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Neutral atom optical standards require the highest levels of laser precision to operate near
the limit set by quantum fluctuations. We develop state-of-the-art ultra-stable laser systems to
achieve a factor of 10 enhancement in clock measurement precision and additionally demonstrate
optical linewidths below 50 mHz. The most stable of these lasers reaches its thermal noise floor of
1 x 107! fractional frequency instability, allowing the attainment of near quantum-noise-limited
clock operation with single-clock instabilities of 3 x 10716/,/7. We utilize this high level of spectral
resolution to operate a 37Sr optical lattice clock in a regime in which quantum collisions play
a dominant role in the dynamics, enabling the study of quantum many-body physics. With a
fractional level of precision of near 1 x 10716 at 1 s, we clearly resolve the signatures of many-body
interactions. We find that the complicated interplay between the p wave-dominated elastic and
inelastic interaction processes between lattice-trapped atoms leads to severe lineshape distortion,
shifts, and loss of Ramsey fringe contrast. We additionally explore the theoretical prediction that
these many-body interactions will modify the quantum fluctuations of the system and we find that
in certain parameter regimes the quantum noise distribution exhibits a quadrature dependence.
We further present technological advancements that will permit ultra-stable lasers to operate with
reduced thermal noise, leading to a potential gain of an additional factor of 10 in stability. This
indicates that laser fractional frequency instabilities of 1 x 10717 are within experimental reach, as

is a fully-quantum-limited regime of optical clock operation.
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Chapter 1

Introduction

Many of the tools that are crucial for optical atomic clocks and high-precision optical spec-
troscopy played a prominent role in 20th century physics. Likewise, the development of both
microwave and optical frequency standards has been an important driving force in quantum mea-
surement and atomic, molecular, and optical science. The technology utilized in today’s state-
of-the-art optical frequency standards has spurred numerous new research directions, including
optical frequency combs, ultrastable optical interferometers, and interacting quantum gases. Here
we provide an introduction to optical frequency standards, their key components, and metrics for

evaluating their performance.

1.1 Historical discussion

Precision spectroscopy has played a foundational role in our understanding of modern physics.
Radio-frequency spectroscopy enabled early measurements of nuclear magnetic moments [3, 4], the
Lamb shift in atomic hydrogen [5], and the accurate determination on an anomalous electron
g-factor [6]. These measurements each represent experimental milestones that spurred theoretical
development in atomic and nuclear physics as well as quantum optics and quantum electrodynamics.
The pioneering work of Norman Ramsey in developing the method of separated oscillatory fields
[7] set the stage for the development of radio frequency (RF) frequency standards by enabling the
accurate and precise determination of resonances in atomic beams. The Cs fountain clocks that

define the SI second today operate using Ramsey’s scheme, and the precise RF clocks flying aboard



GPS satellites have fundamentally changed the way much of the world navigates.

With the invention of the laser [8], the field of laser-based optical spectroscopy was born,
allowing optical measurement of fundamental quantities, such as the Lamb shift [9, 10]. Further-
more, optical analogues of the Ramsey separated fields technique were demonstrated in the optical
domain [11, 12], representing the first demonstrations of coherent optical spectroscopy and setting
the stage for high resolution spectroscopy of narrow optical transitions in molecules, atoms, and
ions.

The advent of laser cooling and trapping [13, 14, 15, 16, 17, 18, 19] represents another
groundbreaking milestone for modern science and has opened up the quantum world to direct
laboratory exploration and manipulation. With laser-cooled atoms and ions, coherence times for
optical (e.g., [20, 21, 22]) and microwave (e.g., [23]) spectroscopy were dramatically improved. The
long coherence times were a direct contributor to the success of frequency standards based on laser
cooled atoms and ions that emerged from this work, and directly enabled the most precise and

accurate clocks in existence today.

1.2 Precision spectroscopy and atomic clocks

The physical basis for precision spectroscopy and atomic timekeeping is the relationship
between energy and frequency, given by Plank’s famous equation relating the frequency of photon
to its energy

AE = hy, (1.1)

where AFE is the energy between the ground and excited clock states (¢ and e, respectively), h is
Planck’s constant and v is the transition frequency (i.e., the frequency of the absorbed or emitted
radiation). Optical and microwave transitions between metastable states in ions and atoms make
good frequency references because they are based on quantum systems whose transition frequencies
depend very directly on the fundamental laws of nature, and should be perfectly reproducible from

one realization to another. In many cases, g is the energetic ground state of the atom or ion,
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Figure 1.1: Coherent spectroscopy in a 87Sr optical lattice clock. The atomic population undergoes
a series of collapses and revivals as a function of laser detuning and pulse duration, demonstrating
a coherent regime of spectroscopy.

while e is a highly metastable, excited state whose natural lifetime exceeds all experimentally
relevant timescales. As a result, the techniques of coherent spectroscopy, as first developed by I.
I. Rabi and N. H. Ramsey for nuclear magnetic resonance measurements, are still utilized today,
from RF frequencies to ultraviolet optical frequencies. Figure 1.1 depicts an example of coherent
spectroscopy using lattice-trapped and spin-polarized 87Sr—the 87Sr optical lattice clock that is
the subject of this thesis. In Chapter 2 we provide a complete description of the 87Sr optical lattice
clock. Briefly, an ultrastable laser is tuned such that the photon energy is nearly matched to AF
and the pulse is applied for a given duration. The duration is chosen such that the maximum
population transfer occurs on resonance for a given coupling strength between the laser and atom
called the “Rabi frequency.” For an electric dipole-allowed transition, the Rabi frequency €2 is given
by

Q = (gld - Eole) /1, (1.2)
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Figure 1.2: Spectroscopic lineshapes obtained via Ramsey and Rabi spectroscopy in a 87Sr lattice
clock. Both techniques are utilized in optical clocks. The temporal width of the features in both
Ramsey and Rabi spectroscopy are inversely proportional to the total spectroscopy time. For
the Rabi spectroscopy lineshape shown at right, the probe time was 160 ms, corresponding to an
expected frequency full-width at half-maximum (FWHM) of 5 Hz.

where d is the dipole operator d= er, e is the electron charge, and t is the position operator. Here
E( is the amplitude of the laser electric field. As can be seen in Fig. 1.1, the population of atoms
in e undergoes periodic collapses and revivals depending on the laser detuning from resonance, and
the duration the pulse is applied. This is the hallmark of coherent spectroscopy; the atom-field
coupling is the relevant part of the interaction, while spontaneous emission occurs so infrequently
that it does not play a large role in the dynamics of the population evolution. Figure 1.2 shows an
example of each Rabi and Ramsey spectroscopy utilized in the 87Sr optical lattice clock. The fit
lineshapes represent the ideal case of an isolated two-level system and are derived in Appendix A.

