central junctions by

bias heating. A possible explanation for such a small measured superconducting gap,

which would also explain the fact that only 3 out of 46 chips had working devices, could

be that some of the junctions are dying and turning into short-circuits. Whether this

happens during fabrication or handling of the chips is still under investigation.12 Our

colleagues at NIST that do the fabrication are studying this problem.

6.5.3 Linear measurements of the resonators

Before operating the device as a parametric amplifier, we first characterize its

linear behavior using the same setup as in figure 6.10. In figures 6.24a and b, we measure

the cavity’s response both by measuring the reflectance of a signal on port 2 (S22) and

the transmittance from port 1 to port 2 (S21) as functions of frequency, for two different

magnetic fields. The powers used are low enough so that the cavity’s response is still

linear. From this measurement we can extract the cavity’s resonance frequency fres, the

quality factors Q1 and Q2 that describe the cavity power loses through both ports as
12 Although the devices also die during handling due to electrostatic discharge, in previous devices

we have found that arrays are extremely hard to kill. Also, resonators are isolated from us, specially
the half-wavelength resonators, since they do not have a dc-connection to the outside world.
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Figure 6.24: We plot the fraction of microwave amplitude transmitted from port 2 to
port 1 |S12| (blue) and the fraction reflected from port 2 |S11| (black) as functions of
frequency at two particular values of applied magnetic flux: (a) Φ = 0.29Φ0 and (b)
Φ = 0.37Φ0. (a) By fitting this data to a model of a two port cavity (red lines), we
extract fres = 7.0038 GHz, Q2 = 8010, Q1 = 330 and Ql = 10, 300. (b) From the fittings,
we extract fres = 6.184 GHz, Q2 = 9570, Q1 = 396, and Ql = 2420. (c) Measured value
of fres as a function of applied magnetic flux Φ in units of the magnetic flux quantum
Φ0. We use the obvious periodicity (in the first few periods) in this data to infer the
magnetic flux enclosed by the SQUIDs. The inevitable imperfections in fabrication start
to manifest after 6 flux-quanta, where interference between the different SQUID sizes
start to affect the magnetic field dependance.
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Z Γ

Standing waves

Figure 6.25: As the experiment has become more involved (see for example, the
schematic of the next two chapters), imperfections in the microwave components start
adding up causing standing waves in the measured reflection coefficient. In order to do
a better job in the fitting, the slightly more complicated model shown here is used.

well as through internal loss processes Ql. When operating as a parametric amplifier,

the center of the amplified band will be close to fres, and the unity gain signal bandwidth

will be limited by the total linewidth γ1 + γ2 + γl = ωres(1/2Q1 + 1/2Q2 + 1/2Ql). By

applying magnetic flux we can move the center of the amplified band over a large range

of frequencies (Fig. 6.24c).

The flux dependence shown in figure 6.24c is also a demonstration of the uni-

formity in the junctions and in the SQUIDs areas. Unlike the aluminum device where

the two different sizes of SQUIDs areas were so different that a “beating” of the two

periods was obvious at very small magnetic fluxes, in this devices it is necessary to go

to fluxes larger than 5Φ0 to observe an obvious “beating” between the different periods

in the flux dependance of the multiple SQUIDs in the array. The lowest resonance

frequency in the resonators is consistent with the critical current of the SQUIDs being

limited by the finite loop inductance of the SQUID loop LLoop = 13 pH. This value

of loop inductance is consistent with simulations using Fast Henry, a software capable

of computing the frequency-dependant self and mutual inductances of superconducting

structures. Finally, another important difference is that we avoided having large char-

acteristic impedances in the coplanar waveguide that formed the resonator even at the

lowest resonance frequency (Zc < 0.3 kΩ). Finally, in these devices we do not observe

any “desert” region, rather a clear cavity resonance is visible at all values of applied

flux.
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Figure 6.26: Fits to the resonance frequency of a quarter-wave resonator using the model
of figure 6.25. (a) Fits to the imaginary Γi and real part Γr of Γ using only Eq. (6.6).
Data in red for Γr and blue for Γi. Fits are plotted in black. The standing waves on
top of the plots are easily observed especially in the residual of the plots shown in (c).
(b) Fits to the data using the model of figure 6.25 and (d) residuals showing that the
new model used for the fits now does a much better job.

The coupling capacitances were estimated to be 4.6 fF and 22.6 fF using mi-

crowave simulations in Microwave Office. Based on measurements of the S-parameters

for low powers these values are very close to the observed ones. For recent experiments

where the setup has increasingly become more complex and more microwave connectors

are used, the measured reflection coefficients are not as clean as those shown in figure

6.24, presenting a standing wave structure on top of the expected Lorentzian response.

This can interfere with our attempts to do an appropriate fitting to obtain the liner
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parameters of the resonator. In order to solve this problem we use a somewhat more

complicated model shown in figure 6.25. In this model we assume that an impedance

mismatch a length ` away from the input port of the resonator shunts the center conduc-

tor of the transmission line connected to the resonator, generating the standing waves

observed in the data. This model allows us to do a better fitting as can be observed in

figure 6.26.

In general, the quality factors associated with the intrinsic losses of the resonator

are over Ql > 2000 and at some frequencies we have measured Ql > 10000 as shown

in figure 6.24. A possible reason for the loss observed is the lossy dielectric used in

the fabrication process (see appendix C). However, we do not completely understand

the large variation of loss over the whole 4-GHz band of the resonator. On possible

explanation is the existence of other resonant modes, for example those observed in the

sample-box (Fig. 6.2c).

6.5.4 Nonlinear characterization

We measured the nonlinear behavior of the resonator as well. Based on the critical

powers measured and the linear S-parameters, we estimated the values of the Kerr

constant for different frequencies. Next, I show examples of the measured Kerr constant

for six different frequencies using Eqs. (5.44-5.46). The results of this measurement are

shown in the following table.

fres Measured ~K ′ Expected ~K ′

8.3 GHz −2.8± 0.3 × 10−7 −2.4 × 10−7

8.0 GHz −3.4± 0.4 × 10−7 −2.7 × 10−7

7.0 GHz −4.4± 0.5 × 10−7 −3.7 × 10−7

6.2 GHz −5.8± 0.8 × 10−7 −4.9 × 10−7

5.1 GHz −12.5± 2 × 10−7 −6.8 × 10−7

4.1 GHz −57± 7 × 10−7 −10 × 10−7

We observe that there is some quantitative agreement with the expected Kerr constant

at low magnetic fluxes. However, as we increase the flux through the SQUID loops to
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Figure 6.27: Magnitude squared of the transmission |S2
21|for the λ/2 resonator for Φ =

0.48Φ0. At low powers (P ≈ −125 dBm) the response has the expected lorentzian
shape (blue). For 27 dB higher power (red), the response has the expected Duffing-
like response of a resonator about to reach the bifurcation state. However, before the
bifurcation happens, the response becomes unpredictable.

suppress the critical current IS
0 of the SQUIDs to tune down the resonance frequency,

the disagreement grows. For example, at 4.1 GHz the difference between the estimated

Kerr constant K ′ and the expected Kerr constant is a factor of close to 6. This is not the

only unexpected behavior at fluxes close to Φ = Φ0/2. Close to this values of flux, the

nonlinear behavior of the resonator becomes somewhat unpredictable as can be observed

in figure 6.27. However, this behavior is only observed at frequencies fres < 4 GHz.

Unlike the aluminum devices, in this device we do not observe a large increase

of nonlinear loss for the lower resonance frequencies (between 5 and 4 GHz). This is

observed in figure 6.28, where even at fres = 4.5 GHz, close to the lowest frequencies

observed, the nonlinear loss is only γnl/|K| = 0.007. However, it is hard to measure the

nonlinear dependance of the resonance at frequencies below 4 GHz due to the behavior

observed at those frequencies. Thus, we cannot estimate whether the nonlinear loss

increases at those frequencies.
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Figure 6.28: Power dependance of the resonator. (a) Phase of the reflection coefficient
as a function of frequency at different pump powers for Φ/Φ0 = 0.46. (b) By fitting
to the expected power dependance of the resonance frequency, Eq. (5.63), the ratio of
nonlinear loss and kerr constant γnl/|K| is estimated. From the fit, we estimate that
γnl/|K| < 0.01

6.5.5 Gain measurements

We study the amplifier’s properties using the apparatus shown in Fig. 6.11 using

the spectrum analyzer [90]. As described in Ref. [91], we determine the critical pump

power at which the JPA gain diverges. We then characterize the image gain (Gi) and

signal gain (Gs) for pump powers less than this critical power. To characterize the

bandwidth of the parametric amplifier, we measure the frequency dependance of both

gains. For sufficiently large gains, these are Lorentzian functions of the signal-pump

detuning ∆f = fsignal−fpump between the signal and pump frequencies. For each pump

power we determine the 3 dB bandwidth ∆f1/2 and gain at ∆f = 0. We observed that

with increasing gain, ∆f1/2 is reduced. We find that the expression

√
Gs∆f1/2 = αγ (6.12)

is correct for a factor α of the order of two [38]. The exact expression is not given by
√

Gs∆f1/2 = 4/
√

3γ, Eq. (3.62), since we derived that expression for the case of no losses
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Figure 6.29: Gain measurements. (a) and (b) Gs and Gi as functions of signal detuning
(points) and predictions of [38] (lines) for three different pump powers. Gs and Gi for
P = 0.95 Pc (black), P = 0.9 Pc (red) and for P = 0.6 Pc (green). For each pump power,
we find an optimum pump frequency which decreases as a function of pump power due
to the Duffing-like behavior of the resonator [38]. Insets: Gs and Gi as a function of
pump detuning for the same pump powers as in the main plot. The device shows the
expected behavior described by [38]. The test signal was detuned from the pump by
100 kHz in all the measurements. The data shown in this figure was taken using the
setup shown in figure 6.11 with the spectrum analyzer.

inside the resonator. Eq. (6.12) is also correct for Gi if
√

Gi > 2. These results are shown

in Figs. 6.29(a) and 6.29(b), where we plot both Gi and Gs as a function ∆f for three

different pump powers for fres = 6.184 GHz (Φ = 0.37Φ0). Qualitatively, this behavior is

expected for parametric amplifiers, and we find quantitative agreement with the theory

of [38]. From this plot, we estimate the 3 dB bandwidth to be about 1.38 MHz when Gs

and Gi are 22 dB, or a showing a gain-bandwidth product of
√

GsBω = 17.5 MHz [90].

The setup of Fig. 6.11 with the network analyzer only allow us to measure the

direct gain of the amplifier. However, the image gain does not provide any extra infor-

mation. Additionally, this setup is much faster. Therefore, for the last experiments this

is the only way we have characterized the bandwidth of the amplifier. An example for

the quarter-wave resonator of this measurement is shown in figure 6.30. This resonator

is expected to have a bandwidth at least a factor of two larger, which is observed in the
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Figure 6.30: (a) Signal gain for different pump powers for the quarter-wave resonator.
The data shown in this figure was taken using the setup shown in figure 6.11 with the
network analyzer. (b) Signal amplitude-gain-bandwidth product as a function of power
gain. The dashed line represents the theoretical limit of the gain-bandwidth product for
a lossless parametric amplifier (Eq. 3.62). For this resonator, the internal loss quality
factor of the resonator is significantly larger than the coupling quality factor, so we
expect to get close to this limit, as observed in the graph. The total quality factor was
measured to be Q = 210, so the theoretical limit is

√
GsBω = 4/

√
3fres/(2Q) = 43 MHz.

measurements, showing a gain-bandwidth product of
√

GsBω = 42 MHz.

6.5.6 Measurement of the added noise of the amplifier
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Figure 6.31: Simplified diagram of the setup shown in figure 6.12a and c. The input
noise is modeled as the noise coming from a resistor with an effective temperature Tr

whose noise is found using equation 6.10. The JPA adds AJ to the noise power S′in at its
input. Both noises are multiplied by the JPA power gain GJ before entering the input
of the commercial amplifier chain. The cascaded commercial amplifiers and mixer can
be modeled as a single amplifier with added noise AT and gain GT

Using the setup shown in figure 6.12, and switching between two calibrated noise
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sources we can change the incident noise on the JPA and measure the added of the

amplifier [92]. The change in noise power at the output of the mixer allows us to

estimate the noise AJ just added by the JPA, the JPA gain
√

GJ , the total added noise

of both the JPA and the commercial amplifier chain Asys (i.e., the total noise referred

to the input of the JPA), and the total gain
√

GJ ×GT . The effective temperature of

the incident noise is calculated using Eq. (6.10). In this case, the attenuation α place in

the calibration line was 10 dB. The circulator maximum insertion loss was -0.4 dB and

the switch’s room-temperature maximum insertion loss is -0.3 dB. Using these values,

we can estimate the incident noise quanta S′in(Tload), where Tload = Tc = 15 mK or

Tload = Th = 4.1 K depending on the position of the switch shown in Fig. 6.22a.

By selecting θ = 0, the amplified quadrature appears at the I port of the mixer

(Fig. 6.31). The spectral densities of the noise at the output if the I-channel of the mixer

is shown in figure 6.32. We measure the ratio Y as defined by Eq. (6.11) to extract Asys

and the total gain
√

GJ ×GT . We then then perform a Y -factor measurement on our

commercial amplifier chain, finding AT and GT (Fig. 6.32b). From both measurements,

we extract the JPA gain
√

GJ (Fig. 6.32c) and AJ (Fig. 6.32d). As observed in

figure 6.32d, our JPA adds less than 1/2 a quantum of noise for fourier frequencies

above 100 kHz. We did this measurement for various gains, finding only a very weak

gain dependance. However, the added noise is significantly higher than the theoretical

minimum, AJ = 0.04 quanta.

In addition, the amplifier can can be operated at large enough gain to amplify

the quantum noise above the commercial amplifier’s noise (Fig. 6.33a). We performed

similar Y -factor measurements over the whole 4 − 8 GHz band where the amplifier

operates. The results of this measurements are shown in figure 6.33b. Over the whole

band, the estimated added noise was less that half a quantum of noise [92]. However,

the added noise was always bigger than expected from the theory of Ref. [38] (see Eq.

5.57). The origin of this noise is not yet understood and is under investigation. Another
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Figure 6.32: Y -factor measurement done at 7 GHz. Power spectral density of the
demodulator output for the cases when the pump is on (a) and off (b), and the switch
is turned to the cold resistor (blue) and the hot resistor (red). For the case of the pump
off, the resonanance has been moved to avoid the reduction of the hot-load noise due to
losses in the resonator. (c) Using the difference in noise between the pump off and pump
on spectral density, the gain of the amplifier can be measured. In this case the gain is
28 dB. (d) Using Eq. (6.11), we estimate the added noise of the JPA as a function of
fourier frequency (x-axis). Below 100 kHz 1/fn noise is observed, whose origin is not
known. But for fourier-frequencies larger than 100 kHz, the estimated added noise is
AJ ' 0.23. This added noise is larger than the expected added noise according to Eq.
(5.57), (green-dashed line). Inset: added noise for different JPA gains.

point of concern is the low frequency noise that is easily observed in figure 6.32d below

100kHz. A thermal sweep was used to see its temperature dependance. This is shown in

figure 6.33c where it is shown that this noise presents a linear temperature dependance.

One hypothesis is that it consist of current noise present in any closed-loop of metal
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(like for example the circular walls of the sample box) which inductively couples noise

to the SQUID loop. But this still needs to be studied.
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Figure 6.33: (a) We plot Asys when fres = 7.00 GHz versus GJ (points). At this
frequency AT = 26 and is dominated by the HEMT. With increasing G, this noise
becomes negligible compared to AJ = 0.23, where we expect Asys = AJ + AT /GJ (blue
line). At the largest gains Asys < 0.5 (green line) and AT /G = 0.04. (b) We measure AJ

at nine different values of fres between 4 and 8 GHz and observe that the added noise is
less than half a quantum (green line). The error bar applies to all points; it represents
the systematic uncertainty introduced primarily by the unknown loss of the microwave
components when operated cryogenically. (c) We performed a thermal sweep in order
to study the low frequency noise that appears in figure 6.34a and d . If I integrate the
spectral density noise below 100 kHz, we observe a linear dependance with respect to
temperature.
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Figure 6.34: Demonstration of squeezing. (a) Power spectral density versus frequency
at the Q output of the mixer referred to the input of the commercial amplifier chain in
units of quanta, measured with the pump on (red) and the pump off (blue) for θ = 0,
fres = 7 GHz and GJ = 15.3 dB. (b) The squeezing ξ as a function of GJ (points) and
the maximum predicted squeezing from Ref. [38] (line). The error bars represent the
same systematic error as in Fig. 6.31b. This uncertainty varies smoothly between the
error bars shown in selected data points. (c) ξ(θ) as a function of θ for three different
gains (points) and GJ = 34 (black), GJ = 4 (green), GJ = 1.4 (cyan) and the expected
θ dependance (lines) [8, 38].

6.5.7 Inferred squeezing

We now turn our attention to the squeezed quadrature X2. The squeezing data

is shown in figure 6.34. The spectral density at the output of the Q port when the LO

phase is set to θ = 0 is shown in figure 6.34a. There it is obvious a small reduction of

close to 2% of the noise. Based on the Y -factor measurements done on the HEMT (Fig.

6.32b), we convert it into a squeezed-noised quanta ξ(θ = 90◦) at the output of the
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JPA. As we increase the JPA gain, we observe an increase in the noise squeezing up to

G = 16 dB (Fig. 6.34b) where we observe an squeezing of about 90% [92]. For G < 16 dB

the squeezing we observe is consistent with the expected behaviour from a model of

parametric amplification that includes loss in the JPA but no other imperfections [38].

However, for G > 16 dB we observe less than the predicted squeezing probably due to

instability in the phase acquired by the pump as it passes through the cryostat in the

time required to complete one measurement. In Fig. 6.34c, we show ξ(θ) as a function

of the LO phase θ demonstrating that the fluctuations at the output of the JPA are

indeed squeezed along the axis defined by the pump (Fig. 6.13).

6.5.8 Amplifier saturation

We have also estimated the dynamic range and saturation power of this amplifier

at 2 different frequencies: 6.184 and 8.012 GHz. We determine the saturation power as

the input power for which the gain is reduced by 1 dB (6.35b). In Fig. 6.35b we plot

Gs as function of input signal power for two different cavity’s resonance frequency. At

8.012 GHz and Gs = 27 dB, the 1 dB compression point is −130 dBm. From the noise

measurements previously described, the minimum detectable signal for this amplifier in

1 Hz band is 0.77~ω. From these two measurements, we estimate the dynamic range to

be 74 dB/Hz. At 6.18 GHz and Gs = 26 dB, the 1 dB compression point was −137 dBm

and the dynamic range is 67 dB/Hz. The reduction in dynamic range is expected: when

we tune down the resonance frequency by applying a magnetic field, we are reducing

the critical currents of the SQUIDs and the critical power of the resonator.