In order to consider a given ultranarrow resonance in an atom or ion a good candidate
for a frequency standard, the transition of interest should exhibit strong immunity to external
perturbations, such as magnetic fields. Additionally, atoms or ions serving as optical standards are
typically trapped sufficiently tightly that problems such as Doppler broadening and recoil shifts

can be mitigated by the tight trap.!  These traps consist of RF Paul traps for ions [24] and

! In RF frequency standards, the effect of recoil is negligible and the Doppler effect is vastly reduced.
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Figure 1.3: Schematic diagram of a frequency standard. The local oscillator (LO) probes the atomic
system used as a frequency reference (solid line). The information gained from this measurement
is used to correct the LO frequency such that it is actively locked to atomic transition.

engineered, standing-wave optical dipole traps at the “magic-wavelength” for neutral atom optical
clocks [25, 26], also known as optical lattices. In addition to these general considerations, the
transition used for the clock must be sufficiently narrow to provide a sharp frequency discrimination
signal. This last condition is met by using multiply forbidden transitions in the clock atoms or
ions, resulting in extremely long excited state lifetimes (in some cases > 100 s) and correspondingly
very narrow resonance linewidths.

Atomic clocks of all types (microwave, optical trapped ion, and optical neutral atom) all rely
on the same principle of operation. An oscillator with good short-term stability, the local oscillator
(LO), is used to interrogate a transition in the ion or atomic ensemble as shown in Figure 1.3. The
LO very precisely probes the transition, and the information is then used to correct the LO such
that it is maintained on resonance.

Optical atomic clocks have now reached unprecedented levels of stability and accuracy. At

the forefront of accuracy, a clock located at the National Institute of Standards and Technology



(NIST), based on a single aluminum ion and probed via quantum logic spectroscopy now has a
fractional frequency uncertainty of 8.6 x 10718 [27]. A second clock based on a mercury ion, also at
NIST, is at the 2x 10~!7 fractional frequency uncertainty level [28]. Additionally, a Sr* ion operated
by the National Research Council of Canada has recently attained an uncertainty of 2.2 x 1017
[29]. Finally we note that the PTB Yb* ion clock has reached an uncertainty of 7.1 x 10~'7 [30].
These remarkable advances in ion-based clocks are followed closely by a new class of optical clocks
based on ensembles of ultracold neutral atoms held tightly in optical lattices. The most accurate
at the level of 1 x 10716 fractional uncertainty [31, 32, 33, 34], with the 87Sr lattice clock currently
the most accurate of the neutral atom-based clocks. The Sr lattice clock also has the best record of
international agreement in measurements against the Cs primary frequency standard of any optical

standard [35, 34].

1.2.1 Ultrastable lasers in optical clocks

Central to the performance of any frequency standard is the stability of its local oscillator.
The task of the local oscillator is twofold: it must probe the reference transition in the quantum
reference while introducing minimal noise through an aliasing process known as the Dick effect
[36, 37|, and it must act as a “flywheel” to maintain the short- to medium-term stability of the
frequency reference. These two considerations alone have spurred massive development efforts in
ultrastable lasers for use with optical standards (e.g., [38, 39, 40, 41, 42, 43]), which stand the most
to gain from improvements in the local oscillator.

From a broader standpoint, optical interferometers are found at the heart of many diverse ex-
periments that perform the highest-precision laser-based measurements, from quantum mechanical
to cosmological scales. Chapter 3 explores key limitations to optical interferometers: the detrimen-
tal thermal coupling to the environment arises as a direct consequence of mechanical losses in the
interferometer substrates and coatings, which in turn limit laser stability. Chapter 4 specifically
discusses the development of three ultrastable laser systems for use with optical clocks, including

the construction of an ultrastable laser with fractional instability at 1 x 107!6 from 1-1000 s and
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Table 1.1: Common Allan variances for different noise spectra (as in [45]).

a linewidth as low as 26 mHz.

1.3 Characterizing the stability of clocks

Forming metrics for the stability of atomic clocks is important in order to characterize their
performance. By performance we mean “how long does it take to make a measurement with a
given statistical uncertainty.” This question is distinct from, but related to, the clock uncertainty.
Systematic uncertainty, by contrast, characterizes the absolute (dis)agreement we expect be-
tween two systems due to our limited knowledge of perturbing effects that introduce subtle, sys-
tematic differences in the operating conditions of each clock. Ultimately, it is these effects that
limit the accuracy of a frequency standard.

In order to characterize the performance of a frequency standard, the most common and
widely-used metric is the Allan deviation [44]. The Allan deviation is a procedure to characterize the
time-dependence of the noise in a string of frequency measurements. Unlike the standard deviation,
which can become divergent for certain noise spectra, the Allan deviation can characterize data
described by a wider range of underlying noise processes [45]. For a continuous measurement, the
Allan deviation is defined as

- )
(r) = Vlg<(”’“2_”’) ). (1.3)
Here, each quantity 7; etc. is averaged over the time interval 7 at the ith such time interval, as
illustrated in Fig. 1.4. Equation 1.3 represents the expected value of the pair deviation for a given
continuous measurement when it is averaged in bins with width 7.