As a rule of thumb, we have observed that the saturation powers for large gains

can be found as Psat ≈ (γ2/γ1)Pc/(20GD), where Pc is the critical pump power. The

factor γc1/γc2 arises because we applied the pump to the weakly coupled port, but

applied the signal to the strongly coupled port. In the case of applying the pump in

the strongly coupled port (as it is necessary in the λ/4-resonator), this rule of thumb
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simplifies to Pc/(20Gs), where Pc is the critical pump power associated to the signal

(strongly coupled) port. This expression is reasonable as we expect to observe saturation

behavior when the amplified signal power becomes a significant fraction of the pump

power. For the case of the quarter-wave resonator, since its critical power is 3 dB higher

and have similar noise performance, its dynamic range is about 3 dB higher.
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Figure 6.35: (a) Direct gain as a function of signal-pump detuning for Φ = 0.15Φ0 for
three different signal powers, showing the expected saturation behavior at large enough
signal powers. Signal powers shown are -145 dBm (dots), -130 dBm (circles) and -125
dBm (crosses).(b) Direct gain as a function of input signal powers for fres = 6.184 GHz
(circles) and fres = 8.040 GHz (dots).

6.5.9 Final comments

Once we have characterized the behavior of the JPA and found that it has a

good noise performance we can now use it for doing other interesting experiments.

For example, the measurement of the squeezed state would have proceeded much more

rapidly if we had used a subquantum limited amplifier, such as a second JPA, instead

of a HEMT amplifier. This experiment will be the main subject of our next chapter. In

addition to characterizing states of microwave fields as I will show in chapter 7, the JPA

is also well suited to amplifying the signal generated by a nanomechanical beam moving

in a microwave cavity [11], enabling a quantum-limited measurement of position. This

application will be the subject of chapter 8.



Chapter 7

Applications I. Microwave homodyne tomography of squeezed states

In the previous chapter I showed how it is possible to generate microwave squeezed

states with Josephson parametric amplifiers. However, we have only characterized the

squeezed states by measuring the variance or spectral density of the itinerant squeezed

mode. These measurements do not fully characterize the states; to fully characterize

the state of a light field, we need to determine the density matrix which will account for

noise that is both quantum and classical in origin. In this chapter, I will describe how we

approach this problem of fully characterizing a squeezed state. Rather than measuring

the density matrix in a photon number basis, we measure the Wigner function using

our own implementation of “microwave homodyne tomography.” The Wigner function

is a particular representation of density matrix

In the first part of this chapter I describe the Wigner function as well as some

of its more important properties. I will also discuss other possible representations of

the density matrix in the form of the P , Q and s-parameterized distribution functions.

The experimental estimation of Wigner functions for quantum states of light based

on real physical measurements is called quantum tomography and will be the subject

of the second part of this chapter. It consists of measuring complementary features

(position and momentum, for example) in identically prepared quantum objects in a

series of distinct experiments. I will explain how quantum tomography allows us to use a

complete set of observations to reconstruct the Wigner function. I will also describe how
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imperfections in the measurement can affect our reconstruction of the Wigner function.

Finally, I will explain our experimental implementation of quantum tomography using

a Josephson parametric amplifier as the one described in the previous chapter.

7.1 Quasiprobability distributions

In the standard formulation of quantum mechanics, (for a pure state) the prob-

ability density ρ(x) in position space x is given by the square of the magnitude of the

wave function ρ(x) = |ψ(x)|2. Thus, knowing ψ(x) it is easy to visualize the distribution

ρ(x). We can easily obtain the distribution in the momentum p space by performing

the Fourier transform on ψ(x) → ϕ(p). Although straightforward, knowing ψ(x) does

not make it easy to visualize ϕ(p). It would be desirable to have a function that dis-

plays the probability distribution simultaneously of x and p. The Wigner function

allows us to do that. It could be described as an attempt to describe the quantum

mechanical state of a system in almost a classical language. In classical optics as well

as in classical mechanics we can characterize the statistics of a system by introducing

a phase-space distribution W (q, p). The distribution W (q, p) quantifies the probability

of finding a particular value of q and p in a simultaneous measurement. This means

that the phase-space distribution describes the state in classical physics. However, this

is more subtle in quantum mechanics. Due to the Heisenberg’s uncertainty principle,

two conjugate variables values cannot be simultaneously known precisely. This means

that defining a quantum phase-space distribution is more difficult and, as we will see,

it may be ill-defined in the sense that W (p, q) could become negative. For this reason,

we will call it a quasiprobability distribution. We can still try to use W (q, p) to make

statistical predictions as if it were a classical distribution; however, these predictions

will only coincide with the classical prediction in special cases. Furthermore, there are

infinitely many ways of defining quasiprobability distributions (simply because there is

no way to define them uniquely) [76]. However, we will mainly discuss one option, the
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Wigner function and mention very briefly other possible definitions of quasiprobability

distributions.

7.1.1 Wigner function

The Wigner function was introduced by Wigner in 1932 with the original goal

of finding quantum corrections to classical statistical mechanics where the Boltzmann

factors contain energies which are expressed as functions of both x and p [93]. As it is

well known from the Heisenberg uncertainty principle, there must be constraints on this

distribution and thus on the Wigner function. One way to define a quantum quasiprob-

ability distribution W (p, q) is by postulating its properties. For the Wigner function,

just one postulate turns out to be enough [76, 94]: let’s assume that W (q, p) behaves

like a joint probability distribution of both quadratures. In that case, the marginal

distributions defined as
∫

W (x1, x2)dx1 or
∫

W (x1, x2)dx2 must yield the probability

distributions for x2 and x1 respectively. In addition, we can perform a phase shift

θ for all complex amplitudes and accordingly the phase-space distribution will be ex-

pected to rotate in the two-dimensional phase space of x1 and x2. Hence, the way to

define the Wigner function is by postulating the existence of the following probability

distribution [76]:

pr(x1, θ) ≡ 〈x1|Û(θ)ρ̂Û †(θ)|x1〉 (7.1)

(7.2)

=
∫ ∞

−∞
W (x1 cos θ − x2 sin θ, x1 sin θ + x2 cos θ)dx2. (7.3)

where ρ̂ is the density operator defining the quantum state of the system and U(θ) =

exp(−iθâ†â) is the phase-shifting operator [76]. These equations also define how the

Wigner function is related to a quantum mechanics description of a state. I will not

give a detailed explanation of how Eqs.(7.1) and (7.3) are sufficient to postulate the

existence of the Wigner function or that it has a one-to-one correspondence with the
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density operator. For that, I refer the reader to Ref. [76]. I will only mention some of its

more important properties. Eqs.(7.1) and (7.3) tie W (x1, x2) to physical observations.

For example, consider the special cases of θ = 0

∫ ∞

−∞
W (x1, x2)dx2 = 〈x1|ρ̂|x1〉

and θ = π/2 ∫ ∞

−∞
W (−x2, x1)dx2 = 〈x2|ρ̂|x2〉.

Both integrals show how to derive the probability distribution for both quadratures. The

previous integral transformations are called Radon transformations and they are studied

in the context of tomographic imaging. The inversion of the Radon transformation is

what we need to reconstruct the Wigner function from physical observations. This will

be explained in the next section.

It can be shown that the relation between the Wigner function and the density

operator of a system is given by

W (x1, x2) =
1
π

∫ ∞

−∞
dye2iyx2〈x1 − y

2
|ρ̂|x1 +

y

2
〉 (7.4)

where this expression is sometimes referred to as the Weyl-transform of the density

operator ρ̂ [95]. First, we note that the Wigner function is real for hermitian operators

ρ̂ and normalized ∫ ∞

−∞

∫ ∞

−∞
W (x1, x2)dx1dx2 = 1

because the density operator ρ̂ is by definition normalized: tr{ρ̂} = 1. Another inter-

esting property is the overlap formula for two arbitrary operators F̂1 and F̂2:

tr{F̂1F̂2} = π

∫ ∞

−∞

∫ ∞

−∞
WF1(x1, x2)WF2(x1, x2)dx1dx2 (7.5)

for the Wigner function of the operators F̂1 and F̂2.1 The usefulness of the overlap

1 The Wigner function of an arbitrary operator Ô is defined using equation 7.4 with ρ̂ replaced by Ô.
However, unless we make the distinction, we use the term Wigner function only to refer to the special
case when the operator Ô is the density operator.
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formula is that it can be used to calculate expectation values

tr{ρ̂F̂} = π

∫ ∞

−∞

∫ ∞

−∞
W (x1, x2)WF (x1, x2)dx1dx2. (7.6)

This equation shows that the Wigner function plays the role of a classical phase-space

density with WF (x1, x2) being the physical quantity that is averaged with respect to

W (x1, x2) in a “classical-like” fashion. A special case happens when the operator F̂ is

Weyl, or symmetrically, ordered in terms of the operators x̂1 and x̂2. For example, for

the operator F̂ = x̂1x̂2 + x̂2x̂1, Eq. (7.6) becomes

〈x̂1x̂2 + x̂2x̂1〉 =
∫ ∞

−∞

∫ ∞

−∞
2x1x2W (x1, x2)dx1dx2.

which then resembles closely the averaging of a physical quantity with a classical dis-

tribution. Another simple consequence of Eq. (7.5) is the expression

|〈ψ1|ψ2〉|2 = π

∫ ∞

−∞

∫ ∞

−∞
Wψ1(x1, x2)Wψ2(x1, x2)dx1dx2

However, this quantity must be zero when both states |ψ1〉 and |ψ2〉 are orthogonal.

Because the overlap Eq. (7.5) cannot be zero for two positive functions Wψ1 and Wψ2 ,

this means that the Wigner function cannot be in general always positive for all values

of x1 and x2.2 This case shows why the Wigner function cannot be regarded as a

probability distribution function since we would expect it to have only positive values

in all its domain in x1 and x2. Negative regions in the Wigner function of a given state

can be seen as signatures of nonclassical behavior.

The overlap formula can also be used to estimate the purity of state

tr{ρ̂2} = π

∫ ∞

−∞

∫ ∞

−∞
W (x1, x2)2dx1dx2.

The purity tr{ρ̂2} ranges between zero and one, and equals unity only if the state is

pure (ρ̂ = |ψ〉〈ψ|). One more characteristic of the Wigner function is that their values
2 In fact, for pure states, only those having Gaussian wave functions have nonnegative Wigner

functions [76].
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are constrained, that is

|W (x1, x2)| ≤ 2
π

This constraint shows that the Wigner functions cannot be highly peaked meaning it

cannot approach delta functions or other problematic functions.

Figure 7.1: Wigner functions of a vacuum state (a), a coherent state with α = 1+ i (b),
thermal state with ~ω/kBT = 1 (c), and an ideal squeezed state with ∆x2

1=1/10(d).
All four states have Gaussian Wigner functions.

Now that I have defined what the Wigner function is, I will describe the Wigner

function of a few important examples: vacuum and thermal states, coherent states

and squeezed states. One interesting thing about all these states is that their Wigner

function consist of two-dimensional Gaussian functions. For a vacuum state, the Wigner
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function is given by

W0(x1, x2) =
2
π

exp(−2x2
1 − 2x2

2). (7.7)

In this case, the variance of each variable x1 and x2 is given by ∆x2
j = 1/4 as expected

(Fig. 7.1a). For a coherent state |α〉, the Wigner function is given by

Wc(x1, x2) =
2
π

exp
[−2(x1 − Re(α))2 − 2(x2 − Im(α))2

]
. (7.8)

As expected, the Wigner function of the coherent state consists of the Wigner function

of vacuum displaced by an amount α from the origin (Fig. 7.1b). For a thermal state

with a density operator in the number basis given by

ρ̂ =
(

1− exp(− ~ω
kBT

)
) ∞∑

n=0

|n〉〈n| exp(
−n~ω
kBT

)

the Wigner function is given by

Wthermal(x1, x2) =
2

π coth( ~ω
2kBT )

exp

[
− 2

coth( ~ω
2kBT )

(x2
1 + x2

2)

]
(7.9)

with both quadrature variances being larger than vacuum’s, ∆x2
j = 1/4 coth(~ω/2kBT ).

Finally, for the case of an ideal squeezed state (one for which the equality holds in Eq.

(2.85)), the Wigner function is given by

Ws(x1, x2) =
2
π

exp(−2e2rx2
1 − 2e−2rx2

2). (7.10)

The Wigner function is a Gaussian distribution, but with unequal variances, ∆x2
1 =

1/4e−2r and ∆x2
2 = 1/4e2r, indicating the effect of quadrature squeezing. Using Eq.

(7.3) it is easy to estimate the marginal distribution for the rotated quadrature xθ:

pr(x, θ) =
1√

2π∆x2
θ

exp(− x2

2∆x2
θ

)

where the phase-dependent variance of the Gaussian probability distribution is

∆x2
θ =

1
4
(e2r sin2 θ + e−2r cos2 θ) (7.11)

=
1
4
[cosh(r) + sinh(r) cos(2θ)] (7.12)
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7.1.2 Other distribution functions

From a practical point of view, the Wigner function can be considered as the

best compromise between a classical phase-space density and the correct quantum-

mechanical behavior: it generates the right marginal distributions and it can be easily

used to estimate expectation values using the overlap formula Eq. (7.5). However, there

are other definitions of quasiprobability distributions, the more important being the P ,

Q and s-parametrized distribution. I will describe them very briefly, mainly regarding

their relation with the Wigner function.

Q function

The Q function can be obtained from the Wigner function by convolving it with

a Gaussian distribution with the same width as vacuum

Q(x1, x2) =
2
π

∫ ∞

−∞

∫ ∞

−∞
W (z1, z2) exp(−2(z1 − x1)2 − 2(z1 − x1)2)dz1dz2. (7.13)

Comparing the second part of Eq. (7.13) with Eq. (7.8), we see that the Q function

gives simply the overlap of the density operator ρ and the projection operator for the

coherent state |α〉, where α = x1 + ix2:

Q =
1
π

tr{ρ|α〉〈α|}

=
1
π
〈α|ρ|α〉

Clearly the Q function will not be negative and since the coherent states |α〉 form

an over-complete basis [26], it can be shown that the Q function is normalized. This

smoothing with the Wigner function of a vacuum state effectively averages the values of

W (z1, z2) in a circular area around (x1, x2) with a radius given by the vacuum fluctua-

tions. Because any negativity disappears after this procedure, the negative values of a

Wigner function must be concentrated in an area smaller than vacuum fluctuations.3

3 Note that this point puts a restriction in the kind of function that can be considered to represent
the Wigner function of a state. It means that the negative values of a valid Wigner function cannot be
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Looking from an experimentalist point of view, this means that resolving these negative

values of the Wigner function requires an accuracy on the order of vacuum fluctuations.

The smoothing of the Wigner function is also clearly seen in the Fourier domain.

Performing the Fourier transform on the Q function

Q̃(u, v) =
∫ ∞

−∞

∫ ∞

−∞
Q(x1, x2) exp(−iux1 − ivx2)dx1dx2

= W̃ (u, v) exp
[
−1

8
(u2 + v2)

]
.

This shows that the details in the Wigner function that correspond to high “frequencies”

of u and v are suppressed in the Q representation.

P function

The P function has a very important role in the context of calculating expectation

values of normally ordered operators in quantum optics [26, 76]. I will not discuss its

properties other than its relation to the Wigner function. In the Fourier domain, it can

be shown that

W̃ (u, v) = P̃ (u, v) exp
[
−1

8
(u2 + v2)

]
(7.14)

One feature of the P function is that it can be very ill-behaved. For example, from Eq.

(7.14), we see that the Wigner function is a smoothed version of the P function. But

if the Wigner function can be negative for nonclassical states, the P function may not

only be negative, but it may be more singular than a delta function [26, 76]; that is, it

will not be possible to express it in terms of ordinary functions. For this reason, there

is no practical way to reconstruct it from experimental data.

s-parameterized quasiprobability distributions

I have shown how the relation between the P , the Wigner, and the Q functions

is just a smoothing process with a Gaussian that represents the Wigner function of

extended over areas significantly wider than 1/4 measured in quadrature units; otherwise the Q function
could be negative.
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vacuum. However, I could also convolve the Wigner function with a Gaussian having

a different width. I then obtain a family of distributions called the s-parameterized

distributions W (x1, x2, s). In the Fourier domain this family of distributions is defined

as:

W̃ (u, v, s) ≡ W̃ (u, v) exp
[s

8
(u2 + v2)

]
(7.15)

where s < 0 for smoothing of the Wigner function. All previous examples correspond

to the parameters

(1) s=1: P function,

(2) s=0: Wigner function,

(3) s=-1: Q function.

In this new family of distributions the s parameter is defined over the whole range of

the real numbers. However, for our purposes in this thesis I will only consider the cases

of s ≤ 0. In this case, consider the definition for the s-parameterized distribution

W (x1, x2, s) = − 2
πs

∫ ∞

−∞

∫ ∞

−∞
W (z1, z2) exp

(
2(z1 − x1)2 + 2(z1 − x1)2

s

)
dz1dz2

(7.16)

provided s ≤ 0 so that the integral converges. We can then define the marginal distri-

bution of the smoothed Wigner function as

pr(x1, θ; s) ≡
∫ ∞

−∞
W (x1 cos θ − x2 sin θ, x1 sin θ + x2 cos θ; s)dx2

=
1
π

√
2
|s|

∫ ∞

−∞
pr(x, θ) exp

[
− 2
|s|(x1 − x)2

]
dx. (7.17)

The main reason we are interested in the s-parameterized distributions is that, as I will

show in the next section, inefficiencies in the process of measuring the Wigner function

can be mapped into an effective smoothing. The smoothing parameters s is a function

of such inefficiencies. These inefficiencies will have two main culprits: losses at the input
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of the detector and added noise of the amplifiers used to measure the (microwave) light

field.

7.2 Quantum tomography: using a homodyne detector to measure

the Wigner function

As a fundamental feature of quantum mechanics, we cannot know all the in-

formation about a system simultaneously. If we observe its position, then we cannot

gain momentum information at the same time, or at least not with arbitrary precision.

However, there is no principle that prevents us from seing all complementary aspects

of a system in a series of distinct experiments on identically prepared objects. The

question is then, can we infer the quantum state from such a set of observation? The

answer is yes. In the same way medical tomographic imaging can reconstruct the shape

of a hidden object inside a patient’s body by gathering projection data from multiple

directions, in quantum optics, tomography has been experimentally applied to recon-

struct the quantum state of light from a complete set of measured quantities. Quantum

tomography explains how quantum states can be tomographically reconstructed from

experimental data. The first theoretical suggestion about how to reconstruct the Wigner

function using homodyne detection was done by Vogel and Risken [96] and the exper-

imental demonstration that proved this method was published in 1993 by Smithey,

et.al. [97, 98]. Yet, these experiments have always been done in the optical frequencies,

where highly efficient detectors exist. In the next section I describe the basics of quan-

tum tomography and demonstrate that it is now possible to perform quantum state

tomography at microwave frequencies.