The power of Eq. 1.3 is that it allows easy identification of the underlying noise process.

Table 1.1 shows the behavior of the Allan deviation for different types of underlying frequency noise
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Figure 1.4: Graphical depiction of the sampling method employed to calculate the Allan deviation
of a continuous measurement. Here, the data is averaged in bins of time-width 7. The data is
centered around frequency vy.

(see, e.g., [45]), where G, (f) is the single-sided frequency noise power spectral density. For example,
one can easily distinguish between noise spectra of the type G, (f) = hof® for a € {0,—1,—2}.
Here G, (f) is the one-sided power spectral density of frequency fluctuations. Throughout this
thesis we will use G¢ (f) for one-sided spectral densities and Sg (f) for two-sided spectral densities
of an arbitrary quantity £ (e.g., frequency, phase, position, electric field, etc.). In Chapter 6 we
will discuss the Allan deviation and its relation to frequency noise spectrum more thoroughly, and
elucidate the relationship between atomic spin observables and the local oscillator frequency noise

power spectral density.

1.4 Performance of neutral-atom clocks

While the accuracy of single ion-based clocks is extraordinary, there is a compelling reason
to pursue in parallel standards based upon ensembles of atoms: signal to noise. Roughly speaking,
making N parallel measurements versus one single measurement should yield a v/N enhancement of
the signal to noise ratio (SNR). The v/N-dependence of the noise—which allows the corresponding
SNR gain of v/N— is known as quantum projection noise [46] (discussed in detail in Chapter 2).

The quantum projection noise—limited stability of an optical atomic clock based on a quantity, NV,



of quantum references (neutral atoms or ions) is given by [47, 48]

__x |
O'y(T)—TrQ\/N\/:. (1.4)

Here, x is a constant of order unity that accounts for the details of spectroscopy and fraction of

atoms excited, and Q is the fractional line quality factor, which for optical standards can be > 104,
and is one of the key motivating factors for their development. For even modest input parameters,
an instability of o, (1) < 107'6/,/7/1 s is possible.

Until recently, no neutral atom-based optical standards were able to achieve quantum limited
performance due to broadband laser noise, which ends up contaminating the clock correction signal
through the Dick effect (discussed in Chapter 2). In Chapter 4 we will describe development of
a next generation ultrastable laser local oscillator for the 87Sr clock, which has allowed the 37Sr
clock to operate in the near-quantum limited regime. This development represents an important

milestone in the history of optical standards.

1.5 Frequency combs

Femtosecond laser-based optical frequency combs are important tools for optical metrology
and have revolutionized the field [49, 50]. With laser media ranging from bulk Ti:Sapphire and
optical fibers to microtoroidal resonators, the frequency comb revolution shows no signs of slowing
down. The spectral coverage of frequency combs has been demonstrated to span the mid-IR to the
vacuum ultraviolet [51, 52, 53].

At the heart of a comb’s utility is the equation that describes the optical frequency of a given
mode, v,, as

Vn :nfrep+f0' (15)

Here, frep = 1/7 is the comb pulse repetition rate, where 7 is the time between successive pulses.
fo is the carrier envelope offset frequency which arises due to the fact that the group and phase

velocities inside the laser cavity are different and is related to the pulse-to-pulse carrier envelope
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Figure 1.5: Frequency comb and optical clocks. The time-domain picture at left leads to a
frequency-domain spectrum of evenly spaced spectral components or “teeth.” Here, a fully sta-
bilized frequency comb is depicted comparing two optical clocks at disparate optical frequencies.
By measuring the RF beats, f; and fs, the two optical frequencies can be compared. By measuring
the comb repetition rate, frep, an absolute determination of the optical frequencies 11 and vo can
be made.

phase slippage (A¢ in Figure 1.5) by

Jo= Astrep/ (277) . (1'6)

In principle, fiep and fo are the comb’s only degrees of freedom when describing the frequency of
a given “tooth” in the frequency domain.

Figure 1.5 depicts a frequency comb as utilized in the direct comparison of optical clocks,
or in the absolute frequency measurement of a clock (see, e.g., [1] for an absolute frequency mea-
surement of 87Sr utilizing an optical frequency comb). By locking a frequency comb to an optical
source and stabilizing fy by the self-referencing technique [54, 50], the comb degrees of freedom are
completely constrained and directly related to the optical phase of the reference laser. By making
a heterodyne beat with a second laser, the phase of the two optical sources can be directly com-

pared (Figure 1.5b), often across > 100 THz of spectral bandwidth [55, 56]. This technique can be
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used to compare optical atomic clocks based upon different atomic species to constrain the drift
of fundamental constants [28], and also allows optical frequencies to be measured against primary
frequency standards with sub-Hz accuracy [57, 1, 32, 33, 30, 34]. Paired with frequency combs,
phase-stabilized fiber links [58, 59, 60] allow frequency comparisons of clocks hundreds of kilometers
removed and separated by hundreds of THz of bandwidth.

Even at the single-clock level, frequency combs will remain relevant and perhaps even play
a more direct role in clock operation as local oscillator ultrastable lasers are developed over a
broad spectral range. We will briefly discuss ongoing development of frequency combs to connect
lasers hundreds of THz apart and to support the 87Sr optical lattice clock in Chapter 4. In Chap-
ters 3 and 4, we will see some of the motivating factors for developing ultrastable lasers in the

1.5 pm region to connect lasers in the near-IR wavelength region to visible wavelengths.