7.2.1 Histograms and radon transformation

In order to understand the concept of tomography in this context, we need to

remember Eq. (7.1) that explains how to obtain the distribution function for the values
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Figure 7.2: Tomographic projection of the Wigner function of a coherent state for
θ = 0. Tomography is a method that allows us to infer the “shape” of an object by
taking multiple cross-sectional images or projections of that object. In quantum-state
tomography, the Wigner function of the state plays the role of the “shape” of the object,
and its projections are the quadrature probability distributions.

of a quadrature in terms of the Wigner function. In this case, we imagine the “shape”

of the quantum object to be the Wigner function and the transmission profiles are the

marginal distributions

pr(x1, θ) =
∫ ∞

−∞
W (x1 cos θ − x2 sin θ, x1 sin θ + x2 cos θ)dx2

which in a sense are the projections of W (x1, x2) onto a line of the quantum space (Fig.

7.2) [76]. As mentioned previously, integrals as the one described in this equation are

called Radon transformations and are the basis for the mathematical theory of tomo-

graphic imaging. Although we cannot observe the Wigner function directly, we can

measure the marginal distributions as quadrature histograms by performing homodyne
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(quadrature) measurements (Fig. 7.3). By varying the phase θ, we can observe the

quantum object under different angles and measure the quadrature histograms at all

these different angles. Given the distributions pr(x1, θ), the mathematics of computer-

ized tomography can be used to estimate the Wigner function (basically, by performing

the inverse radon transformation on the multiple histograms).

time

V
o

lt
a

g
e

Optical homodyne detector

θ

LO

marginal 

distribution

Figure 7.3: Schematic diagram for Wigner function reconstruction. A light signal from
the prepared state enters a balanced homodyne detector where the projection of the
Wigner function is set by the phase of the local oscillator (LO). The voltage output of
the homodyne detector is measured and its histogram is created. This histogram is an
estimate of the quadrature distributions for that particular phase.

In optics experiments, the quadrature of a light field can be measured using the

balanced homodyne detection [99]. In the microwave world, this is done by using the

microwave mixer that we described in section 6.1.24 However, a microwave mixer has

a very poor efficiency, so in order to measure the nonclassicality of quantum states in

microwave fields, we need to add a few elements to the measurement scheme as we

will describe in the next section. Just like a microwave mixer (only better), an optical

homodyne detector measures a quadrature component xθ of the incoming field. The

reference phase θ is provided by the local oscillator (LO) and it can be adjusted by

changing its phase. To measure the quadrature distribution, we can either fix the angle
4 It is interesting to notice that even though it can be said that balanced homodyne detection is

intrinsically more efficient in the quantum optics world, the idea of balanced homodyne detection was
actually born in the context of microwave technology development during World War II [100].
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of the LO or sweep it as a function of time, and perform a series of homodyne mea-

surements at all the required different phases. From these measurements, we then build

up a histogram that in the limit of a large number of measurements will approximate

pr(x1, θ) (Fig. 7.3). The homodyne measurement must be repeated many times to gain

sufficient statistical information about the quadrature values and at sufficient number

of phases in order to accurately reconstruct the Wigner function. These last details will

be discussed in a later section.

7.2.2 Inverse radon transformation

The general idea of quantum tomography has already been explained by defining

the probability distribution for a quadrature measurement as the Radon transform of

the Wigner function, Eq. (7.1). Fourier transforming the marginal distribution results

in

p̃r(ξ, θ) =
∫ ∞

−∞
pr(x, θ)e−iξxdx

= W̃ (ξ cos θ, ξ sin θ). (7.18)

In order to obtain the Wigner function we need to perform the inverse Fourier transform

in polar coordinates of the measured marginal distribution

W (x1, x2) =
1

(2π)2

∫ ∞

0

∫ 2π

0
W̃ (ξ cos θ, ξ sin θ)eiξ(x1 cos θ+x2 sin θ)ξdξdθ

=
1

(2π)2

∫ ∞

−∞

∫ π

0
W̃ (ξ cos θ, ξ sin θ)eiξ(x1 cos θ+x2 sin θ)|ξ|dξdθ

=
∫ π

0

[
1

(2π)2

∫ ∞

−∞
p̃r(ξ, θ)eiξ(x1 cos θ+x2 sin θ)|ξ|dξ

]
dθ (7.19)

where in the second line we have used the property that W̃ (ξ, θ + 180◦) = W̃ (−ξ, θ).

The integral of Eq. 7.19 may be expressed as

W (x1, x2) =
∫ π

0
Hθ(x1 cos θ + x2 sin θ)dθ (7.20)

where

Hθ(t) =
1

(2π)2

∫ ∞

−∞
p̃r(ξ, θ)eiξt|ξ|dξ (7.21)
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This estimate of the Wigner function W (x1, x2) based on the Fourier transform of

the measured histograms pr(x, θ) has a simple interpretation. It represents a filtering

operation where the frequency response of the filter is given by |ξ|. The term Hθ is

usually referred as the “filtered projection.” The phase integration is approximated by

a sum over the measured phases θ to generate the estimate of W (x1, x2).

Expression (7.21) presents certain mathematical difficulties. From the convolution

theorem it can be expressed as

Hθ(t) =
∫ ∞

−∞
pr(x, θ)K(t− x)dx

where K(t) is nominally the inverse Fourier transform of |ξ|. However, this kernel K(t)

exists only in the sense of a generalized function. I will not get into this detail or

the regularization of the generalized function K(t). I refer the interested reader to the

appropriate literature [76,101]. Numerical recipes for the proper implementation of Eq.

7.20 are easy to find in the literature and will not be reviewed here. In our case, we did

not write our own implementation, but used the filter back-projection algorithm already

programmed as the function iradon in MATLAB 7.7.0. This particular implementation

is explained in Ref. [101].

7.2.3 Inefficiencies and measurement issues

In our experiment where we try to detect microwave squeezed states there are two

main sources of inefficiencies in detection: losses between the amplifiers and the JPA

that generates the squeezed states, and added noise of our amplifiers. Losses between

the squeezer and amplifiers can be easily modeled in the same way losses are modeled in

optical systems: by incorporating a fictitious beam splitter (the microwave equivalent

being a directional coupler) in front of the detector. This beam splitter accounts for

the losses by letting only a fraction η of the incoming intensity pass and diverting the

fraction (1 − η) of lost intensity to an unobserved port of a beam splitter (Fig. 7.4).
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From the fluctuation-dissipation theorem, the loss must be accompanied by fluctuations,

which are modeled as noise introduced at the fourth port of the beam splitter. These

fluctuations are described as the vacuum noise that enters the detector via the other

port of the beam splitter or directional coupler.5

+

1 2( , )W x x

0 1 2( , )W y y

η

output 1 2 1 2 1 2 0 1 2( , , , ) ( , ) ( , )W x x y y W x x W y y′ ′ ′ ′ ′ ′ ′ ′=

Figure 7.4: Effect of a beam splitter on a Wigner function W (x1, x2). The second port
is assumed unused and therefore only vacuum fluctuations enter this port represented
by the Wigner function of vacuum W0(y1, y2). The effect of the beam-splitter losses (η)
manifests in the transformation {x1, x2, y1, y2} → {x′1, x′2, y′1, y′2}, Eq. (7.22)

The effect of a beam splitter on the Wigner function is easily found by using the

relation between the input and output ports of the beam splitter [26,28,76, 77].



a′

b′


 =




√
η −√1− η

√
1− η

√
η







a

b


 (7.22)

We are only interested in one of the outputs of the beam splitter a′ =
√

ηa−√1− ηb,

the other output representing the absorbed power. The Wigner function for the joint

system of the input modes is given by Winput(x1, x2, y1, y2) = W (x1, x2)W0(y1, y2),

where W0(y1, y2) is the vacuum Wigner function given by Eq. (7.7). We express the

Wigner function in terms of the total Wigner function for both output fields of the beam
5 The loss we are modeling sits inside the dilution refrigerator at 15 mK. Therefore, it is accurate

to model the noise introduced by the loss as vacuum noise given that ~ω À kBT for the frequencies we
are interested.



201

splitter. The output Wigner function consists of

Woutput(x′1, x
′
2, y

′
1, y

′
2) = W (

√
ηx′1 −

√
1− ηy′1,

√
ηx′2 −

√
1− ηy′2)

×W0(
√

1− ηx′1 +
√

ηy′1,
√

1− ηx′2 +
√

ηy′2).

Because we only measure one of the outputs of the fictitious beam splitter, the measured

distribution Wmeas(x1, x2) is

Wmeas(x1, x2) =
∫ ∞

−∞

∫ ∞

−∞
W (

√
ηx1 −

√
1− ηy1,

√
ηx2 −

√
1− ηy2)

×W0(
√

1− ηx1 +
√

ηy1,
√

1− ηx2 +
√

ηy2)dy1dy2. (7.23)

We see that the measured Wigner function is really a smoothed version of the ideal

distribution W (x1, x2). By making a change of variables and comparing Eq. (7.23)

with the definition of the s-parameterized distribution, Eq. (7.16), it is possible to show

that after including losses, the measured distribution is not the Wigner function but a

s-parameterized distribution given by

Wmeas(x1, x2) =
1
η
W (

x1√
η
,

x2√
η
, s = 1− 1

η
). (7.24)

How losses affect the Wigner function has a simple interpretation: the rescaling corre-

sponds to the linear loss in the intensity, whereas the s-parameter smoothing (s < 0)

corresponds to the introduction of fluctuations that averages the details in the Wigner

function. Losses and inefficiencies smooth the Wigner function of the considered quan-

tum state and lead ultimately to a supression of nonclassical behavior. It is interesting

to note that for 50% detection efficiency, the distribution obtained is a scaled Q func-

tion. This means that for η = 0.5, the amount of noise introduced in the measurement

is enough to wash out all the nonclassicality of the Wigner function (recall that the

Q-function is everywhere positive).

So far I have only discussed efficiency problems due to losses. In order to do

our measurements outside the dilution fridge, we amplify our signals before going into
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+
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0 1 2
( , )W y y

θ

η

Ideal homodyne

detector

meas 1 2 1 2 1 2 0 1 2 1 2
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Figure 7.5: Effective model for losses in the detector. The signal is attenuated and
contaminated by vacuum fluctuations entering the unused port (y1, y2) of the fictitious
beam splitter. The transmittance of the beam splitter represents the homodyne detector
efficiency.

the mixer that will allow us to measure the quadrature of the microwave fields. What

sets the noise floor of our measurement is the first amplifier in the measuring chain

(assuming it has enough gain to overcome the noise of the next amplifies). This noise

floor represents the added noise of the amplifier AN and unless AN = 0, this added

noise can be modeled as an effective loss. In order to explain this claim, we will model

the noisy amplifier (in this case our HEMT amplifier) as a nondegenerate parametric

amplifier.6 In chapter 2, I described the transformation that a parametric amplifier

does to the incoming fields (Eq. 2.82):



a′

b′†


 =




cosh(r) sinh(r)

sinh(r) cosh(r)







a

b†


 (7.25)

where a represents the mode we are interested in. Although the origin of the noise may

be a very large amount of degrees of freedom, we can model it as a single fictitious

bosonic mode b, the idler mode of this nondegenerate parametric amplifier. This linear
6 Nondegenerate parametric amplifiers can be used to modeled any linear amplification process

caused by Gaussian reservoirs [28, 102].
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amplification transformation is very similar to the transformation performed by a beam

splitter, Eq. (7.22). Thus, following a similar approach to the one for the beam splitter,

the Wigner function of the amplified signal field is given by integrating over the idler

mode variables [28]

Wampl(x′1, x
′
2) =

1
πAN

∫ ∞

−∞

∫ ∞

−∞
W (x1, x2) exp(−(y2

1 + y2
2)

AN
)dy′1dy′2 (7.26)

where x′i and y′i are the modes transformed by Eq. (7.25), and the added noise is given

by the noise in the idler mode

AN =
1
2
〈{b̂, b̂†}〉 =

1
2

coth(
~ω

kBTidler
).

This integral can be mapped into a scaled s-parameterized distribution,

Wampl(x1, x2) =
1

cosh2(r)
W (

x1

cosh(r)
,

x2

cosh(r)
,− sinh2(r)

cosh2(r)
AN

1/2
) (7.27)

with the smoothing s-parameter given by

s = − sinh2(r)
cosh2(r)

AN

1/2
.

For large gain, cosh(r) ' sinh(r), so the effective efficiency for the amplification process

becomes

η =
1

1 + 2AN
. (7.28)

For a linear phase preserving amplifier, the smallest possible added noise (standard

quantum limit) is AN = 1/2, consequently η = 0.5. We then see that even for a

quantum-limited amplifier, amplifying a signal removes all the nonclassicality of the

Wigner function, because the resulting quasiprobability distribution is the everywhere-

positive Q function. In our case, when we use the HEMT amplifier to measure squeezed

states our efficiency is less than 2%, assuming an added noise of AN = 26 quanta. In

order to estimate the total efficiency of a measurement, we only need to estimate the

efficiency of the separate components, ηloss and ηamp noise. The total efficiency is then
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given by

η = ηloss × ηamp noise. (7.29)

Next, I will explain how we improve this efficiency in our measurements.

7.2.4 Implementing an ideal homodyne tomography detector with a JPA

So far it has not been possible to do much with the microwave squeezed states that

we have generated since the detectors at microwave frequencies are highly inefficient.

Unlike optics, where the large energy per photon can be used to create highly efficient

detectors (efficiencies as high as η = 0.97 [103]), the energy of one microwave photon is so

small that a plausible scheme for a single-photon detector has yet to be developed. The

way small signals at microwave frequencies are measured is by measuring voltages after

the signals have been amplified. Yet, the amplification process is rather noisy; state-

of-the-art commercial microwave amplifiers have an estimated added noise number of

10-20 quanta at 5-10 GHz. To provide a sense of the problem, 20 quanta of added noise

is equivalent to only 2.5% efficiency, Eq. (7.28). However, the same type of JPA that

was used to generates squeezed states can also be used to improve the efficiency of the

detection.

In homodyne detections, only one quadrature is measured. We have seen that,

in principle, it is possible to noiselessly amplify one of the quadratures of a signal

and squeeze the other one. Therefore, a way to circumvent issues of efficiency in the

homodyne detection is to noiselessly amplify the measured quadrature by a large enough

factor so that the smoothing due to inefficiencies in the detector is negligible. The

transformation on the signal mode a and a† described for an ideal generic parametric

amplifier was discussed in chapter 2 (Eq. 2.83) and it can be re-expressed as in section
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2.4.3 in the following way



a′

a′†


 =




cosh(r) sinh(r)

sinh(r) cosh(r)







a

a†


 (7.30)

where r is just a parameter that determines the gain of the amplifier. Based on this

transformation, the quadrature modes are then transformed in the following way

x′1 = erx1, x′2 = e−rx2, (7.31)

showing that x1 is amplified and x2 is squeezed. Defining
√

G1 = er as the quadrature

gain, the transformed Wigner function at the output of the squeezer is given by

W ′(x′1, x
′
2) = W (

x′1√
G1

,
√

G1x
′
2). (7.32)

The proposed set-up shown in figure 7.6 would use a JPA as pre-amplifier for the ineffi-

cient homodyne detector (here modeled as a black box that represents the amplification

chain and mixer combined and a beam splitter that models the inefficiencies of the de-

tector). The phase of both the JPA pump and the LO of the homodyne detector must

be properly adjusted so that the measured quadrature corresponds to the amplified

quadrature and not to the squeezed one. The effect of both the noiseless amplifica-

tion
√

G1 and absorbtion of the loss η on the Wigner function W (x1, x2) resulting in

a squeezed-smoothed Wigner function Wmeas can be easily computed. However, we are

more interested on the final histogram prmeas(x′1, θ) measured:

prmeas(x, θ) =
∫ ∞

−∞
Wmeas(x, y)dy

=

√
2

π(1− η)

∫ ∞

−∞
pr(x′, θ) exp

(
−2ηG1

1− η
[x′ − x√

ηG1
]2

)
dx′ (7.33)

where pr(x′, θ) is the original marginal distribution of W (x1, x2). From Eq. (7.33), it

can be observed that the smoothing is reduced by increasing the gain G1. In the limit of

high gain, the exponential approaches a delta function resulting in measuring a scaled

ideal distribution

prmeas(x, θ) =
1√
ηG1

pr(
x√
ηG1

, θ).
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This means that using an ideal degenerate parametric amplifier as a pre-amplifier would

allow us to measured the marginal distributions of the original Wigner function, with

the appropriate rescaling.

Squeezer gain=G

JPA
1 2( , )W x x

θ

η Ideal homodyne detector

Losses and other

inefficiencies

Vacuum

1/ 2 1/ 2

1 2( , )W G x G x
−

meas

1
pr ( , ) pr( , )

x
x

G G
θ = θ

η η

θ

pump LO

1

1 1

1 1

Figure 7.6: Schematic diagram with a JPA used as a preamplifier for an inefficient
homodyne detector. For large enough JPA gain G1, the measured histograms approach
the quadrature probability distribution of the ideal Wigner function W (x1, x2), hence
allowing for its tomographical reconstruction.

Comparing Eq. (7.33) and Eq. (7.17) we can see that if we were to use the

histograms from Eq. (7.33) measured with this set-up, we would be able to reconstruct

the following s-parameterized distribution

W ′(x1, x
′
2) =

1
ηG

W (
x1√
ηG

,
x2√
ηG

;−1− η

ηG
). (7.34)

We observe that in the limit of high gain, the smoothing factor s approaches zero and the

reconstructed Wigner function is the original, but scaled, Wigner function W (x1, x2).7

7.3 Results

Using a parametric amplifier as a preamplifier to increase the efficiency of the

detectors has already been suggested in quantum optics [28], but it has never been

implemented at microwave frequencies. Next, I will show our implementation of this

idea using Josephson parametric amplifiers to increase efficiency of the measurement of

microwave squeezed states as well as the reconstruction of their Wigner function.
7 Note, however, that this tomographically reconstructed Wigner function is not the Wigner function

Wmeas at the input of the homodyne detector.
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7.3.1 Details of the experiment
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Figure 7.7: Schematic of the experimental setup for our implementation of quantum-
state tomography of squeezed states with a high-efficiency microwave homodyne de-
tector. Two signal generators are used in the experiment: one as the pump of the
squeezer and the other one as the pump of the JPA (anti-squeezer) and the LO of the
microwave mixer. A pair of noise sources (resistors) are used to estimate the added
noise of the different amplifiers that determine our detector efficiency. All four ports of
the directional couplers are used since we need to perform carrier-cancelation of both
JPA and squeezer pumps. This is accomplished by splitting the pumps and sending a
copy of the pumps to the fourth port of the directional coupler. The appropriate phase
and magnitude of this cancelation tones are adjusted with manual variable attenuators
and phase shifters. The incoming and outgoing tones are separated in the same way it
was explained in chapter 6 using microwave circulators. Due to losses in the different
microwave components and cables and added noise of the JPA, our detector inefficiency
cannot be made arbitrarily small even at the highest JPA gain (see appendix B)

The full schematic of the measurement is shown in figure 7.7. It is similar to the

one shown in chapter 6 (fig. 6.12). However, we have added an extra JPA in order to

amplify the squeezed state generated by the first JPA (from now on referred only as

squeezer). The resonance frequencies of both the squeezer and the JPA meet at two

points for low currents: fres ' 7.45 GHz and fres ' 8.15 GHz, as shown in figure 7.8.

Since the performance of the circulators was better at 7.45 GHz, we operated at this
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frequency. For this reason the performance of the HEMT, JPA and squeezer was tested

close to this particular frequency as explained in appendix B. We are operating the

JPA and squeezer in the four-photon mode (ωp ' ωresonance), thus in order to prevent

saturation of the JPA with the squeezer pump we need to suppress it by sending an

interfering or cancelation tone using a directional coupler (Fig. 7.7). However, the

microwave circulators are not ideal, having only 20 to 30 dB of isolation. This means

there is some leakage of the JPA pump into the squeezer. Although small, it could

affect the magnitude of the squeezer pump as we switch the phase of one with respect

to another due to interference modifying the amount of squeezing. Hence we also send a

carrier cancelation tone for the JPA pump. Nonetheless, the most important cancelation

is the squeezer pump cancelation.

-1 0 1
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6

8

f re
s (

G
H

z
)

I (mA)

Amplifier
Squeezer

Squeezer

Amplifier

(a) (b)

Figure 7.8: (a) Resonance frequency for the JPA and the squeezer as a function of the
current though a coil installed in the mixing chamber. Both resonance meet at multiple
currents, but only for two values if we restrict the current to be smaller than the needed
to create a flux quanta at the resonators. These two values are shown by arrows. (b)
The difference in the current dependance for both resonators was achieved by placing
the samples at different locations relative to the magnetic field coil.

We use two signal generators for the measurement setup. In principle the JPA

pump, the squeezer pump, and the LO of the mixer could all come from the same
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microwave generator. Yet, the carrier cancelations and calibration measurements were

significantly simplified by using two signal generators. One provides both the LO and

the pump of the JPA. The other provides the squeezer pump. The cancelation tone

for each pump came from the same signal generator as the respective pump (Fig. 7.7).

The appropriate amplitude and phase to suppress the pumps are chosen with variable

attenuators and variable phase shifters. The cancelation could be as good as 60 dB,

but it was only stable for a few seconds (long enough to do our measurements). Still, a

stable cancelation of 40 dB was achieved for several minutes.

Based on the discussion of the previous section, it can be concluded that knowing

the losses as well as other inefficiencies such as amplifier noise in the path of your

signal is very important. We performed some tests including thermal sweeps and Y -

factor measurements as the ones described in the previous chapter. These tests are

summarized in appendix B. From that analysis, I will model our setup as shown in

figure 7.9. For the analysis I will assume the following values of attenuation (obtained

from the thermal sweep data): α + β ' 3± 0.2 dB, α ' 1.7± 0.1 dB, β = 1.3± 0.3 dB.

Note that due to imperfections in the JPA (AJ 6= 0) and losses between the squeezer

and JPA, the equivalent model (Fig. 7.6) of the microwave homodyne detector will have

an additional beam-splitter at the input the JPA. This means that even with the largest

gain possible of the JPA, it will not be possible to reconstruct the ideal Wigner function

coming from the squeezer.

Another important point that needs to be addressed is to avoid saturation of the

JPA with the squeezer amplified noise. Even though one of the quadratures of a squeezed

state may have fluctuations below those of a vacuum state, the photon distribution of

a squeezed state can be rather large (Fig. 7.12). In order to calculate the power at the

input of the JPA, we can calculate the power in the amplified quadrature noise at the

output of the squeezer. At the input of the squeezer there is a total of around 1 quanta

of noise (the 0.5-0.8 quanta of incoming noise plus the 0.2 quanta of added noise). If
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Figure 7.9: Schematic of our implementation for a high efficiency microwave homodyne
detector. The microwave homodyne detector consist of the Josephson parametric ampli-
fier operating as the JPA plus the commercial microwave amplifiers and the mixer. The
phase of the mixer needs to appropriately chosen to measure the amplified quadrature
of the JPA. The noise at the input of the squeezer is modeled as noise coming from
a resistor with an effective temperature Teff. The main reason Teff 6= Tc is due to the
unknown insertion losses at 4.1 K.

the squeezer has a gain GSQ, the noise power per unit bandwidth at the input of the

JPA is then G~ω (for simplicity, I am ignoring the loss α between the squeezer and

JPA and the Lorentzian frequency dependance of the squeezer gain, as the squeezer is

operated at a small gain, so its bandwidth is bigger than the JPA amplifier bandwidth).

Assuming this noise at the input of the JPA, this means that if the total (fullwidth)

amplifier bandwidth of the JPA is γGain, the total amplified power at the output of

the JPA is GJ(GSQ~ω)πγGain/2. Here we have again used the convention of defining

the quadrature gain G1 of the JPA as GJ as in chapter 6. The JPA has a saturation

power at the output of about -95 dBm. For a JPA quadrature gain of around 23 dB

(direct gain of 17 dB) and a half-width of around 3.5 MHz, this means that we may

be saturating the amplifier with a squeezer gain of 15 dB or a squeezer power gain of

GSQ = 30. However, from appendix B, I know that the a maximum squeezing of about

80% is achieved at a gain of about 10 dB (see appendix B), so we should be able to

operate at this gain with only small saturation problems.

We can now estimate the expected observed squeezing. For a given frequency

we did a Y -factor measurement (sect. 6.3.3) and estimate the HEMTs noise. We did
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as well a Y -factor on the JPA.8 From figure 7.9, the output power of our microwave

homodyne detector is

Sout = GH{(Sinξα + (1− α)Pf + AJ)GJβ + (1− β)Pf + AH} (7.35)

= GHGJαβ{Sinξ +
(1− α)

α
Pf +

AJ

α
+

(1− β)
GJβα

Pf +
AH

GJβα
} (7.36)

= Geff{Sinξ + Aeff} (7.37)

where ξ = Ssqueezer
out /Sin, Sin = 1

2 coth( hf
kBTeff

), and Sc = 1
2 coth( hf

kBTc
) ' 1

2 with Tc

being the temperature of the cryostat (15 mK). Aeff is the effective added noise of the

homodyne detector. In the limit of high JPA gain, Aeff can be approximated as:

Aeff ' (1− α)
α

Sc +
AJ

α
+

AH

GJβα
. (7.38)

The effective added noise of the detector has three components: the HEMT noise divided

by the effective gain of the JPA (GJαβ), the added noise of the JPA scaled by the loss α

and the noise coming from this loss Sc(1−α)/α. The effective efficiency of the homodyne

detector is then given, according to Eq. (7.28), by

η =
1

1 + 2Aeff

=
α

1 + 2(AJ + AH/GJβ)
.

Note that the effective efficiency has the form of Eq. (7.29) for two main sources of

noise: an amplifier with an added noise of AJ + AH/GJβ and loss α at its input.9

Using values for all the attenuation and noises of amplifiers, with a JPA gain of 180,

α = 1.7 dB, β = 1.3 dB, AJ=0.25 quanta and AHEMT = 17.3 quanta, the expected

efficiency is 38%. Operating at higher gains would have increased the efficiency up to
8 We also compared these values with the ones obtained from the thermal sweeps making sure they

agreed within the error of the measurements.
9 In Eq. (7.28), it is obvious that the origin of the numerical factor of 2 is the fact that there is half

a quantum of noise in the vacuum state. Thus, there can be some ambiguity about whether to use 2Aeff

or 4Aeff in Eq. (7.28), as that equation was obtained for a phase-insensitive amplifier, which adds AN/2
to each quadrature (compared to the 1/4 quanta of noise in the quadrature of a vacuum state), and
our quoted noise is the noise added to a single quadrature. However, since we are using a single-sided
spectrum convention, the total quanta per unit bandwidth in one quadrature for a vacuum state is 1/2
(see appendix A) so η = 1/(1 + 2Aeff) is the right expression to use in our case.
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45% but at a much reduced bandwidth and the difficulty of achieving perfect cancelation

of the JPA pump, so the highest gain we used was GJ = 180.

To measure the quadrature histograms there are two possible approaches. We

can fix the phase between the squeezer and the homodyne detector and perform a

series of homodyne measurements at this particular phase to build up a quadrature

histogram pr(x, θ). Then, the LO and JPA pump phase should be changed and repeat

this procedure as many times as the required numbers of phases. Another possibility

is to sweep the phase in a known way while measuring the output of the homodyne

detector, each sample representing a different phase. We used both approaches, but all

of the data shown below comes from the second option where the phase was swept at

a known rate.10 The squeezer and JPA pumps were detuned by 100 kHz. This means

that when we take a time trace, each point corresponds to a different phase between

the squeezer and JPA pumps (basically a different phase between the squeezed noise

and the homodyne detector). The time traces were 0.2 seconds long and digitized at a

10 MHz sample rate with a data acquisition Alazar card (ATS460) with 14 bit resolution

and a 200 mV voltage range. The bandwidth was set by our 5 MHz anti-alias filter.

With a detuning of 100 kHz, we have a full 360 degrees of rotation between the pumps

every 100 samples, which means that in 1 time trace there are 20000 realizations for

each phase.11

7.3.2 Histograms of the traces

The analysis of the time traces include some digital filtering in order to remove

the low frequency noise observed in the amplification and squeezing process explained

in the previous chapter. Besides, it helps remove the remaining squeezer pump that

was not possible to suppress, which appears as small tone at ∆f = 100 kHz. We also
10 We chose the second option since the cancelation of both pumps was better accomplished.
11 Actually, since the histograms pr(x, θ) and pr(x, θ + π) are not independent the only phases that

matter for the Wigner function reconstruction are 0 − 180◦ and we then have 50 independent phases
with 40000 realizations
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Figure 7.10: Noise at the output of our microwave homodyne detector as a function of
the JPA-pump and LO phase. Blue points are the measured noise when the squeezer
pump is applied and the red points are measured when the squeezer pump is turned off.
The detection bandwidth is 5 MHz. (b) Histograms of the voltage fluctuations. Circles
(o) are data and lines represent Gaussian fittings. The red circles are taken when
measuring the amplified quadrature of the squeezer and the blue circles represent the
squeezed quadrature. The black circles represent the calibration noise measured when
the squeezer pump is turned off. (c) Variance of the Gaussian fittings as a function of
phase. Both figures (a) and (c) share the same x-axis.

need to do a calibration of the noise level. Traditionally, in the optical experiments

this is done by blocking the input of the homodyne detector and measure the “shot

noise” level, which represents the vacuum noise level. A similar approach is done in

our case. However, we can not go and block the signal path since it sits at 15 mK

inside the dilution refrigerator. What we do is we turn off the squeezer pump and

measure the noise level at the output of the microwave homodyne detector with the

JPA pump on. Unfortunately, due to issues12 in the calibration (Y -factor) line, we

estimate that the input noise is not a vacuum state, but a low occupancy thermal state
12 These issues are mainly the losses at 4.1 K due to the microwave switch and the bias tee used to

heatsink the center conductor of the coaxial lines.
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(〈n〉 + 1/2 = 0.65 − ±0.15) quanta of noise. For the rest of this chapter I will assume

that 〈n〉 + 1/2 = 0.65. Assuming an efficiency of 38 %, that means that the noise

level we measure of our calibration represents 0.56 quanta. The data was taken with 2

different JPA quadrature power gains, GJ = 50 and GJ = 180. Most of the shown data,

however, is from the highest gain since it has a better effective efficiency. For each JPA

gain, 6 different squeezer power gains were taken between GSQ = 1.1 and GSQ = 14.

The gain of the squeezer was modified by adjusting the pump power, but keeping the

same frequency of the pump.

A characteristic time trace for both the squeezer pump on and off is shown in

figure 7.10a. For the case when the squeezer pump is turned on, the time trace reveals

the characteristic phase-dependance noise of a squeezed state. A Gaussian fitting to

the points representing a phase is used to estimate the variance of the histograms (Fig.

7.10b). The variance of the Gaussian fitting as a function of phase is shown in figure

7.10c where it is clear the squeezing of noise below our calibration noise.

We can now estimate the amount of squeezing we expect to see. We first start

with the low JPA gain (G = 50). In this case, the efficiency of the detector is η = 0.28.

The input power is Sin = 0.65 quanta. The ratio between the variance of the signal at

the output of the homodyne detector (σV ∝ ∫
Bω

Sout(ω)dω) with the squeezer on and

off is defined using Eq. 7.37 as

ζ =
σV (ξ, θ)

σV (ξ = 1)
. (7.39)

In this case, the maximum observed squeezing should be 26± 4%. The observed max-

imum squeezing as a function of gain is shown in figure 7.11a for the low JPA gain,

and the phase dependance of ζ is shown for two different squeezer gains in figure 7.11b.

In the case of large JPA gain (G = 180), we already estimated the efficiency, which is

η = 0.38. The expected squeezing ζ is 36± 5%. The observed squeezing ζ as a function

of squeezer gain is shown in figure 7.11c, and its phase dependance for two different
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Figure 7.11: (a) Measured real squeezing ζ (circles) as defined by Eq. (7.39) and
prediction (lines) using Ref. [38] as a function of squeezer gain. The solid line is assuming
an incident noise of 0.65 quanta, while the dashed lines represent the uncertainty on
this value. (b) Squeezing ζ as a function of phase for two different gains. The gains
shown in (b) correspond to the same colors as the circles shown in (a). (c) and (d) are
same as (a) and (b) but for a JPA gain of 180.

gains is shown in figure 7.11d. In general, we observe the expected behavior and the

disagreement with theory observed is of the order of a 1 % for high gains and up to

4% at lower gains. The maximum observed real squeezing is ζ = 37% as observed in

figure 7.11c, which is close to the estimated squeezing. We were unable to go further in

squeezer gain for two main reasons. The observed squeezing stops growing for higher

squeezer gains, as was shown in the previous chapter.13 And in the case of high JPA

gain we observed a small saturation (reduction of the JPA gain by 0.1 dB) that we

believe was not related to a poor cancelation of the squeezer pump but caused due to
13 In this particular cooldown, the maximum squeezing happens at a gain of about GSQ = 10 as

shown in appendix B, not at GSQ = 30 as observed in the previous cooldown described in chapter 6.
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saturation from the large amplified noise coming from the squeezer.14

So far, our analysis of the time traces has not been very different from the previous

chapter as comparing the variance of the calibration and the squeezed state histograms

is effectively the same as comparing its power spectral density. The only difference

has been that by using a JPA as a preamplifier for our HEMT amplifier, our effective

efficiency has been increased from 2% to 38%, which allow us to have an observed

real squeezing of ζ = 37%. However, this increment in efficiency can allow us to start

reconstructing quasiprobability distribution functions. Note, though, that since our

efficiency is only η ' 0.4, the reconstructed distribution is really an s-parameterized

function, with s = 1 − 1/η ' −1.5. But for simplicity I will call this reconstruction,

Wigner function reconstruction.

7.3.3 Quasiprobability distribution reconstruction

For the reconstruction of the Wigner function based on the histograms, we need

to first consider if the number of phases and the number of points are enough for a

reliable reconstruction. In this case, since we are analyzing squeezed state, which has a

Gaussian Wigner function, the reconstruction is very forgiving.

What is the effect of only using d phases for the Wigner function reconstruc-

tion? One first consequence is that using a phase resolution of π/d would prevent us

from properly discerning details with phase oscillations in the quadrature distribution

pr(x, θ) with frequencies higher than d as they would be aliased. In our case, the phase-

dependant variance of the Gaussian distribution of a quadrature squeezed state only

oscillates once in a π period, so this possible error of aliasing certain details of the

Wigner function is not a concern. Leonhardt in Ref. [76] derives a rule-of-thumb for the

minimum amount of phase values d in order to reconstruct the density state based on
14 In the previous section I estimated that a squeezer gain of 15 dB or GSQ = 30 could start saturating

the JPA. This was assuming the saturation point as the 1 dB compression point. This estimation is not
far from the observed gain that started showing saturation behavior.
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quantum tomography. This rule-of-thumb reads “the number of phase must be equal

to the minimum dimension to accurately approximate density matrix of the measured

state.” However, although this a sufficient condition, it is not a requirement [76], espe-

cially for Gaussian states such as squeezed states. In any case, even with this constraint,

figure 7.12 shows that the 50 phases taken over a range of π are more than enough.
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Figure 7.12: Probability distribution for and ideal squeezed state with ∆x2
1 = 1/4e−2,

or squeezing of 84 %. Setting an accuracy for the tomography detection of Pn > 0.01,
suggest that a density matrix of dimension n = 10 would be sufficient for an accurate
Wigner function reconstruction.

Regarding the statistical error due to finite samples of length N for a given phase

θ, how much confidence do we have in the reconstruction of the quasiprobability distri-

bution. Dividing the measurements in bins of size δx, the rate at which the quadrature

values fall into that bin are governed by the expectation value pr(x, θ). This process is

a Poisson counting process, with the measured prmeas(x, θ) being a fluctuation quantity.

As a Poisson process, I expect the value of the histogram representing the bin δxj to

have fluctuations σ2
j of the order of Nj . For the measured distribution prmeas(x, θ) which

is formed by the histogram normalized by the total number of measured samples and
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the uniform bin size δx, I expect then its variance to be given by

σ2
prmeas(xj ,θ) =

pr(xj , θ)2

Nδx
, (7.40)

showing the expected result that the fluctuations in the measured marginal distribu-

tions prmeas(x, θ) will have a 1/N dependance. The question is, though, how are these

fluctuations going to affect the reconstruction of a Wigner function. Again Ref. [76]

gives a rule-of-thumb based on Eq. (7.40) but using the photon number distribution

ρn,m. There it is shown that the variance of ρn,n is bounded by

σ2
nn ≤

4
N

and since for an experiment we want the statistical error to be smaller than the measured

quantity,

σnn < ρnn.

This estimate implies that the required number samples per phase interval scales with

the inverse of the photon-number probability squared

Nmin ∼ 4
ρ2

n,n

.

If I want to resolve states with an accuracy of Pn > 0.01 (Fig. 7.12), this implies a

total number of samples per phase interval of N = 40000 over a phase range of π. Each

of our time traces have this amount of samples per phase, and in order to make the

reconstruction better, we took 10 time traces making a total of 400000 samples per

phase interval.

Once we have decided that we have enough phase resolution and samples for a

reliable construction of the quasiprobability distribution we can use the inverse radon

algorithm to reconstruct it. We first need to scale the measured quadratures accordingly.