1.6 Beyond timekeeping: Clocks in modern physics

Because they represent some of the most precise measuring device ever built, optical clocks
are important tools for modern science. Due to their high precision and accuracy, optical clocks are
the ideal devices for measuring spatio-temporal variations in the laws of physics, such as testing
for gravitational coupling to fundamental constants in tests of local position invariance, and the
time invariance of the fundamental constants of nature [61, 35, 34]. Another application of ultra-
precise clocks is geodesy. A clock’s sensitivity to the gravitational redshift allows it to be an
extremely sensitive probe to differences in the earth’s gravitational potential due to the gravitational
redshift effect [62]. However, clocks employing many particles are also interesting systems in and of
themselves from a quantum measurement perspective. Equation 1.4 is valid for uncorrelated atoms,
but in the case that the atoms were maximally entangled (i.e., spin squeezed), the instability would
be lower by approximately an additional factor of v/N [63].

Many body quantum systems comprised of quantum gases of atoms [64, 65, 66, 67, 68, 69]
and molecules [70, 71, 72] show promise for realizing novel quantum phases of matters and for

the simulation of intractably complex condensed matter analogues. Alkaline-earth atoms possess
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SU(N) symmetry in the nuclear spin degrees of freedom, which could facilitate frustrated quantum
magnetic models [73, 74, 75, 76]. Even “open” quantum systems subject to inelastic losses can
enable new opportunities for studying quantum entanglement [77]. Chapter 5 explores many-body
interactions between atoms in the 37Sr optical lattice clock, where spin correlations emerge as
a consequence of collective elastic and inelastic p-wave interactions. The correlations manifest
themselves in the decay of Ramsey fringe contrast and as quadrature-dependent quantum noise in

the effective spin degree of freedom encoded in the 'Sy and 2Py clock states.

1.7 Overview of this thesis

This thesis describes the development and implementation of ultrastable lasers for spec-
troscopy in a 87Sr lattice clock, and for exploring the many-body nature of the interactions between
87Sr in a one-dimensional optical lattice. We demonstrate a 10-fold improvement in clock stability
over any previous optical clock system, either ion- or neutral atom-based, allowing a 100-fold reduc-
tion in the time required for evaluating systematic effects. In Chapter 2, we describe the optical lat-
tice clock system used in this work. Chapter 3 explores thermal noise in optical interferometers—a
key limitation in developing stable lasers with performance at the 10716 level. Chapter 4 describes
the design and implementation of ultrastable laser systems. Chapter 5 explores the many-body
nature of the optical lattice clock, utilizing the 10-fold improved stability of the next-generation
local oscillator laser. Chapter 6 describes a theoretical framework and experimental demonstration
of utilizing the optical clock as a frequency discriminator by utilizing pulse sequences, allowing

unprecedented precision for characterizing the broadband noise of a single ultrastable laser system.



Chapter 2

The 87Sr optical lattice clock

The Sr lattice clock was the first optical lattice clock to be developed, and is now by far the
most prolific and well-characterized neutral atom optical frequency standard. This fact is reflected
in its acceptance as a secondary representation of the second by the Bureau International des Poids
et Mesures (BIPM) and the strong record of international agreement of the optical frequency of
the 1Sg —3P¢ clock transition in 87Sr . In this chapter, we review the properties that enable 37Sr
to be a successful optical lattice clock, the experimental apparatus utilized in the JILA 37Sr lattice

clock, and key limitations to both stability and uncertainty.

2.1 Introduction

The features that make Sr an interesting and productive species for wide-ranging studies in
ultracold quantum gases also make it a highly suitable candidate for an optical clock. In the 1990s,
the first experiments to laser cool Sr were performed, and were motivated by the novelty of the J = 0
ground state and the potential for precision spectroscopy [78, 79]. As seen from the level structure
diagram in Fig. 2.1, strontium possesses two transitions from the 'Sy ground state that are suitable
for laser cooling: the broad 'Sy —!P; permits magneto-optical traps (MOTs) with > 10 atoms
at temperatures at the level of 1 mK (which was used in the initial laser-cooling experiments), and
the narrow 'Sy —3P; transition permitting a quantum-limited minimum temperature of ~ 250 nK
[80]. Furthermore, the lowest-lying state of the triplet manifold is metastable with an estimated

lifetime of ~ 100 s, for 87Sr, whereas in 88Sr, the transition lifetime is estimated at nearly 6000 years



2
1}5p2 3PJ
0
5s6s 3S;
5s5p 1P1 o \679 nm
x So
~~._ 5s4d 'Ds
ﬁ\
\\ ~ 2.9 Mmzj o
] 9.6 p
461 nm
I' =27 x 32 MHz —2

689 nm
I' =27 x 7.5 kHz

Clock transition
698 nm

582 1So

14

3
2}5s5d 3D,
1

3
2}5S4d 3D,
1

Figure 2.1: Strontium level diagram. Solid lines indicate laser-driven transitions. The dashed black
lines are the problematic decay processes from the MOT at 461 nm that must be closed via optical
pumping at 679 nm and 707 nm. The grey boxed transitions indicate the manifolds of primary
relevance for the 3Py polarizability at the lattice wavelength and also the DC polarizability. Details

of these states are given in the main text.

[81]! In both isotopes, therefore, this level can truly be considered metastable, and is thus the 1S,

—3Py transition is suitable for ultra-high precision optical spectroscopy and forms the basis of

the strontium lattice clock. Finally, the alkaline earth-like level structure of the triplet and singlet

manifolds possess sufficient complexity such that they support “magic wavelengths” for the 'Sy

and 3P, states, and this was a key component of the first lattice clock proposal based on the 'Sy

—3Pg transition [82].
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In a magic-wavelength trap, the AC stark shift of a probe or dipole trapping optical field
perturbs each state equally [26]. Within the context of precision spectroscopy, the presence of a
magic wavelength permits the construction of an optical dipole where the transition between the
metastable clock states is unperturbed by the trapping field. This permits a very elegant conceptual
simplification of the dynamics of an atom in a magic-wavelength dipole trap. We consider the
coherent superposition

) = alg,n) + Sle, n). (2.1)

Here, g represents the 'Sy ground state, e represents the 3Py metastable state and n = {n,, Ny, Nz}
labels the motional state of the atom in a three-dimensional harmonic trap. At exactly the magic
wavelength, the motional and electronic quantum states are decoupled, so that we may instead

write Eq. 2.1 as
) = (alg) + Ble)) @ |n). (2.2)

The success of the clock based on the 'Sy —3Pg transition relies directly on the decoupling of the
motional and electronic degrees of freedom, such that the spectra obtained in the lattice clock are
free from AC Stark shifts or broadening as a result of thermally-distributed motion of the atoms.