Assuming again that our incoming noise is a thermal state with 〈n〉 = 0.15, then the

variance of the Gaussian histogram measured with η efficiency is given by

∆x2
meas =

1
4
(1− η) + η∆x2

therm (7.41)
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Figure 7.13: Assuming the Sin = 0.65 quanta and an efficiency of η = 0.38, we use the
the noise calibration to estimate the real quadrature values of the time traces measured
with our microwave homodyne detector. The solid line represents our calibration noise
(∆x2

meas = 0.28) the dashed line represent our estimate of the shot noise limit. From
the squeezed traces, we observe a minimum real squeezing of ζ = 37% which represents
30% below the vacuum level.

where

∆x2
therm =

1
4

coth
(
~ω

2kBT

)
,

=
1
4
(1 + 2〈n〉),

= 0.33.

In our case, because our calibration noise has a variance of ∆x2
therm = 0.33, our

measured variance is equivalent to ∆x2
meas = 0.28. Note that if we had been able to

use a vacuum state, Eq. (7.41) would have given us the “shot-noise” limit ∆x2
meas =

1/4. The calibrated squeezing then looks like shown in figure 7.13. Based on this

normalization, we estimate that the maximum real squeezing is 30% below the vacuum

level. Compared with the 2% of real squeezing that was observed using only the HEMT

amplifier (Fig. 6.34b), we then can conclude that using the JPA as a preamplifier has

increase significantly our detection efficiency.
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Figure 7.14: Wigner function reconstructed from the data for the squeezed state (a)
and the calibration noise (b). The projection of the Wigner functions are shown in (c)
and (d) including contour plots.

With calibrated histograms now, I use the MATLAB function iradon to obtain the

Wigner functions of the prepared states. This is shown in figure 7.14 for the “calibration

noise” and squeezer gain of GSQ = 14 and a JPA gain of GJ = 180. Both distributions

were calculated by averaging the distributions reconstructed from each of the 10 time

traces in the case of the squeezed state, and the 4 time traces in the case of the calibration

noise. In the case of the squeezed states, the phase offset for each time trace was different

so we first did a fitting to the variance as a function of phase using an expression similar

to 7.12 but without assuming intelligent states (the variances 〈∆x2
i 〉 do not fulfill the
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equality 〈∆x2
1〉〈∆x2

2〉 = 1/16). Once the phase offsets are calculated for each trace, then

this phase offset is included in the reconstruction of the Wigner function by providing

the appropriate phase vector to the MATLAB iradon algorithm.



Chapter 8

Applications II. Increasing the sensitivity in the detection of

mechanical motion of a nanomechanical wire.

In this chapter I will discuss the use of a Josephson parametric amplifier in order

to increase the sensitivity of the detection of motion of a nanomechanical wire. The

coupling of light and mechanical degrees of freedom is the underlying principle of many

techniques to measure mechanical displacement and sits at the core of the research field

called Optomechanics. Explaining all the interesting possibilities that emerge from these

coupling of optical and mechanical degrees of freedom would take far from the main goal

of this thesis. Instead, I will first give a very brief description of the concepts that will

helps us understand the importance of using a JPA in the detection of motion of a

nanomechanical harmonic oscillator. This will be done in the first part of this chapter.

Sometimes I will be using a language that seems closer to that used in optics. The

reason for this is that, as it is obvious from the name, optomechanics is a field that has

been dominated by implementations that use light at optical frequencies to probe the

motion of mechanical oscillators. However, in the case of our group, the implementation

is all done with microwave circuit elements. In the second part of this chapter I will

describe some features of this implementation, specifically the use of microwave cavities

and the way we implement the coupling of the mechanical oscillator to the microwave-

light degrees of freedom. In the last section I will discuss the results, specifically how the

imprecision of our measurement was below the imprecision at the Standard Quantum
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Limit (SQL).

One point that I want to emphasize is that I am not part of the group that

performs the microwave-cavity optomechanics experiments. In the experiments that I

will describe in this chapter, I only helped in the implementation of the JPA in the

measurement scheme and some of the experimental work. For this reason, I will not

discuss details such as the fabrication of the devices, or the specific decisions regarding

the design of the sample. For those details, I refer the reader to the paper published by

our group regarding this experiment [104].

8.1 Optomechanics

Laser Input
Cavity

Mechanical 

Oscillator

Phase detector

Figure 8.1: Schematic of a typical optomechanical setup. An optical cavity is formed
by two parallel mirrors, one of which is attached to a mechanical oscillator (red). Light
entering the cavity (cyan) induces radiation pressure that affects the motion of the
mechanical oscillator, which in turn alters the mode frequency relative to the frequency
of the incident light. The effect on the reflected light is measured with a phase detector,
for example a Mach-Zehnder interferometer.

Optomechanics is concerned with the effects that emerge from having a cou-

pling between mechanical and electromagnetic degrees of freedom, such as the effects

of radiation pressure on a mechanical object. We are mostly concerned with those in

connection with micro- and nanomechanical structures coupled to a resonant cavities
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(cavity-optomechanics). A standard setup of cavity-optomechanics used to measure

displacement is a Fabry-Perot interferometer such as the one shown in figure 8.1. It

consists of on optical cavity driven by a laser impinging on the cavity through a fixed

mirror. The other mirror of the cavity is movable (for example, it may be attached to

a cantilever). In such a setup, the mechanical effects of light are enhanced, as the light

field inside the cavity is resonantly increased and each photon interacts with the movable

mirror in each of the multiple (of the order of Q) reflections it undergoes before leaving

the cavity. The coupled nanomechanical-cavity system is described by a Hamiltonian

of the form

H = ~ω0(a†a +
1
2
) + ~ωm(b†b +

1
2
)− ~gca

†a(b† + b)δxzp, (8.1)

where the cavity and mechanical modes are described respectively by a and b, ω0 is

the bare cavity resonance, ωm is the mechanical resonance, and gc = ∂ωc/∂x is the

coupling between the mechanical harmonic oscillator displacement x = (b†+ b)δxzp and

the perturbed cavity’s resonance frequency ωc. δxzp is the oscillator zero point motion

δxzp =
√
~/2mωm. In Eq. (8.1) I have left out the additional terms that describe the

driving of the cavity by an outside light source (see section 2.3.3).

In terms of mirror displacement measurement, it is possible to show that a single-

port cavity described by Eq. (8.1) will have a linear dependance between the the phase

shift φ of the reflected signal from the cavity and the position x of the oscillator:

φ ≈ 4Q
gc

ω0
x. (8.2)

The previous expression can be derived using the tools of IOT on the Hamiltonian given

by Eq. (8.1) [3]. Two fundamental sources of imprecision exist for the measurement

of φ and hence x. First, there is the detector noise that, for an ideal coherent light

source (emitting a coherent state) and an ideal detector, is given by the random arrival

of photons at the detector; i.e., shot noise (Fig. 8.2). The phase imprecision expressed
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in terms of single-sided power spectral densities is given by [3]:

Simp
φ,φ =

1
2Ṅ

(8.3)

where Ṅ is the photon flux at the incident on the detector. An interferometer with a

phase uncertainty given by Eq. (8.3) is said to be shot-noise limited. We can find an

expression for the imprecision of our measurement of the position1 x, by multiplying Eq.

(8.3) by a transducing factor ∂φ/∂x that relates the displacement x in the mechanical

oscillator and the phase φ of the signal at the output of the cavity (Eq. (8.2), for

example). Hence the imprecision of our measurement for x is given by [104]

Simp
x,x =

1
2Ṅ

1
(∂φ/∂x)2

(8.4)

=
1

2Pin/~ωc

1
(∂φ/∂x)2

(8.5)

where in the second line, I have expressed the phase imprecision in terms of the incident

power in the detector rather than the photon flux.

X2

X1

α
Vaccum noise

/ 41
∆φ2=

α2

Figure 8.2: A coherent state contains a Poisson distribution of the number of photons.
Thus the fluctuations and the mean number of photon are related as ∆N =

√
〈N〉 =

|α|. This means that there is an uncertainty in any measurement of the phase given
by ∆φ = 1/2

√
〈N〉. The equivalent of this statement in terms of spectral densities

associated with a real experiment is given by Eq. (8.3), where (∆φ)2 → Sφ,φ and
(∆N)2 → SN = 2Ṅ [3]. Note, however, that we use a single-sided spectral density.

In order to land some of these ideas, let’s consider what it is actually measured.
1 It is important to point out that the measurement discussed here is what it is known as a weak

continuous measurement which means that the position x of the mechanical oscillator undergoes multiple
cycles before we can acquire significant information [3].
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According to the fluctuation-dissipation theorem, a mechanical oscillator with a me-

chanical damping rate of γm will experiment a random force with a power spectral

density of

Sth
F,F = 4~ωm(nT +

1
2
) (8.6)

≈ 4kBTmγm, (8.7)

where nT = 1/(e
~ωm
kBT − 1). In the second line, I have done the classical approximation,

consistent with the equipartition theorem, since our mechanical resonator will behave

classically due to a high occupancy nT (kBT À ~ωm). The response of the resonator is

given by

Sx,x = SF,F |H(ω)|2 (8.8)

= SF,F

∣∣∣∣
1

m(ω2 − ω2
m − iωγm)

∣∣∣∣
2

(8.9)

where H(ω) is called the mechanical susceptibility. We use a single-sided convention

such that ∫ ∞

0

dω

2π
Sx,x =

kBT

mω2
m

(8.10)

In our experiments, when the spectral density of the phase of the reflected light Eq. (8.2)

is measured by an interferometer, what will be measured is the Lorentzian response of

the mechanical oscillator to the thermal force Sth
F,F on top of a background imprecision

noise floor (Fig. 8.3). Such measurement will allows us to calibrate the coupling of the

mechanical oscillator to the cavity and assuming we know the temperature, we will be

able to calibrate the imprecision of our measurement (the background noise floor).

As can be deduced from Eq. (8.2), the detector imprecision decreases with larger

incident power. Increasing power, however, comes at the expense of increased intra-

cavity power, causing a back-action onto the mirror: every time a photon reflects off

the movable mirror, it will transfer momentum to it. This leads to a second source
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Figure 8.3: Example of the phase spectral density at the output of an interferometer
used to measure a systems such as the one shown in figure 8.1. The Lorentzian peak
corresponds to the thermal motion of the mechanical oscillator, while the background
is our imprecision of the measurement, ideally just given by photon shot-noise.

of imprecision: the resulting momentum kicks of reflected photons create a mirror dis-

placement noise, causing the mechanical oscillator to be driven and thus effectively

heated. Although this noise can contain classical contributions due to uninteresting

sources of noise (excess phase or amplitude noise, in the driving light, for example), it is

ultimately limited by the quantum nature of light. Hence, it is termed quantum back-

action [105]. Since the back-action does affect the quantity being measured (position),

there is a limit on the accuracy on the measurement. This limit is described by the

Heisenberg uncertainty limit, which ensures that an increasingly precise measurement

of a harmonic oscillator’s displacement is accompanied by an increasingly large force

acting back on that oscillator [106]. This principle limits the total noise energy added

in a measurement of displacement to be at least half a quantum ~ωm/2. The limit

between the imprecision of the measurement and its back-action is better described, in

spectral density units, as Simp
x,x Sb.a.

F,F ≥ ~2, where Simp
x,x is the displacement imprecision

and Sb.a.
F,F the back-action force spectral density, both specified as single-sided spectral

densities. A measurement reaches this limit, called the standard quantum limit (SQL)
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when the imprecision and the driven motion from the back-action force each add pre-

cisely one quarter of a quantum of energy ~ωm/4. Therefore, the imprecision at the

SQL provides a natural scale (which we will be using) to which to compare the noise

of the measurement. On resonance, and in units of displacement spectral density, a

noise energy ~ωm/4 corresponds to a displacement noise of Sx,x = ~/(mωmγm). It is

worth noting that although the total added noise of the measurement has a minimum

ST
x,x = Simp

x,x + Sb.a.
x,x = 2~/mωmγm, the imprecision can be made arbitrarily small com-

pared to that at the SQL, SSQL
x,x = ~/mωmγm. A system described by the Hamiltonian

(8.1) can in principle reach the SQL. Physically, at the SQL, our knowledge of the mirror

position is limited equally by shot-noise in the measured signal and by the motion of of

the mirror due to the random kicks the mirror receives from the photons. On the other

hand, if the strength of the drive used to probe the cavity is too small, the imprecision

of the measurement is dominated by the photon shot-noise Ṅ . If the drive is too big,

the back-action noise perturbs the oscillator so strongly that the position uncertainty

increases beyond the minimum.

Although the concept of quantum back-action is very interesting and its observa-

tion is a goal pursued in our lab, I will not discuss it here. For the effects of quantum

back-action to become most apparent, we would need two things: first we would need to

enter the regime where quantum fluctuations (zero-point motion) become the dominant

fluctuations felt by the mechanical oscillator (kBT ¿ ~ωm), or equivalently a ther-

mal occupation less than unity (something our lab is working on to achieve [107,108]).

And second, we would need a quantum-limited light detector, such as for example a

Josephson parametric amplifier.

Most experimental implementations of such optomechanical systems are made

using light at optical frequencies. Photons at optical frequencies are very well suited

to measure mechanical displacement for several reasons. For example, because of the

high energy of optical photons (∼ 1 eV), thermal occupation is negligible at room
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temperature, present-day laser sources are available that offer noise performance that is

limited only by quantum noise, and detectors which a high efficiency allow to measure

at the quantum-level, that is being only limited by the vacuum noise of the light used.

However, devices in the microwave domain such as a nanomechanical resonator coupled

to a superconducting microwave resonator have an advantage in some regards. For

example, for such microwave implementations, the measurement setup is compatible

with dilution-refrigerator temperatures, automatically cooling the mechanical motion

by four orders of magnitude. Next I will discuss our implementation of the Hamiltonian

given by Eq. (8.1).

8.2 Nanomechanical resonators inside microwave resonators

The microwave analysis of the resonator is similar to the ones done in chapter 5.

The implementation of the experiment is shown in figure 8.4a. For simplicity we model

the microwave resonator as a lumped element resonator (Fig. 8.4b). The geometry

used to excite the resonator is also somewhat different from the ones we have described.

Instead of measuring the resonator in reflection, or in transmission by using a two-port

resonator, we place the microwave resonator as a shunt across a transmission line. This

geometry (referred to as the feedline geometry), allows us to measure more than one

cavity by putting several of them in the feedline. Each resonator is designed to have

a slightly different resonant frequency. As long as the resonance frequencies of each of

the microwave cavities are separated in the frequency axis by several linewidths, then

it is possible to individually address them [69,70].

We measured the transmission coefficient from port 1 to port 2, S21 which is given

by [16]:

S21 =
2

2 + Zc/Zr
(8.11)

where Zr is the impedance of the circuit shunting the feedline. For now let’s assume a
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Figure 8.4: (a) Optical image of the inductor-capacitor (LC) resonant circuit, which
behaves as a microwave cavity with ωc = 2π × 7.49 GHz. The cavity linewidth is given
by γc = 2π×2.88 MHz. The microwave-cavity was fabricated from superconducting alu-
minum on top of a silicon substrate. The nanomechanical oscillator consists of nanowire
embedded in the microwave resonator near the CPW feedline used to excite the res-
onator. The wire has dimensions of 150µm × 170nm × 160 nm, yielding a total mass
m = 11± 2 pg and a mechanical resonance frequency ωm = 2π1.04MHz. (b) Electrical
diagram of the device. The resonator is coupled to the feedline by a capacitor Cc. The
effect of the nanowire on the circuit is equivalent to that of a small capacitor Cb in
parallel to the LC resonator. (c) The mechanical degree of freedom is the fundamental
mode of the freely suspended aluminum nanowire.

lossless cavity (Rr →∞). The bare cavity resonance is given by

ω0 =
1√

LrCr
.

However, by finding the location of the minimum of |S21|, we can find the new resonance

frequency of the cavity loaded by both capacitors:

ωc = ω0(1− Cc

2Cr
− Cb

2Cr
). (8.12)

If we now consider finite loss Rr, but still working in the high-Q limit, we find that the
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quality factors associated with internal losses and the coupling capacitor:

Qc =
2Cr

ω0C2
c Zc

and

Ql = ω0RrCr.

Based on this expression, Eq. (8.11) reduces to

S21 =
S0 + 2iQ(ω − ωc)/ωc

1 + 2iQ(ω − ωc)/ωc
(8.13)

where Q is the total quality factor given by Eq. (5.27)

Q =
QcQl

Qc + Ql

and

S0 =
Qc

Qc + Ql
.

From the measurements of the scattering parameter S21, the internal and coupling

quality factors of the cavity used for the experiment were Qc = 3.0 × 103 and Ql =

2.6×104. Yet, in the case of Ql, it varies by as much as 20% for the range of temperatures

and powers used in the experiment.

Eqs. (8.12) and (8.13) and figure 8.4c allows us to understand how it is that

we can infer the motion of the beam from the information encoded in the measured

S21. For that, let’s plot the phase and amplitude we expect for some usual parameters

(Fig. 8.5). As it can be seen in those plots, the amplitude is rather insensitive to small

changes of resonance frequency. However, the phase depends linearly to changes in the

resonance frequency (to first order). Therefore, the motion of the beam (Fig. 8.4c) will

generate changes in the resonance frequency, Eq. (8.12) due to changes in the capacitor

Cb(x). When measuring a cavity of the kind shown in figure 8.4a, usually the frequency

of the microwave probing tone remains constant. Hence, the motion of the beam will

be encoded in the phase of the transmitted signal (Fig. 8.5c).
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Figure 8.5: (a) Magnitude |S21| and (b) phase φ of the transmission coefficient as a
function of frequency for the feedline geometry used to probe the microwave resonators.
The values used for the quality factors were the same as the ones found from the
measurement of S21, Qc = 3000 and Ql = 26000. (c) The phase is a very sensitive
function of the resonance frequency. Small changes in ωc, correspond to large changes
in phase ∆φ.

The simplified diagram of the microwave setup used in shown in figure 8.6. It

is essentially the microwave analog of a Mach-Zehnder interferometer (MZI) typically

used to measure phase-shifts. However, at microwave frequencies, from the same reasons

there is not a commercial mixer with quantum-limited sensitivity (sect. 6.3.3), there

is not such a thing as a shot-noise limited phase detector. As shown in figure 8.6,

the signal at the output of the cavity is actually amplified by a chain of commercial

amplifiers (same as explained in chapter 6) before entering the RF-port of the mixer.