This Chapter describes in detail the apparatus used to cool 87Sr into a magic-wavelength
optical lattice dipole trap. We will explore the details of the magic wavelength trapping including
limitations due to lattice photon scattering. Details regarding the ultrastable clock laser are given
later, in Chapter 4. In Chapter 4 we also demonstrate operation of the clock in a near-quantum-

limited regime.

2.2 Narrow-line laser cooling

As mentioned in the previous discussion, one feature of the level structure of Sr that makes
it appealing for use in an optical standard, as well as for quantum gas research, is the presence of
the narrow '!Sq —3P; transition. In fact, the exploration of narrow-line cooling in Sr and other

Alkaline earth/Alkaline earth-like atoms represents an important milestone in the history of laser
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cooling. To date, AJ = 1 intercombination transitions (i.e. the 'Sy —3P; transition) have been
utilized to trap and cool a large array of species and isotopes of alkaline earth and alkaline earth-like
atoms. Examples include Sr [83, 84, 85], Calcium ([86]), and Ytterbium [87]. Due to the breakdown
of LS-coupling towards jj-coupling in heavier atoms [88], the intercombination transitions coupling
in Mercury [89, 90] and Radium [91] are well suited for single-stage laser cooling, and have been
used for this purpose, but are too broad to be considered narrow-line cooling transitions. In this
section, we briefly describe some of the important features of narrow-line laser cooling.

The expression “narrow line cooling” is typically used to denote a laser-cooling on a cycling

transition for which the recoil frequency shift of the transition, given by

th

2mc?’

(2.3)

Wrec =

where w, is the optical transition angular frequency and m is the atomic mass, is comparable to
the linewidth of the transition that is utilized for cooling. In the case of Strontium, the narrow 'Sy
—3P; transition is a nearly ideal transition for laser cooling. For Sr, wyee/ (277) = 4.8 kHz and is
thus comparable to the 7.5 kHz natural linewidth of the 'Sy —3P; transition. In a sense, this is
the ideal situation. For laser cooling on transitions where wyec < Iy the minimum temperature is

expected to be in the quantum-limited regime set by the recoil energy [92],
kBT = hwyec. (2.4)

At the same time, the peak force of the cooling beams, given by Fyna.x = hkI'/2 and which determines
the velocity capture range, must be large enough to provide robust trapping. Thus, there is
no real benefit to performing traditional optical molasses laser cooling on a transition for which
I' < wree With respect to a transition for which I' >~ wyee. Specifically, in narrow-line MOTs, Finax
can be dangerously close to the force exerted by gravity, mg. In the case of strontium, where
I' = 27 x 7.5 kHz, Fiax ~ 16 x mg [85], allowing the atoms to be trapped against gravity. In
Calcium, for example, where the 1Sy —3P; transition has I' = 2 x 10® 1/s, Fjyax is only 1.5 x mg,

necessitating the use of an optical quenching technique to artificially increase I' [86].
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The nearly ideal parameters of the Sr 'Sy —3P; led to successes in laser cooling with this
transition, yielding temperatures as low as ~ 250 nK [80] and in-MOT phase-space densities of ~0.1
[93]. Further work to overcome the detrimental effect of photon rescattering has recently led to
the production of a directly laser-cooled Bose-Einstein condensate (BEC) [94] in 84Sr, a technique
that shows great promise in creating a continuous source of BEC (i.e., a continuous atom laser)

and facilitating other quantum gas experiments that benefit from fast repetition.

2.3 Lattice dipole trapping

Trapping and manipulating neutral atoms with intense light fields is a well-established and
extremely powerful technique [95, 96]. In contrast to magnetic trapping, optical dipole traps can
produce intricate trapping potentials with sub-wavelength precision, the most prolific of which are
optical lattices. In an optical lattice, the interference of two or more several phase coherent laser
beams (or a single retro reflected beam) can give rise to periodic light patterns in one, two, and
three dimensions. Among other uses, the use of such highly periodic potentials can aid quantum
simulation of condensed matter systems [97], and serve as a test bed for exploring quantum phase
transitions [64, 98], frustrated quantum systems [99], quantum Hall physics [100], and quantum
gases and polar molecules in reduced dimensionsionality [101, 71]—and this is only to name a few.

In the context of optical lattice clocks, the periodicity of the potential is actually not a neces-
sary, or even desired feature. Rather, the interferometric nature of the optical trapping field allows
extremely tight local trapping potentials, with trapping frequencies 2 100 kHz easily accessible.
This in turn enables spectroscopy in the Lamb-Dicke regime [102, 103, 104], where the recoil en-
ergy is much less than the harmonic oscillator zero-point energy of the trap. In the Lamb-Dicke
regime, Doppler broadening effects are well-resolved from the unperturbed carrier transition, while
the recoil momentum is absorbed by the trapping field (we will return to the topic of Lamb-Dicke

confinement in Section 2.5). This is an essential requirement for a precise optical atomic clock,
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given that Doppler broadening of an atomic transition is (see e.g., [88])

Av  [8kpTlog?2

> (2.5)

14 mc

which corresponds to Av/v ~ 1 x 10719 for 87Sr at 1 uK, corresponding to a Doppler-broadened
linewidth of 30 kHz. Of course, Doppler-free spectroscopy techniques have existed since nearly the
advent of the laser. For instance, Doppler-free Ramsey [11, 12] and Ramsey-Bordé spectroscopy
can be performed on narrow-line transitions within atomic beams and MOTs [105, 106], allowing
sub-kHz features to be observed [20] and forming the basis of the calcium neutral-atom standard
[107]. However, the natural linewidths of highly forbidden atomic transitions in Alkaline-earths,
such as the ~1 mHz 'Sq =3Py transition is 87Sr are still many orders of magnitude below the best
linewidths achieved with free-space Doppler-free techniques, such as Ramsey Bordé spectroscopy.
The role of the optical lattice then is not just to remove the effects of Doppler broadening and
the potential systematics associated with Doppler-free Ramsey-Bordé spectroscopy, but to enter
a regime where a large fraction of the atoms can be sufficiently localized to be probed at the

one-second timescale.