Calling AN the noise floor of the amplifier chain (including the mixer) , the equivalent

of Eq. (8.2) for a microwave interferometer that is not shot-noise limited because of this
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Dilution fridge

A
N

φ

Figure 8.6: Simplified diagram of measurement setup. We detect the motion of the
oscillator with a microwave analog of a Mach-Zehnder interferometer. A microwave tone
is split and injected into the two arms of the interferometer. One arm forms the phase
reference (LO of an IQ-mixer), and the other arm contains the cavity optomechanical
system shown as an LC-microwave resonant circuit with an embedded nanomechanical
oscillator. Displacement of the oscillator changes the capacitance of the electrical circuit
and therefore its resonance frequency, Eq. (8.12). The microwave tone excites the
circuit and acquires a phase shift proportional to the mechanical motion. That phase-
modulated microwave signal is first amplified by a chain of microwave amplifiers and
then mixed with the phase reference.

extra added noise AN is

Simp
x,x =

AN + 1/2
Pin/(~ωc)

1
(∂φ/∂x)2

(8.14)

Although the sensors for the applications mentioned above are governed by clas-

sical physics, the imprint of quantum phenomena upon them can be readily seen in the

laboratory if care is taken in preparing the mechanical oscillator in the ground state.

As I said before, there is an ongoing effort in the field (and in our lab) to accomplish

this endeavor. But, even if we were able to do it, in order to reach this quantum limit,

the detector must be quantum limited. Here is where the use of a quantum-limited

amplifier becomes necessary in experiments used at microwave frequencies. The signal

that comes from the cavity is just a phase-modulated (PM) signal, and all we want to

do is to measure it with the best sensitivity possible. Since, the signal consists of a

linear combination of fourier frequencies around a carrier tone (Fig. 3.14), I have shown

that the most efficient way to measure such a tone is by using a degenerate parametric
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amplifier like the JPA. As long as the phase between the pump of the JPA and carrier of

the PM-modulated signal is chosen appropriately, we could ideally amplify that signal

with no added noise, and could recover the ideal case for the imprecision in Eq. (8.2).

8.3 Experimental results. Increasing the sensitivity and getting

closer to a shot-noise limited detection.

3 dB4 K

15 mK

Isolators

HEMT

LO

rf
φ

θ θ

Dilution fridge

room

temperature

amplifer
Interferometer

input

Cavity

JPA

JPA pump

and 

cancellation 

tone

20 dB 20 dB

Figure 8.7: Detailed diagram of the measurement setup. A microwave generator is used
to generate a tone that gets split into three main arms plus one carrier-cancelation arm.
The first is used to excite a microwave cavity with a coupled nanomechanical oscillator.
The second arm is used to pump the JPA and the third arm provides a phase reference
for the mixer at room temperature. The carrier-cancelation arm is used to suppress the
tone from the first arm in order to prevent saturation of the JPA. The setup for the Y -
factor measurement (switch plus two terminations held at two different temperatures)
is connected to the main port of the first directional coupler.

The detailed diagram of the setup used is shown in figure 8.7. A large microwave

tone is used to probe the cavity, and only a fraction (1 − S2
0) is transmitted. The
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transmitted power has the information regarding the motion of the nanomechanical

oscillator in the form of phase modulation. Before reaching the JPA (a λ/4 resonator),

a carrier-cancelation similar to that described in chapter 7 needs to be done in order to

prevent saturation of the JPA. Once the carrier-cancelation is performed, the JPA pump

phase is chosen appropriately so that the phase-modulation information is amplified.

The gain of the JPA was chosen close to Gs(0) = 14 dB, or equivalently, a quadrature

gain 6 dB higher, GX1 = 20 dB (higher gains were used for some measurements but

a proper carrier cancelation was too hard to achieve for the highest incident power on

the cavity-optomechanics system). After the JPA, the measurement setup is similar to

the one described in section chapter 6. The amplified signal emerging form the cryostat

is down-converted using an IQ-mixer (as a homodyne detector, ωc = ωp = ωLO). We

can convert voltage spectral density at the output of the mixer into spectral density of

cavity fluctuations from the following expression,

Sωc(ωm) =
1 + 4ω2

m/γ2
c

(∂V/∂ωc)2
SV,V (ωm) (8.15)

where the factor 1 + 4ω2
m/γ2

c is included to account for the fact that since ωm/γc ∼

O(1), the cavity field cannot respond instantaneously to the changes in ωc due to the

mechanical-motion of the nanowire. Hence, the frequency fluctuations Sωc(ωm) are

filtered by the Lorentzian response of the cavity, the filtering factor being 1/(1+4ω2
m/γ2

c )

[109]. The voltage V at the output of the mixer will be given by V = V0Im(S21),

where V0 is a function of the incident power on the cavity as well as the attenuation

and amplification through the whole signal path. It can be found by measuring the

transmission |S21| far from resonance.

Once we know how to convert the voltage fluctuations at the output of the mixer

into cavity frequency fluctuations, we can use the thermal motion of the nanowire (Eq.

8.10) to estimate the optomechanical coupling gc = ∂ωc/∂x used in Eq. (8.1). This

is shown in figure 8.8. The thermal sweep shown in figure 8.8b yields a value of gc =
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Figure 8.8: Fluctuations at the output of the mixer in arbitrary units (V2/Hz) for a
fridge temperature of T = 0.150 K. The red data was taken using the JPA and the blue
only using the HEMT. By using the JPA, we observe an improvement in the sensitivity
of over 13 dB with respect to the HEMT for similar incident powers. With Eqs. (8.10)
and (8.15), we can calibrate the interferometer and convert the voltage fluctuations at
the output of the mixer into fluctuations in the cavity’s resonance frequency due to
the thermal motion of the mechanical oscillator as shown in (b). From a linear fit to
these fluctuations as they vary with temperature, we can determine the optomechanical
coupling constant gc. The lowest three temperature points are excluded from the fit as
the mechanical mode is no longer in thermal equilibrium with the cryostat.

2π×32±3 kHz/nm. One thing to notice is that at the lowest temperature of the fridge,

the beam is no longer in thermal equilibrium with the cryostat. Knowing the value

of gc will let us directly measure the temperature on the mode from the area under

the Lorentzian curve in the displacement spectral density Sx,x. Also, it will help us

determine the imprecision of the measurement. This can can be shown by using the

expected dependance of φ from Eq (8.13). Then, Eq. (8.14) becomes [109]

Simp
x,x =

AN + 1/2
Pin/(~ωc)

(
S0ωc

2Q(1− S0)gc

)2 (
1 + 4ω2

m/γ2
c

)
(8.16)

Eq. (8.16) demonstrates that the absolute imprecision is reduced by measuring with a

larger power, a stronger coupling gc and minimum added noise AN .

However, even with the JPA, the microwave interferometer is not shot-noise lim-

ited. We estimate the noise-floor of the amplifier chain as explained in section 6.3.3
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using a cryogenic switch that can toggle between two 50 Ω terminations held at two

different temperatures. However, in order to accurately refer the noise to the output

of the cavity, we need to measure the microwave loss. This is done by doing a thermal

sweep and measuring the output noise of the mixer as a function of Tfridge, when the

switch is connected to hot-load. The thermal sweep calibration is similar to the one

used to estimate the microwave losses in the experiment explained in chapter 7, and it is

explained in appendix B. We estimate that there is 6 dB of total loss between the switch

and the JPA (that includes the 3 dB-attenuator placed at the output of the switch) of

which 2 dB is between the cavity and the JPA, and 1.5 dB from the JPA to the HEMT.

From a Y -factor measurement, we infer that the JPA adds AJ = 0.3 microwave quanta

and that the HEMT adds AH = 24.5 microwave quanta of noise. The effective added

noise of the HEMT to our measurement is obtained by referring its noise number to the

output of the cavity, that is by dividing its noise number AH by GX1 and multiplying

by the loss between the the HEMT and the cavity output. Including all the losses, we

estimate that the interferometer adds 1.16 microwave quanta of noise. Yet, in addition

to the noise added by the amplifier chain, there is a small amount of thermal noise

from the input signal. The signal line is attenuated by about 50 dB, reducing the larger

room-temperature thermal noise to about 0.17 quanta on top of the vacuum noise. In

total, we estimate the number of noise quanta added to be AN = 1.3.

Once all the optomechanical-system and interferometer parameters have been

determined, we can estimate the displacement fluctuations of the nanomechanical wire

from the phase fluctuations at the output of the mixer. I display the main result of this

chapter in figure 8.9a. There we demonstrate that this setup is capable of achieving

Simp
X < SSQL

X . The minimum measured imprecision is (0.8 ± 0.03) × SSQL
X , or 0.2

mechanical quanta. From the Lorentzian peak, we can infer the temperature of the

wire’s thermal motion, which corresponds to T = 130 mK, or thermal occupancy of

nth = 2600 mechanical quanta.



238

10
0

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

10
3

10
4

   
S x/S

xSQ
L  

   P (pW) )

1.038 1.041 1.044

10
0

10
2

10
4

   
S x/S

xSQ
L  

   frequency (MHz) )

SQL

SQL

(a) (b)

Figure 8.9: (a) Displacement sensitivity below that at the Standard Quantum Limit.
The data shown is the spectral density of the displacement fluctuations Sx,x in units
SSQL

x,x versus fourier frequency. In black, we show a fit to the Lorentzian thermal-response
plus a frequency-independent background. This background represents the imprecision
of our measurement, and lies below SSQL

x,x (black dashed line). (b) Imprecision Simp
x,x

(blue circles) and total noise Sx,x (red circles) in units of SSQL
x,x as a function of incident

microwave power at the resonator. The data points at the highest power shown as a
square were extracted from the data shown in (a). The statistical error is smaller than
the size of the symbols. Two theoretical predictions are shown, one for a shot-noise
limited interferometer (solid-green) and for an interferometer with AN = 1.3. This
value was independently measured as explained in appendix B.

The quoted imprecision is estimated based on the measurement of the thermal

motion of the wire. However, we can compare it with the predictions from Eq. 8.16

assuming an interferometer with AN = 1.3. This is done in figure 8.9b, where we plotted

our measured imprecision and the expected imprecision based on Eq. 8.16, for different

incident powers. We also display the predictions for shot-noise-limited interferometer

AN = 0. Figure 8.9b shows that our model accurately predicts the observed imprecision.

The predictions shown are not straight lines since they take into consideration changes

in both the cavity and the mechanical oscillator parameters (γc and γm) as a higher

incident power is applied. Also, the temperature of thermal motion of the wire increases

with incident power. Therefore, a quantum efficient measurement which minimizes the

power needed to reach a given imprecision is always desirable. To quantify how close we
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are to a shot-noise limited interferometer, we can estimate the effective efficiency of the

detector using Eq. (7.28) for AN = 1.3. This gives an efficiency of η = 0.28, comparable

to the one observed in chapter 7, for a similar JPA gain.

In conclusions, in this chapter I have shown the JPA can be used to boost the

sensitivity in the detection of motion of a nanomechanical oscillator embedded in a

microwave cavity. It has allowed us to get to the SQL by using a much lower power

than if were only using the HEMT amplifier. The use of the JPA has also made our

microwave interferometer only a factor of ∼ 4 from being shot-noise limited.



Chapter 9

Conclusions and future directions.

In this thesis, I described our approach to develop an ultra-low noise microwave

amplifier. Even though our results show great experimental progress, they also revealed

areas that require further research. We achieved our overall goal of characterizing the

performance of a new design of Josephson parametric amplifiers for a microwave signal.

After the characterization, we used it for two specific applications: microwave homo-

dyne tomography for quantum state reconstruction and improving the sensitivity of a

microwave interferometer used in the detection of mechanical motion of a nanomechani-

cal oscillator. In this chapter I will review some of the more interesting results presented

in previous chapters and discuss the possible future directions for JPA in our lab.

9.1 Conclusions

Although the focus of the initial measurements of a microwave cavity with a

series SQUID array as the center conductor of the transmission line was different, the

experiments done with the first device were very encouraging. With our first JPA we

demonstrated that a Josephson parametric amplifier based on a coplanar waveguide

resonator whose inner conductor is made from a SQUID array could be operated with

good performance and that it was tunable over a full octave of bandwidth. We observed

gains as high as 28 dB and although the resonator is composed of discrete elements,

its behavior is well described by a continuum theory of parametric amplification [38].
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In this first experiment, we did not have a calibrated noise source that would allow us

to estimate the added noise of the JPA. Nonetheless, compared to the measurement

of a weak microwave signal using only a low-noise HEMT, we observed that the JPA

was 16 dB more sensitive than a HEMT amplifier. From this improvement of the

signal-to-noise ratio we estimated a total noise at the output of the JPA referred to the

input of slightly less than 1 quanta of noise, suggesting that the JPA added an amount

of noise comparable to the vacuum noise. One very important difference with previous

implementations was that in our case we were able to operate the JPA with high enough

gain that the very small amount of noise at its input, after amplification, overwhelmed

the noise of the following amplifier chain. Therefore, the JPA set the noise-floor of the

measurement.

This first device showed very promising performance, but also some problems,

specifically some strange behavior in the magnetic-field dependance of the resonance

frequency. It also had very low power-handling capacity, which was good enough for

some applications (for example for amplifying the signals generated by superconducting

qubits), but not for some of the applications we were intended to use it for. Also, its gain-

bandwidth product was rather small. Hence, we decided to modify the design to increase

both the power-handling capacity and the bandwidth. In the second implementation of

this amplifier we used niobium instead of aluminum for the superconducting resonant

structure as well as a larger SQUID current. The coupling quality factor Q was also

increased by a factor of 10. All these changes increased the critical powers, and hence

the power-handling capacity, by about 20 dB. For this new design, we collaborated

with Kent Irwin’s group at NIST. The fabrication of these devices was done using

a more industrial-like procedure, which would give us a more homogeneous array of

SQUIDs, hoping to avoid issues such as the non-ideal magnetic-field dependance of the

first resonator.

We tested two different kinds of niobium JPAs. A quarter-wavelength and an
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asymmetrically-coupled half-wavelength resonator. With these new devices, we also

implemented a setup to measure the added noise of the JPA by using a microwave

switch that could toggle between two noise sources (50 Ω resistors) held at two different

temperatures. From these noise measurements, we estimated that the added noise of

the amplifier was as low as 0.23 quanta. This is a very important result as it makes

these JPA the lowest-noise microwave amplifiers ever reported. Again, we were able to

operate the amplifier with high gains (Gs as high as 40 dB) and set the noise floor of the

measurement. The larger critical powers also gave us a better power-handling capacity.

The amplifier showed at 8 GHz a 1-dB compression point of -130 dBm with a gain

of 27 dB. We also tested their squeezing performance: being a degenerate parametric

amplifiers, the JPA can amplify one quadrature with less added noise than that of a

quantum-limited amplifier, while it squeezes the fluctuations at the other quadrature.

We measured squeezing of noise of as much as 10 dB.

Once we characterized the performance of the JPA we decided it was possible

to use it for two particular applications. For most measurements, the low added noise

of the JPA is helpful, but for some measurements it is crucial. For example, to fully

characterize the quantum state of non-Gaussian states, such as the Fock states generated

by superconducting qubits [110], a subquantum limited amplifier is a necessity [111].

Hence, we decided to use the JPA to implement what, in optics, is called homodyne-

tomography for the Wigner function reconstruction of quantum-states of light. In our

case, those quantum states were squeezed states generated by a second JPA. Using the

JPA as an integral part of microwave homodyne tomography lead to a dramatic increase

of the performance of the Quantum State Tomography. It has enabled us to reconstruct

the Wigner function of a squeezed state of the microwave field and observe real squeezing

of the input noise of 37%, compared to the 2% real squeezing observed using only the

HEMT amplifier. In this case, the quantum efficiency of the state tomography detector

was 38%.
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In addition to characterizing non-Gaussian states of microwave fields, the JPA is

also well suited to amplifying the signal generated by a nanomechanical beam moving

in a microwave cavity [11], enabling a quantum-limited measurement of position, which

lead us to the second application I discussed in this thesis. Here, I presented displace-

ment measurements of a nanomechanical oscillator with an imprecision below that at

the standard quantum limit. We infer the motion from the phase modulation imprinted

on a microwave signal by that motion. The modulation is enhanced by embedding the

oscillator in a high-Q microwave cavity. We achieve the low imprecision by reading out

the modulation using a JPA, realizing a microwave interferometer that operates near

the shot-noise limit. The apparent motion of the mechanical oscillator, due to the in-

terferometer’s noise, is now less than its zero-point motion, making future detection of

quantum states feasible. In addition, the phase sensitivity of the demonstrated interfer-

ometer is 30 times higher than previous microwave interferometers, providing a critical

piece of technology for many experiments investigating quantum information encoded

in microwave fields.

9.2 Future directions

Although the good performance of the JPAs described here have let us improve

the detection of squeezed states and the detection of mechanical motion, we still need

to improve certain things about the setup in general. First, the amplifiers added noise

is higher from what we would expect from a model that only includes loss as the con-

tributor of added noise. The 0.23 quanta of added noise already sets the maximum

efficiency of a homodyne detector using these amplifiers at about 70%. As we do not

know where this extra added noise is coming from, it is hard to decide what the next

step is. However, since we have had some yielding problems during fabrication, one

obvious step would be to reduce the number of SQUIDs in the resonator as shown in

figure 9.1. This would mostly affect the range of tuning for the resonance frequency.
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Figure 9.1: (a) In our new devices, we reduce the number of SQUIDs to increase the
yield of devices per wafer. (b) In these new devices, we will study the possibility of
implementing a 3-photon mode parametric amplifier, applying the pump as a 2-ω tone
on the magnetic flux line, in order to eliminate the necessity of doing carrier-cancelation
when multiple JPAs are used.

However, for the applications we are planning on doing, we do not need a full octave

of tuning. Treating the small SQUID-array as a lumped element [48], in this case the

change in resonance frequency comes from a change in the boundary-condition of the

resonator rather than from a change in the phase velocity of the metamaterial [72, 73].

Another point our group will study is the possibility of implementing a three-photon

mode Josephson parametric amplifier by using the magnetic-coupling line to apply a

microwave pump close to twice the resonance frequency of the resonator [59]. The main

reason to attempt this is that although the carrier cancelation works, it would be rather

hard to implement it when more than two JPAs are used. This will be the case in the

future experiments our group is planing on doing for certain quantum communication

protocols.

Another issue we want to eliminate is the low-frequency noise observed in these

amplifiers (Fig. 6.33c). One hypothesis is that it consists of current noise present in

any closed-loop of metal (like for example the circular walls of the sample box), which

inductively couples noise to the SQUID loop. One way to test this hypothesis is to use

dc-SQUID gradiometers (Fig. 9.2). In the gradiometer configurations shown in figure
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Figure 9.2: One strategy we will implement to reduce the low-frequency noise observed
in the JPA is to use dc-SQUID gradiometers. (a) Parallel and (b) series gradiometer.
Due to their geometry they will not couple to space-homogeneous magnetic fields but
rather to the first derivative ∂Bz/∂x of the field.

9.2, the dc-SQUIDs would not couple to space-homogeneous magnetic fields, but rather

to the first derivative ∂Bz/∂x. If our hypothesis is right, we should see a significant

reduction of the low-frequency noise. The only disadvantage of using gradiometers

is that, due to the more complicated fabrications, they tend to be larger and hence

have larger loop-inductance, limiting the suppression of the supercurrent and hence the

tuning of the effective Josephson inductance. However, as I said before, the amount of

resonance frequency tuning we are trying to achieve is much less than the one obtained

in the devices described in this thesis.

Another modification in the setup is to use a better calibration. Due to the

unknown losses in the microwave components at 4.1 K that are used to toggle between

the two calibrated noise sources, the uncertainty in the added noise is too large. If

we want to really nail down the origin of the extra added noise observed we need to

reduce this uncertainty. For that we are planing on implementing a varying temperature

resistor which is thermally weakly coupled to the fridge using a superconducting coaxial

cable. By removing the need of going back and forth between the 4K plate and mixing

chamber plate, we will be able to reduce the uncertainty in the losses between the noise

source and the JPA.
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Thinking ahead in terms of applications for degenerate parametric amplifiers, our

group is planing on using the squeezed states at the output of the JPA as building blocks

for quantum information experiments. These states, which are highly non-classical, form

EinsteinPodolskyRosen (EPR)-states when combined together and thus are the basis

of a complete quantum information processing strategy, known as Continuous Vari-

ables Quantum Information [112]. Quantum information processing aims to exploit

entanglement, the unique feature of quantum mechanics, to enhance our abilities for

communication and computation. In the strategy of continuous-variables quantum in-

formation processing, an entangled state of the electromagnetic field, can be generated

by combining two squeezed states on a beam splitter. In this thesis, I showed that we

have the ability to generate squeezed states at microwave frequencies using a Josephson

Parametric Amplifier. However, generating EPR states is more demanding. Passive

elements, like directional couplers and 90-degree-hybrid couplers using superconducting

elements have to be developed such that they can be integrated on the same chip as the

JPA, as the loss in the coaxial cables and commercial microwave components can really

degrade the entanglement. Our group is also starting to test these passive components’

performance (Fig. 9.3).
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Figure 9.3: Passive microwave components being developed by our group for appli-
cations in continuous-variables quantum information processing. (a) 90-degree-hybrid
coupler and (b) directional coupler.
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Appendix A

Multimode fields

In this appendix we discuss the broadband analysis of signals and the necessary

corrections on the single-mode analysis done in chapter 2. These correction will set new

limits on amplification and squeezing of vacuum noise. For a more in-depth explanation

of the results quoted here, I refer the reader to Refs. [2, 84,112,113].

A.1 Multimode signals

The idea is to find the corrections to the single-mode analysis which results from

the nonzero bandwidth that any real signal and real amplifier have. In general, the input

and output mode frequencies do not have to be the same. However, in our experiments

this is usually the case so I will not make a distinction between the input and output

mode frequencies. Consider a broadband signal whose voltage, according to Eq. (2.39)

can be expressed as

V (t) = V0

∫

Bω

dω′

2π

√
ω′[a(ω′)e−iω′t + a†(ω′)eiω′t] (A.1)

where I assume ω′ > 0 only. The limits of the integral are labeled by Bω which represents

the bandwidth of integration of the measuring instrument used. Here the annihilation

and creation operators (now, no longer dimensionless but each in units of root of time,
√

t) satisfy the commutation relation given by Eqs. (2.23) and (2.24):

[a(ω′), a†(ω′′)] = 2πδ(ω′ − ω′′)
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and

[a(ω′), a(ω′′)] = 0.

I assume that associated with the signal, there is a carrier with frequency ω0. The

carrier frequency ω0 is essentially some preferred frequency, say the pump of a degenerate

Josephson parametric amplifier, or the local oscillator of a homodyne detector (a mixer).

The quadrature phases are to be defined relative to this frequency. The quadrature

operators X1(t) and X2(t) of the field amplitude components can be introduced by

writing our expression for the input signal V (t) in the follwing form

V (t) = 2
√

ω0V0 [X1(t) cos(ω0t) + X2(t) sin(ω0t)] . (A.2)

Using Eqs. (A.1) and (A.2), we obtain explicit expression for the quadrature oper-

ators X1(t) and X2(t) deriving what essentially is a continuum generalization of the

quadrature operators

X1(t) =
∫

Bω

dω

2π

1
2

√
ω0 + ω

ω0
[a(ω0 + ω)eiωt + H.c.] (A.3)

X2(t) =
∫

Bω

dω

2π

1
2

√
ω0 + ω

ω0
[−ia(ω0 + ω)eiωt + H.c.] (A.4)

where now the fields are described as functions of the modulation frequency ω which

consists of an offset frequency respect to ω0, ω′ = ω0±ω. The previous expressions can

be simplified significantly in the case where the bandwidth of the signal is symmetric

about ω0, and if we also define the operators in the rotating frame about the central

frequency ω0 as it was done in section 2.3.2:

b(t) = a(t)eiω0t.

We use the following definition of the fourier transform

b(ω) =
1
2π

∫
dtb(t)eiωt.

In this case, the rotating frame operators follow the commutation relation

[b(ω), b†(ω′)] = 2πδ(ω − ω′)
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Based on the steps described above, we obtain from Eqs. (A.3) and (A.4)

X1(t) =
∫ Bω/2

0

dω

2π
[X1(ω)e−iωt + H.c.] (A.5)

X2(t) =
∫ Bω/2

0

dω

2π
[X2(ω)e−iωt + H.c.] (A.6)

where

X1(ω) =
1
2

[√
ω0 + ω

ω0
b(ω) +

√
ω0 − ω

ω0
b†(−ω)

]
(A.7)

X2(ω) =
1
2i

[√
ω0 + ω

ω0
b(ω)−

√
ω0 − ω

ω0
b†(−ω)

]
(A.8)

Eqs. (A.5-A.8) are the multimode generalization of the single-mode quadrature opera-

tors, Eq. (2.73). The generalization to a rotated-quadrature operator Xθ(ω) is similar

to the single-mode quadrature, Eq. (2.86)

Xθ(ω) =
1
2

[√
ω0 + ω

ω0
b(ω)eiθ +

√
ω0 − ω

ω0
b†(−ω)e−iθ

]
(A.9)

where it is easy to show that X1 = Xθ=0 and X2 = Xθ=−π/2.

Although the multimode generalization X1(t) and X2(t) can have reduced fluc-

tuations (squeezing) just like in the single-mode case, it can be shown [2] that those

fluctuations cannot be reduced to zero as in the single-mode case. There are also cor-

rections to the minimum amount of of the noise that a linear amplifier adds, which

are bandwidth dependant and emerge naturally from the multimode analysis. These

new limits and corrections can be inferred by calculating the spectral density for the

fluctuations of the quadratures SXi,Xi(ω) (i = 1, 2) of the mean-square fluctuations of

Xi(t) from

〈{Xi(ω), X†
i (ω

′)}〉 = 2πSXi,Xi(ω)δ(ω − ω′) (A.10)

where we are using a single-sided spectral density convention. Then, it can be shown

that

SXi,Xi(ω) ≥ 1
2

ω

ω0
(A.11)
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Eq. (A.11) is the limit I mentioned, and it will be the origin of the new limits on added

noise for a phase-sensitive amplifier and the minimum squeezing it can generate.

A.2 Squeezed states

The transformation of a single mode degenerate parametric amplifier, Eq. (2.83),

to create squeezed states can be generalized to the broadband case. Consider the vacuum

state for the operator b(ω)

b(ω)|0〉 = 0.

Squeezed states can be generated from this vacuum state via a mode transformation

similar to the single-mode case

b′(ω) = G(ω)b(ω) +M(ω)b†(−ω) (A.12)

Under this transformation, |0〉, which is a vacuum state for the b(ω) operator, becomes

a squeezed state for the b′(ω) operator. Since both operators b(ω) and b′(ω) must satisfy

commutation relations of the form (2.61), the quantities G(ω) and M(ω) need to fulfill

the following relations

|G(ω)|2 − |M(ω)|2 = 1

and

G(ω)M(−ω) = G(−ω)M(ω).

Substituting Eq. (A.12) into Eq. (A.9), the transformed quadrature operator is given

by

Xθ(ω) =
1
2

(√
ω0 + ω

ω0
G(ω)eiθ +

√
ω0 − ω

ω0
M∗(−ω)e−iθ

)
b(ω)

1
2

(√
ω0 + ω

ω0
M(ω)eiθ +

√
ω0 − ω

ω0
G∗(−ω)e−iθ

)
b†(−ω) (A.13)

Hence, from Eq. (A.13), we obtain that

SX,X(ω, θ) =
1
2


|G(ω)|2 + |M(ω)|2 + 2

√
1−

(
ω

ω0

)2

Re(G(ω)M(−ω)e2iθ)


 (A.14)
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The term
√

1− (ω/ω2
0)2 consist of the correction due to the multimode analysis, and

it sets a fundamental upper bound on how small SX,X(ω, θ) can be made [2, 84]. It is

possible to show that

SX,X(ω, θ) ≥ 1
2

ω

ω0
.

as it was mentioned above, Eq. (A.11).

A.3 Quantum limits for multimode linear amplifiers

The correction from the multimode analysis in the case of amplifiers is very dif-

ferent whether is phase-sensitive or phase-insensitive. In the case of phase-insensitive

amplifiers, the only real change is that rather than specifying an added number of

quanta, what it’s specified is an added number of quanta per unit bandwidth. The

fundamental theorem for phase-insensitive linear amplifiers is then given by [2]

SA(ω) ≥
∣∣∣∣1∓

1
G(ω)

∣∣∣∣ (A.15)

where the upper (lower) sign holds for phase-preserving (phase-conjugating) amplifiers.

SA(ω) is the added noise single-sided spectral density (in units of number-quanta per

unit-bandwidth). If the input signal has phase-independent noise, then the output

spectral density is given by

SO(ω) = G(ω)[SI(ω) + SA(ω)]

where the superscripts I and O are used to designate the spectral densities of the input

and output signals.

In the case of a phase-sensitive amplifier such as a degenerate parametric am-

plifiers, the situation is different. In this case, it can be shown that the multimode-

correction to the single mode result is

SXi,A =
1
2

ω

ω0

∣∣∣∣1−
1

Gi(ω)

∣∣∣∣



259

where the subscript i is used to designate the quadrature, and Gi is the gain for the

quadrature Xi. Note that unlike the single-mode case, there is a fundamental limit on

amount of noise for modulation-frequencies ω > 0. The purpose of this limit is to ensure

that the output mode still follows Eq. (A.11) [2].

Some literature uses a different convention for the spectrum of an operator Ŷ ,

where the symmetrized noise SY,Y is actually defined as

1
2
〈{Y (ω), Y †(ω′)}〉 = 2πSY,Y (ω)δ(ω − ω′).

With this definition, the limit for phase insensitive amplifiers SA becomes 1/2 quanta

per unit bandwidth (just like the single mode case). Also the numerical factor in Eq.

(A.11) becomes 1/4 as opposed to 1/2. We do not use this convention, except for in

Eqs. (3.80-3.82) where the extra factor of 1/2 was added to compare the added noise of

the JPA with and ideal single-mode phase-insensitive amplifier. However, for the rest of

the thesis I have used the convention of Eq. (A.10). In this convention, then the added

noise per unit bandwidth in each quadrature of a quantum-limited phase-insensitive

amplifier is 1/2 quantum, which is the value we compare the added noise of our JPA.

A.4 Approximation

Although this fundamental limit is important from a theoretical point of view,

from an experimental point of view ω ¿ ω0. In the rotating frame, using a(ω0 ± ω) =

b(±ω), the frequency resolved quadrature amplitudes may be written in a form more

reminiscent of the discrete quadratures:

X1(ω) ' 1
2
(b(ω) + b†(−ω)) (A.16)

X2(ω) ' 1
2i

(b(ω)− b†(−ω)) (A.17)

These are the definitions I used for the quadrature operators in the frequency domain

in this thesis. They are also the definitions usually used to analyze the experimentally
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measured quadrature noise [8, 38]. In our case, for all the noise spectral densities that

were measured ω/ω0 < 1/1000, and it is justified to use the approximated quadra-

ture operators. Within this approximation, the term
√

1− (ω/ω2
0)2 from Eq. (A.14)

disappears and we obtain Eqs. (3.74) and (3.75).



Appendix B

Thermal sweep and loss calibration

As described in section 6.3.3, we use a cryogenic switch to toggle between two

terminations held at two different temperatures to estimate the added noise of the

HEMT and the JPA. However, in order to accurately refer this noise to the input of

the different amplifiers, one must also measure the microwave loss of the components

between the calibrated noise sources and the input of the amplifiers. Knowing the

amount of loss between the different sections of the experiment is also very important

in order to accurately predict the amount of squeezing observed. The determination

of the amount of loss is accomplished by measuring the change in the measured noise

at the output of the amplifier chain as a function of the cryostat temperature Tc when

the switch is connected to the hot load at Th = 4.1 K. In the presence of loss the noise

from the hot termination at Th will be partially absorbed. In addition, this loss will

emit noise with a spectrum given by the temperature of the loss (Tc). In this appendix,

I will describe a set of thermal-sweep measurements that help us estimate the loss

between the switch and the amplifiers. From the thermal sweeps, we can also estimate

the added noise of amplifiers and compare it with what we measure using the Y -factor

measurement described in section 6.3.3 to make sure both methods give similar answers.

In the following calculations, I will assume that the HEMT sets the noise floor

of the measurement. For this reason and for simplicity I label with a subindex H the

gain and added noise of the commercial amplifier chain, starting with the HEMT and
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ending at the digitalization card used to measure the output of the mixer.

B.1 HEMT

Switch

ρ

η

4 KT
c

HEMT +

other commercial

amplifiers

out
S

T
c

Figure B.1: Simplified diagram of the measurement when only the HEMT is used. By
measuring the noise at the output of the amplifier chain for both loads, as we change
the temperature of the fridge Tc, we can estimate the loss η.

During the thermal sweeps we do a Y -factor measurement on the amplifiers, in

this case the HEMT. This means that we have access to two possibilities for Sout (Fig.

B.1). One is when we are observing at the “cold load” which sits at a temperature

of Tc and the second when we are observing at the hot load with a temperature of

Th = 4.1 K. When we measure the cold load at a temperature Tc, we can estimate the

HEMT’s noise (assuming a few approximations I will describe below). Then, when we

measure the hot load. If there was no loss between the switch and the HEMT, ideally

we would not see any change of Sout when we change the temperature of the fridge.

Thus, when measuring the the hot load, it is the change we measure in Sout that allows

us to estimate the loss η. The ouput of the HEMT is given by Sout,

Sout = GH [AH + (ρSload + (1− ρ)Sρ)η + (1− η)Sη] (B.1)

where AH is the added noise of the HEMT in noise quanta, GH is the gain of the

HEMT (more accurately is the gain of all the amplifier chain, but for simplicity let’s
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call it the HEMT gain), Sload is the noise coming from the load (it can be at the fridge

temperature or at 4.1 K), ρ is the loss in the switch, η is the loss from the switch to

the HEMT. Sρ is the noise attributed to the switch loss, and Sη is the noise attributed

to the loss between the switch and the HEMT. Sload, Sη and Sρ are in units of noise

quanta and are given by:

Si =
1
2

coth(
hf

2kBTi
) (B.2)

Unfortunately, with the following analysis, we will not be able to estimate the

loss of the microwave components that sit at 4.1 K. This consists of the loss of the

switch as well as the loss from a bias-tee used to heat sink the center-conductor of the

superconducting cables and the switch. Thus, I will do fits assuming worst and best

case scenario based on the factory specifications of the microwave components: a total

insertion loss of −0.8 dB for the worst case, or ρ ' 0.83, and for the ideal case ρ = 1.

B.1.1 Hot load

In this case when we are measuring the hot load, then Sload = Sρ, and Eq B.1

yields

Sout = GH [AH + Sρη + (1− η)Sη] (B.3)

where Sη = 1
2 coth( hf

2kBTc
) is the term that will change with the fridge temperature.

Now, this expression could be used to do a fits to obtain the HEMT’s added noise and

the loss. However, since we do not know exactly the gain of the amplifier chain, the

variable GH in the fitting expression is also a fitting parameter. This means that there

is one too many fitting parameters which give us too much freedom in the fits. So, I do

first a fitting to the cold load measurement, which sets (approximately) GH and AH .
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B.1.2 Cold load

In this case, Sload = Sη, and then Eq B.1 reduces to

Sout = GH [AH + (1− η + ηρ)Sη + (1− ρ)ηSρ] (B.4)

If the switch and bias-tee at 4.1 K did not have any loss (ρ = 1), then this expression

would be much simpler Sout = GH{AH + Sη} and the fitting to a simple expression

with only 2 fitting parameters (GH and AH) would work fine. However, since I cannot

assume that there is no loss at 4.1 K, things are slightly more complicated. In order to

simplify the expression I will regroup some of the terms in Eq. (B.4):

Sout = GH [AH + (1− η + ηρ)Sη + (1− ρ)ηSρ] (B.5)

= GH(1− η + ηρ)
[
AH + (1− ρ)ηSρ

(1− η + ηρ)
+ Sη

]
(B.6)

= Gfit{Afit + Sη} (B.7)

with

Gfit = GH(1− η + ηρ) (B.8)

Afit =
AH + (1− ρ)ηSρ

(1− η + ηρ)
(B.9)

Now I have a simple expression with only 2 fitting parameters. The procedure to

estimate the loss is the follwing:

(1) I do a fit to the cold load, from which I get Gfit and Afit;

(2) Using Gfit and Afit, I do a fit to the hot load, where I replace GH and AH using

Eqs. (B.8) and (B.9) assuming ρ = 1 from which I get a value of the attenuation

η;

(3) Then I do a fit to the hot load assuming ρ = 0.83 from which I get another

value of the attenuation η.

Since ρ is close to one and η < 0.1, (1 − η + ηρ) ' 1 this will make Gfit ' GH and

Afit ' AH .
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B.2 JPA

We can try to do a similar analysis when we operate the JPA to estimate the added

noise of the JPA and the attenuation between the different locations of the circuit shown

in figure B.1. The output of the amplifier chain (again labeled by the subindex H) and

including the JPA is given by the following expression:

Sout = GH [AH + (1− η2)Sc + η2GJ (AJ + (1− η1)Sc + η1{(1− ρ)Sρ + ρSload})]

(B.10)

where η1 is the attenuation between the switch and the JPA, η2 is the attenuation

between the JPA and the HEMT, and Si = 1
2 coth( hf

2kBTi
). For simplicity, since the noise

from both losses η1 and η2 are the same and are function of the fridge temperature, I

have used Sc to label their noise. Sload is the load thermal noise, which can be at the

fridge temperature Tc or at 4.1 K, and Sρ is the thermal noise (with T=4.1 K) from the

loss at 4.1 K (switch and bias-tee).