2.3.1 Atomic polarizability calculation

In general, the utility of dipole trapping as a scientific technique lies in the favorable scaling
of scattered radiation, which causes heating and decoherence, to the total depth of the trapping
potential. If we consider an isolated resonance in the rotating wave approximation, and for detun-
ings small compared to the transition’s optical frequency, the ratio of scattered radiation to the
dipole potential is [96],

W= -LU. (2.6)

where I is the rate of scattered radiation, 7 is the decay rate of the atomic transition considered,
A is the trapping laser detuning (A = wy — w,), and U is the induced dipole potential. We note
that although Eq. 2.6 is utilized quite frequently to estimate the photon scattering rate in optical

lattice clocks, where often |A| ~ w,, the expression given in Eq. 2.6 fails badly because it does not



19

take into account the wavelength-dependence of the density of states for the scattered photon and
Fermi Golden Rule energy scaling, nor does it include the counter-rotating term if we do not make

the rotating wave approximation. Including both these effects for a two-level system yields [96]

3
_p(eEy (o7
v (2 (11, )

which can yield fairly accurate results for the ground state scattering of 87Sr , where the 'Py
level dominates the scattering. We also note that, while U is straightforward to calculate for a
simple two-level system, there are regimes where no single atomic resonance dominates and thus
determining U requires summing over many atomic levels. The significance of Eqs. 2.6 and 2.7
is that the ratio of trapping strength (good) to rate of photon scattering (bad) gets better and
better as the detuning is moved farther away from resonance. This is the motivation behind the
far off-resonance trap [95]. We will study the limitations to the Sr lattice clock due to photon
scattering in Section 2.6.

To accurately calculate the trapping potential for a general system, where the two-level
approximation does not necessarily apply, we begin by considering a monochromatic optical field

with a spatial amplitude dependence such that
1 —iwt 1 * iwt
E(r,t)= §E0 (r)e + §E0 (r)e™*. (2.8)
The term Eg (r) can further be expressed as
By (r) = ey (r). (2.9)

where € and Ej (r) are the field polarization and amplitude, respectively. Both of these quantities
are complex. For a monochromatic plane wave with linear polarization, Eq. A.1 reduces to the
familiar expression E (r,t) = e Ey cos (kz — wt).

For the electric field given in Eq. A.1, the dipole trapping potential is given by

U () = —ga(e) (B(r, 6)) = o (e) |Bo (1)) (210)
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Here the (...) represents a time average over an optical cycle so that « is defined with respect
to the mean square electric field. This allows consistency with the definition in the case of a dc
electric field [88].

The polarizability is found from second-order perturbation theory [88, 108] as

~ 2
wik |(Pile - d[gr)
ale) =2 kh(cﬂ _wz)k‘ : (2.11)
k ik

Here, the polarizability is determined by summing over all dipole-allowed upper states, {¢y} where
d is the dipole operator that connects the atomic level of interest, ¢; to upper atomic levels that
are responsible for the induced dipole moment. Here, w; is the frequency difference between the
state ¢; and the states {¢y}. The dependence on the light polarization follows fundamentally from

the tensorial nature of the polarizability operator. In fact, we can write « (g) = &

HEV QU (repeated

indices are summed), where oy, is the polarizability tensor. As with any cartesian tensor operator,
we can decompose «;; into a spherical tensor basis, which will allow us to make some general
statements about the light- and atom-polarization dependence of the polarizability. Thus, as it is

writte, Eq. 2.11 does not cast the polarizability in its most useful form.

2.3.1.1 Scalar, vector, and tensor light shifts

While Eq. 2.11 is perfectly valid for calculating the dipole trapping potential and light shifts,
the tensorial nature of the polarizability is not apparent, nor can we make any qualitative statements
regarding its behavior. It is the goal of this section to summarize the most useful results regarding

the polarizability tensor. Specifically, we can write [109]

U(r)=-EEMa, (2.12)
where
Ay = 22 Wik da\d |¢k_<il;|)d v|9i) (2.13)

The electric field is now expressed with slightly different parameters such that EH) = E (r) /2 =

[E(_)]*. In Appendix C, we follow the approach of [108, 109] to reduce the tensorial «, into
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contributions of irreducible spherical tensors to derive the standard expression for scalar, vector,

and tensor light shifts (see, eg, [110])

- (3\e-ez\2—1) [3m2—F(F+1)} (2.14)

a(e):as—l—iav(sxs*)-ezf—kat 5 F@F—1)

Here, we have introduced oy, «,, and a4, the “scalar”, “vector”, and “tensor” polarizabilities,

respectively. In terms of the reduced matrix elements, the polarizabilities are [108, 109]

. 2 . 2
Z 2wnF%n/F/ <7”LFHdHn/F/> 2wn]%n/t]/ <nJ||dHn’J’>
as (w) = o~ , (2.15)
' F' 3h (wiF%n’F’ B (")2) n'J’ 3h (WVQLJ%n’J/ B w2)
. 2
, FEF+1) |1 1 1| werspr |(nF]|d]n'F)
o (w) = 3 (-pyFr, [SE2E D) i I (2.16)
n F’ (F+ 1) F F F/ h(wnF—ﬂl’F’ —Ww )
2
01 (@) = 3 (—1)PH AOF(2F-1)2F+1) |1 1 2| wnrswr ’<nFHdlln F') 217)
' n' F! (1 + F) (2F + 3) F F Fl h (W?ALFA)TL/F/ - W2) '
We can relate the reduced matrix element (F||d||F’) to (J||d||J") by [111, 108, 109
1 5 Fogrren ) 401
(FlldI|F') = (JIld[[J) v/ 2F +1) (2] + 1) (=1)7 7T : (2.18)
F' F I

Here, the terms in curly brackets are the Wigner 6-j symbols and w,p .,/ is the transition
frequency between the state with quantum numbers n and F' to the state with quantum numbers
n’ and F’'. In Appendix B, we describe the procedure for relating the reduced matrix elements
(J||d||J") and (F||d||F’) to transition lifetimes commonly reported in the literature.

There are several special cases worth considering for a,, and ;. The first interesting scenario
is the case where F' = 0, which describes the clock states for 3Sr. Here, it is immediately clear
that a,, = 0 and oy = 0. This matches the intuitive picture of an F' = 0 as a state devoid of a
specific orientation—not to mention that there are no mpg levels, rendering the very notion of a
vector or tensor shift invalid. The second case is very similar, but more relevant for this work. This
is the case where J = 0 but there is nuclear spin I, such that F' = I. If we insert the result of

Eq. C.26 for (F||d||F’) into Egs. C.23—-C.25 and perform the sum over F’ for any J’ value, we get
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a number that is very nearly zero for a, and «a; as long as the laser detuning is much larger than
the hyperfine splitting. If we ignore the hyperfine splitting completely, then the result for o, and
«y is identically zero. Finally, the last case of interest, and one that is relevant for the '"'Yb clock
[32], is the case! where F' = 1/2 and J = 0. Here we see that a; = 0. Again, this makes intuitive
and pragmatic sense because with only two mp levels, the concept of a tensor shift is ill-defined.
Finally, it is worth mentioning that, due to the hyperfine state mixing between the 3Pg
clock state and the >P; and 'P; states, the clock state does acquire a small but finite vector and
tensor shift. These quantities have been theoretically explored [112] and thoroughly measured by
the SYRTE Sr lattice clock group [110]. As seen in Eq. 2.14, as long as the light polarization is
controlled with respect to the quantization axis, these shifts can be removed by including them in
the definition of the magic wavelength, or by a post-correction, and should pose no threat to clock

accuracies below 10717 [110].

2.3.1.2 Numerical results for Sr

The 'Sg and 3Py clock states of 87Sr both have J = 0, thus based on the discussion of
the previous section the polarizability should only have a contribution for ag. Ignoring hyperfine
structure, it is straightforward to calculate ay for both the 'Sy and Py states from Eqgs. C.23 and

C.26 (see appendix B) asSpecifically,

1 A LI (2L +1
asp, () = 2meghe® Y Mo T (n "]3 ( 3+ ) (2.19)
n,J' Wy gt (wnF%n’F/ —w )
A !/ !
aug, = 6meghc® Z 5 r (', J) (2.20)

2 2)°

n',J’ WnF—n/F' (wnF—m’F’ —w )

Here, Ap (n/,J’) is the total decay rate of the excited state labelled by quantum numbers n’ and
J’, where n’ is shorthand for the electronic configuration and J’ is the total angular momentum

(for all dipole-allowed transitions from the clock states, J' = 1); and &, is an effective transition

! This instance is seemingly covered by the J = 0 rule, which precludes both vector and tensor shifts. It turns
out the origin of the vector and tensor shifts in the clock state arises from hyperfine-induced state mixing between
levels of like F' [112]. Thus, for the case of J = 0, F = 1/2, the statement that there is no tensor shift is a rigorous
one, while the statement that for J = 0 levels a, = a¢ = 0 is not.
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States used for ®Py scattering rate calculation

State A-coefficient | Detuning from *Pg

5s6s 59 8.5* 2.773*
5s7s 3S; 1.75* 4.356*
5s8s 391 0.822 4.984
5s9s 3S; 0.453 5.303
5s10s 3S; 0.277 5.487
5s4d 3Dy 0.0345 0.724
5s5d 3Dy 6.1 3.899
5s6d 3Dy 2.67 4.781
5s7d 3D, 1.42 5.192
5s8d 3Dy 0.851 5.419
5s9d 3D 0.551 5.59

5p5p 3Py 12.7 3.982

States used for 'Sy polarizability
State A-coefficient | Detuning from 'Sy

5s5p 1Py 19.05 4.08998
5s6p 1Py 0.186 6.42732
5s7p 1P 0.319 7.33361
4d5p 'Py 1.2 7.76074
5s8p 1P 1.49 7.76074
5s9p 1Py 1.16 8.0039
5s10p Py 0.76 8.16695
5s11p 1Py 0.488 8.28212

Table 2.1: Upper states used in calculating the polarizability of the 'Sy and 3Py clock states. The
Einstein A-coefficient is given in units of 107 1/s, and the detuning is given in units of 10'® rad/s
(i.e., 1071 x Aw, where Aw is the transition frequency). The numerical values are obtained from
[112] and references therein, with the exception of the data marked with an asterisk, which is from
[113].

frequency from the upper state connecting to Py that takes into account the relativistic correction
due to the fine structure energy splitting within the 3P manifold. This latter correction is derived
in Appendix B. With these particularly simple expressions for the J = 0 clock states, we calculate
the polarizability employing the decay rates of a subset of the upper-lying states, given by the
values in Table 2.1. The results of this calculation are shown in Fig. 2.2. As expected from several
calculations and measurements spanning the history of the Sr clock’s development, we find a magic
wavelength in the vicinity of 813 nm, where the discrepancy between experiment arises from an

incomplete knowledge of the transition rates and also the fact that we do not treat continuum
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Figure 2.2: Polarizability of the 'Sy (blue line) and 3Py (red line) clock states in atomic units
(a.u.). The insets show two regions where the polarizabilities of the 1S, and 3Py clock states are
matched.

states in this calculation [114, 115]. Interestingly, another magic wavelength crossing occurs in
the vicinity of 505 nm. As conveyed qualitatively by Eq. 2.6, one might expect that using this
as a lattice wavelength would lead to unacceptably large lattice scattering. We will treat photon
scattering from the lattice in Section 2.6. Surprisingly, we find that the magic wavelength at 505 nm
will have acceptable scattering rates for an equivalent trapping frequency, indicating that this may

be an interesting magic wavelength for use with relatively low-power optical sources.