Switch

ρ

η
1

4 K

T
c

T
c

out
S

Josephson

Parametric

Amplifier

(JPA or Squeezer)

T
c

A
H

A
J

, G
J

, G
H

HEMT +

other commercial

amplifiers

η
2

Figure B.2: Simplified diagram of the measurement when both the HEMT and a Joseph-
son parametric amplifier (either the one labeled the squeezer or the JPA) are used. By
measuring the noise at the output of the amplifier chain for both loads, as we change
the temperature of the fridge Tc, we can estimate the loss η1. From the measurement
done only with the HEMT where we estimate η = η1 + η2 we can then know η2.
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B.2.1 Cold load

In this case Sload = Sc and equation B.10 reduces to:

Sout = GH{AH + (1− η2)Sc + η2GJ(AJ + (1− η1)Sc + η1[(1− ρ)SS + ρSc])}

= GH [g(1− η1(1− ρ)) + (1− η2)]{ AH + gAJ + gη1(1− ρ)Sρ

g(1− η1(1− ρ)) + (1− η2)
+ Sc}

= G′(A′ + Sc)

where g = GJη2. Now, for reasonable values for η1, ρ and η2, then A′ can be simplified:

A′ =
AH + gAJ + gη1(1− ρ)Sρ

g(1− η1(1− ρ)) + (1− η2)
(B.11)

' AH

g
+ (1− ρ)η1Sρ + AJ (B.12)

Finally, when taking the data, we are modifying not only the temperature of the fridge

and the cold-resistor but also the temperature of the JPA. We do not know the tem-

perature dependance of the added noise of the JPA. Although our model includes some

temperature dependance of the added noise, Eq. (5.56), the measured added noise is

larger than what theory predicts. I know that the added noise of the amplifier is (ide-

ally) of the order of AJ = γloss
γcoupling

1
2 coth( hf

2kBTc
). So, for these fits, I will assume that at

least this much of the added noise of the JPA must depend with temperature. Then I

can use the following expression to fit the data:

AJ = A0
J + κ

[
1
2

coth(
hf

2kBTcryo
)
]

(B.13)

where κ = γloss
γcoupling

is calculated from fits to the reflection coefficient and A0
J is assumed

temperature independent. Hence, my fitting function for the cold-load noise measure-

ment is:

Scold
out = Gfit [Afit + (κ + 1)Sc] (B.14)

where Afit = AH
g + (1− ρ)η1Sρ + A0

J .
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B.2.2 Hot load

In this case Sload = Sρ, so equation B.10 reduces to

Sout = GH{AH + (1− η2)Sc + η2GJ(AJ + (1− η1)Sc + η1[(1− ρ)Sρ + ρSρ])}

= GH [g + (1− η2)]{ AH + gAJ

g + (1− η2)
+

gη1

g + (1− η2)
Sρ + (1− gη1

g + (1− η2)
)Sc}

= G′′(A′′ + η′1Sload + (1− η′1)Sc)

With some approximations that are valid for high gain g and reasonable values of η1, ρ

and η2, this expression can be written as follows:

Shot
out =

Gfit

1− η1(1− ρ)
{Afit(1− η1(1− ρ))− η1(1− ρ)Sρ + η′1Sρ + (1− η′1)Sc} (B.15)

where Gfit and Afit will not be fitting parameters in this case but are obtained from

the fit to the cold-load data. Finally, the last thing to do is to notice that η′1 can be

approximated by:

η′1 =
gη1

g + (1− η2)

' η1

Therefore, expression B.15 reduces to

Shot
out =

Gfit

1− η1(1− ρ)
{Afit(1−η1(1−ρ))+η1ρSρ +(1−η1 +ρ(1−η1(1−ρ)))Sc} (B.16)

which is the expression I use to fit to the hot load with one single fitting parameter,

η1.1

The procedure for the fits of the data in the case of the JPA is similar to the

HEMT amplifier case.

(1) I do a fit to the cold load, from which I get Gfit and Afit;

(2) Using Gfit and Afit, I do a fit to the hot load assuming ρ = 1 from which I get

a value of the attenuation η1;
1 The term (1 − η1(1 − ρ))) is a number very close to one, so this extra terms does not affect the

results of the fits.



268

(3) Then I do a fit to the hot load assuming ρ = 0.83 from which I get another

value of the attenuation η1;

(4) η2 can be obtained from the value of η = η1 + η2 given by the fits to the HEMT

amplifier thermal sweep data.

B.2.3 Low-frequency noise
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Figure B.3: (a)Spectral density of the output of the mixer when the JPA is used. Below
100 kHz there is an extra contribution from an unknown source. (b) This extra noise
has a linear dependance with temperature which, unless avoided, would interfere with
our fits to Eqs. (B.14) and (B.16).

Before we move into fitting the data to Eqs. (B.14) and (B.16), there is something

I need to discuss which is the low frequency noise we observe in the spectral density at

the output of our amplifier chain (fig. B.3). If we integrate over only the low frequency

part (below 100 kHz), then we obtain a linear T -dependance as shown in figure B.3b.

Thus, if I want to fit to the expressions (B.14) and (B.16) then I can not integrate over

the whole band measured but at least above 200 kHz. What I actually do is I fit to the

low frequency part which gives a dependance of ∼ 1/f1.8. Then I compare how much

of the total noise at, for example, 500 kHz comes from the 1/f1.8 part. For this case, it
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is less that 5%, and since I integrate over a band bigger than 1 MHz, at the end, after

integrating above 500 kHz, the part of the noise that comes from the ∼ 1/f1.8 part is

negligible.

B.3 Chapter 7 calibration

In all the data that I will show, we used a calibration tone that allowed us to

remove drifting in the gain of the whole amplifier chain (as the measurements took

several hours).

B.3.1 HEMT
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Figure B.4: Thermal sweep using only the HEMT amplifier. The JPA and the squeezer

resonances have been tuned far from the frequency of interest by applying a current to

the coil. Thus, the resonators behave as mirrors reflecting all the incident power. The

data shown consist of the power spectrum over a 5 MHz bandwidth when the switch is

connected to the cold load (dots) and the hot load (circles) as well as their fits to Eqs.

(B.16) and (B.14) (red lines). The error bars are smaller than the data points.
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The fits to the data taken with the HEMT are shown in figure B.4. In order

to avoid the losses of the resonators, we applied a current to the coil that move the

resonance frequency of both the JPA and squeezer far from the frequency at which we

were measuring (f = 7.44 GHz). Thus, both resonators behaved as mirrors, reflecting all

the noise incident on them. By doing a fit to Eqs. (B.3) and (B.4), we estimate that the

added noise of the HEMT is AH = 17.3± 0.2, where the uncertainty is predominantly

from the unknown loss of the microwave components at 4.1 K. Regarding the loss η

from figure B.1, our estimate is η = −11.7± 0.3 dB.

B.3.2 JPA
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Figure B.5: Thermal sweep with a JPA gain of (a) GJ = 60 and (b) GJ = 250. These

values of the JPA gain consist of the average gain over the integrated band. The data

shown consist of the power spectrum over over a 2.5 MHz bandwidth (from 500 kHz to

3 MHz), when the switch is connected to the cold load (dots) and the hot load (circles)

as well as their fits to Eqs. (B.16) and (B.14) (red lines).

In this experiment we have two different parametric amplifiers one as a squeezer

(and hence will be only referred as the squeezer) and one as an amplifier (JPA). We
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first analyze the one that is used as an amplifier. When we took this data we took

thermal sweeps with 2 different gains. All through the thermal sweep we kept the gains

the same. From the fits to the data (Fig. B.5) we estimate the following parameters:

AJ = 0.24 ± 0.03, where again the largest contribution to the uncertainty comes from

the unknown losses at 4.1 K. Regarding the losses, we obtain, η1 = 10.4 ± 0.2 dB and

η2 = 1.3± 0.3 dB. In order to obtain AJ , η1, η2, we used the results obtained from the

HEMT-thermal-sweep analysis.

One important point that is still under discussion is that I have assumed that

the noise of the JPA is formed by one part that is constant with temperature and

one part that depends in temperature as shown in Eq. (B.13). This is a somewhat

arbitrary model. The second part κ(1
2 coth( hf

2kBTc
)) is what I expect from theory, and

since we see extra noise I have added a constant, but this “constant” A0
J could very well

be a function of temperature, which would then change the results previously shown.

However, the obtained attenuation is compatible with measurements of the attenuation

of the microwave components when measured at 77 K. Also, assuming the estimated

attenuation from the fits, we can do Y -factor measurements on the JPA and the obtained

added noise of AJ ' 0.25 ± 0.05 is compatible with the estimated from the fits. So I

will use these values to analyze the data in chapter 7.

B.3.3 Squeezer

In the case of the squeezer, the analysis from the fits shown in figure B.6 yields

AJ = 0.26 ± 0.03, η1 = −8.7 ± 0.3, and η2 = 3.0 ± 0.2 dB (note that η1 and η2 in

this case will be different from the ones obtained for the JPA). Just as in the previous

case, by performing a Y -factor measurement, we have observed consistency between the

measured loss and the measured added noise from the thermal sweeps, and the measured

added noise from the Y -factor measurement.
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Figure B.6: Thermal sweep with a squeezer gain of (a) GJ = 70 and (b) GJ = 350.

These values of the JPA gain consist of the average gain over the integrated band.

The data shown consist of the power spectrum over over a 2.5 MHz bandwidth (from

500 kHz to 3 MHz), when the switch is connected to the cold load (dots) and the hot

load (circles) as well as their fits to Eqs. (B.16) and (B.14) (red lines).

The estimated values of η for the HEMT, and η1 and η2 for both the JPA and

the squeezer can be used to estimate the losses between all the three amplifiers, as

shown in figure B.7. For the analysis done in chapter 7, we assumed α = 1.7 ± 0.1,

β = ηJPA
2 = 1.3± 0.3 and Sin = 0.65± 0.15.
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Figure B.7: From the thermal sweeps then we can estimate the loss between the squeezer
and the JPA (α), and the loss between the JPA and the HEMT (β).
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Squeezing

We also measured the squeezing just using the HEMT to observe whether the

squeezer behave as in the previous experiments. The observed squeezing as a function of

gain is shown in figure B.8 and compared with theory. We observe a similar behavior as

in figure 6.34b. The squeezing increases as a function of gain up to gains of GJ ' 10 dB,

and the it decreases for higher gains. The maximum estimated observed squeezing is

80%.
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Figure B.8: Squeezing as a function of the squeezer gain. The maximum squeezing

observed is 80%.
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B.4 Chapter 8 calibration
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Figure B.9: Thermal sweep using only the HEMT amplifier. Only one JPA is used in

this experiment and its resonance has been tuned far from the frequency of interest by

applying a current to the coil. The data shown consist of the power spectrum over a

5 MHz bandwidth when the switch is connected to the cold load (dots) and the hot load

(circles) as well as their fits to Eqs. (B.16) and (B.14) (red lines).

We also performed a thermal sweep for the experiment described in chapter 8.

Following are the plots with the results from the fits using the procedure previously

described. Based on the thermal-sweep data for the HEMT and other commercial am-

plifiers (Fig. B.9), we get the following results for the effective added noise of the com-

mercial amplifier chain and attenuation η between the switch and the HEMT amplifier.

AH = 24.5± 0.5, and η = 7.6± 0.2.

In the case of the JPA, we took the thermal-sweep data for two different gains.

From the fits shown in figure B.10, we estimate the following values: AJ = 0.33± 0.04

and η1 = 6 ± 0.3 dB. The values of the estimated added noise of both the JPA and

the HEMT are consistent with the values from Y -factor measurements assuming the
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given values of attenuation of η1 ' −6 dB and η = η1 + η2 = −7.6 dB. These are

the values assumed for the estimate of the effective added noise AN in the microwave

interferometer for figure 8.9.
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Figure B.10: Thermal sweep with a JPA gain of (a) GJ ≈ 115 and (b) GJ ≈ 400.



Appendix C

Sample Fabrication

In this appendix I discuss some details regarding the fabrication of the samples.

First I will describe in some detail the fabrication of the aluminum samples which I did

in the JILA cleanroom. Then I will only briefly describe the process involved in the

fabrication of the niobium samples done by our collaborators at NIST.

C.1 Aluminum resonators

This sample was fabricated with electron beam (e-beam) lithography. The first

step is choosing a substrate. We used a 300 µm thick silicon substrate with a thermally

grown oxide. The thickness of the oxide was 150 nm. On the wafer, we deposit a protect-

ing layer resist. At this point, the wafer was diced into individual 1/4 in2 chips. Then

individual chips are prepared for the fabrication of the devices. Each chip is thoroughly

cleaned with acetone and isopropanol before depositing the layers of photoresist. First,

a thick (∼ 5000 Å) layer of polymethylglutarimide (PMGI) SF-9 from Micro-Chem is

spun at 3000 rpm for 40 seconds and baked for 10 minutes on the substrate using a

hot plate at 190◦C; then a second thinner (∼ 3000 Å) layer of polymethyl methacrylate

(PMMA-A5.5) is spun at 4000 rpm and baked at 180◦C for 30 minutes. These two

layers form a resist bilayer necessary to create suspended structures (Fig. C.1). Then

the chip is exposed to an e-beam using a scanning electron microscope (SEM) as shown

in figure C.2a. The PMMA is then developed for 1:20 minutes using PMMA-developer
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SiliconSilicon

Silicon Oxide

Areas exposed by the e-beam

Aluminum

Aluminum Oxide

Al-AlOx-Al junctions

Figure C.1: Dolan bridge technique. A bilayer of PMGI/PMMA resist is spun and
baked on a silicon chip with a thermally grown oxide. The pattern is written with a
scanning electron microscope, exposed and developed to create the suspended pattern
shown in cross section. Then a layer of aluminum is evaporated at an angle to create
the bottom electrode of the tunnel junction. The next step is to create an oxide layer by
introducing oxygen into the evaporation chamber. Next, a second layer of aluminum is
evaporated to form the counter electrode. Finally, the resist pattern is lifted to leaving
the finished tunnel junction and other structures of the device.

(MIBK). The areas of PMMA exposed are then removed and the PMGI is developed for

3:00 minutes using PMGI developer. This creates a the suspended pattern as shown in

cross section in figure C.1. After that the sample is placed in an evaporator (Fig. C.2b).

I evaporate aluminum at two different angles and allow an oxide to form in between.
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This oxidation is accomplished by letting oxygen into the evaporating chamber causing

the aluminum to oxidize. The thickness of each of the layers of evaporated aluminum

was 100 nm. The region of overlap results in a tunnel junction. This technique is

called Dolan-bridge technique [87]. Finally, the resist pattern is lifted using acetone and

PMGI-remover leaving the tunnel junctions and the resonator structure.

(a) (b)

Figure C.2: (a) Scanning electron microscope, JEOL JSM-6400, used in the fabrication
of the aluminum devices. (b) Oxford evaporator. It is set up to do both thermal and
e-beam evaporation. The device described in chapter 6 was thermally evaporated.

C.2 Niobium resonators

Niobium devices were fabricated at NIST Boulder using optical-lithography with

a standard NbAlOxNb trilayer process [88], modified by eliminating the shunt resistor

layer and minimizing deposited oxides [89]. Trilayers are deposited in a dedicated load-

locked vacuum system. The first base-electrode layer consist of a 200 nm thick Nb

film; then a 6-10 nm thick Al film is deposited and oxidized. Finally a 50-100 nm

thick Nb counter-electrode deposition completes the trilayer process. The pattern of

the resonator is done by performing an etch process in a load-locked reactive-ion-etch

system (Fig. C.3).



279

Our role in the fabrication of the Niobium resonator consist of designing the

structures. For that, we used commercial software named Xic Graphical Input Editor,

from Whiteley Research Inc. In there we plot all the structure including the layers used

in the fabrication. Beside the trilayer described in the previous paragraph, which only

creates the junctions, we also used two extra layers, a dialectric insulating layer (SiO2)

and a niobium wiring layer used to connect the multiple junctions. The dialectric SiO2

layer is deposited using plasma-enhanced-chemical-vapor-deposition (PECVD) with an

electron-cyclotron-resonance (ECR) reactor. Before depositing the wiring-layer, vias are

etched in the SiO2 layer. For more details in the fabrication process of these devices,

contact Leila Vale at NIST.

SiliconSilicon

Thermally-grown

Silicon Oxide

Aluminum

Aluminum Oxide

Niobium

ECR-based PECVD 

Silicon Oxide
vias

Figure C.3: Niobium trilayer process. First a layer of niobium is deposited followed
by an aluminum layer which is oxidized and finally another niobium layer completing
the trilayer process. However, this creates the junctions as well as the other resonator
structures, but leaves the junctions disconnected from the rest of the device. Hence, a
layer of SiO2 is deposited followed by an etch to creates vias and the deposition of a
niobium-wiring layer that connects the junctions to form the SQUIDs and to connect
them to the rest of the resonator circuitry.



Appendix D

List of symbols and abbreviations

∆ Superconducting gap
γ linewidth defined as the amplitude decay rate,

or half width at half maximum (HWHM). γ = ω0/2Q
ζ Real squeezing observed at the output of the homodyne detector.
η Transmission coefficient of a beam splitter.
η Efficiency of the homodyne measurement modeled by a beam-

splitter at the input of an ideal homodyne detector.
ξ Squeezing at the output of the JPA
Φ Flux
Bω Bandwidth
C Capacitance
Cl Capacitance per unit length
CPW Coplanar waveguide
EOM Equations of motion
DPA Degenerate parametric amplifier
gc Coupling between the mechanical harmonic oscillator displacement

and the cavity’s resonance frequency, gc = ∂ωc/∂x.
G1 Maximum quadrature power gain
G2 Maximum de-amplification. In an ideal degenerate parametric

amplifier G2 = 1/G1

Gθ Phase-dependant quadrature power gain
Gi Image power gain
GJ JPA gain, defined as the maximum quadrature gain. GJ = G1

Gs Signal power gain
HEMT High electron mobility transistor amplifier
I Current
I0 Critical current of a Josephson junction
IS
0 Critical current of a SQUID

IOT Input Output Theory
JPA Josephson parametric amplifier
L Inductance
Ll Inductance per unit length
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LJ Nonlinear Josephson inductance
LJ0 Linear part of the Josephson inductance
Q Charge
Q ,Q Quality factor
SHO Simple Harmonic Oscillator
S/N Signal-to-noise ratio
SQL Standard Quantum Limit
Sy,y Single-sided spectral density for an operator ŷ, Sŷ,ŷ = 〈{ŷ, ŷ}〉
Sz Quadrature single-sided spectral density, where z defines a

location in the experiment setup. This variable-naming scheme is
only used in chapter 6, 7 and appendix B.

T Temperature
vph Phase velocity of a transmission line
W (x1, x2) Wigner function
Xi Quadrature operator, i = 1, 2
xi Quadrature variable, i = 1, 2. The Wigner function is a function

of xi.
Xθ Phase-dependant quadrature
Zc Characteristic impedance of a transmission line