2.3.2 One-dimensional optical lattice

Now that we have calculated the polarizabilities, we consider the specific case of a one-

dimensional optical lattice formed by a retro-reflected laser beam. We consider a focused input
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beam with electric field amplitude profile

. 1 . _
B (rit) = S B (1) et 4 ¢, (2.21)
with the radially-dependent amplitude
: 4P,
Ey (ri)= e, (2.22)
TeGCW;

where P is the total input power. If the beam is perfectly retro-reflected to the same focus, the

electric field profile will be
1 . .
E(r;t) = 3 [2cos (kz) Ey* (r1)] e ™" + c.c. (2.23)
and thus according to Eq. 2.10 the lattice potential will be

? (2.24)

U(r) = —acos?® (kz) }E(i)n (rp)

If we expand the potential along the z-direction at | = 0 we can treat the potential as a harmonic

oscillator. The longitudinal trap frequency associated with this profile is easily found to be [112]

/ I
v, = 1 32ra bl _ 1 « peak. (225)
2mwo A ceo M A\ egeM

where Ipcak = 2€gc |E(i)n (0) ‘2 =8P/ (7rw2). Similarly, the trap frequency associated with the radial

1 16a P 1 2al,
Vr =551/ =0 = “opeak (2.26)
2mwg V meocM  2mwg eocM

We find that at 813.428 nm, the calculated Sr clock-state polarizability is 2.8 x 10? a.u. (a.u. stands

confinement is given by

for atomic units of polarizability, 1 a.u. = 4mepad). For v, = 80 kHz, Ieax = 3.4 x 10* W/cm?
corresponding to Py = 140 mW for wy = 32 pm, which is beam waist utilized in the experiment

(we describe the lattice setup in Section 2.4.3 and the details of lattice spectroscopy in Section 2.5).

2.4 Experimental apparatus

The experimental apparatus used in this work has been extensively described elsewhere [112,

114, 80]. For completeness, we describe the essential details here. The vacuum system used to cool
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and trap 87Sr is shown in Fig. 2.3. An effusive oven loaded with high-purity strontium is operated
at a maximum temperature of 575° C.2 Earlier measurements of the beam flux indicated a beam
flux of 3 x 10! atoms/s [80]. We measure similar loading rates and MOT sizes, so we estimate
that our current flux is also consistent with this number despite the fact that the oven has been
disassembled and reloaded in the intervening decade. As depicted in Fig. 2.3, a rotary feedthrough
actuates a cylindrical atomic beam shutter, which can be used to extinguish the atomic beam
during operation of the experiment if desired. Interestingly, we observe no detrimental effect due to
the atomic beam except that it leads to an additional background signal that must be subtracted.

A total of three 40 L/s ion pumps maintain a pressure estimated in the low 107!° Torr level
in the main chamber. This represents a four-fold improvement from the previously-reported experi-
mental design [112, 114, 80], as indicated by in-trap lifetime measurements. The main improvement
permitting these significantly lower pressures is the addition of a secondary differential pumping
tube. In the original experiment, there was a single differential pumping tube, separating the oven
from the main chamber, and permitting an order of magnitude difference in the pressures. With the
addition of the second differential pumping region, we maintain an almost two order of magnitude
difference between the oven and main chamber, for a vacuum-limited trap lifetime of 8 s [116].

A pair of Anti-Helmhotz coils (not pictured in Fig. 2.3) are placed so that the axial field
direction is oriented vertically. They are capable of producing an axial field gradient of 50 G/cm
for an input current of approximately 60 A. The current in these coils is servo-controlled and capable
of being switched at ms timescales. This fast and precise control is utilized to perform programmed
field-ramps for different stages of optical cooling. Small Helmholtz coil pairs oriented along the H1,
H2 directions as labeled in Fig. 2.3 (horizontal direction 1 and 2, respectively) provide fine tuning
to null stray fields in the horizontal plane. A third Helmholtz coil pair in the vertical direction (V)
provides fine-tuning of the magnetic field in that direction.

During operation of the experiment, stray magnetic fields are nulled to < 10 mG by coils in

2 The nozzle (front) part of the oven is operated at 575° C, while the back end of the oven is maintained at 365° C.
This ensures that the nozzle region does not accumulate Sr and clog.
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Figure 2.3: Experimental apparatus for trapping ultracold 87Sr . A collimated atomic beam is
emitted from the oven region and is subsequently transversally cooled by transverse cooling beams
and slowed by a Zeeman slower (ZS). A MOT is formed in the octagonal main chamber (anti-
Helmhotz coils not depicted). A total of three 40 L/s ion pumps are attached to the apparatus
(pump located nearest the oven is not pictured), and each pump is separated from the others
by a differential pumping tube, supporting a nearly two orders of magnitude difference in the
oven vacuum pressure with respect to the main chamber. The optical lattice enters from the top
viewport with an angle of approximately 19° with respect to gravity and is retroreflected after
passing through the top and bottom viewports of the chamber. The lattice polarization is aligned
along the H2 axis. Dichroic mirrors (DM) in the Hl-axis MOT arms permit a secondary horizontal
optical lattice to be overlapped with the vertical lattice.

the H1 and V directions. A residual field of ~ 500 mG is applied along H2 for spectroscopy, while
a smaller field of (~ 100 mG) is applied for an optical pumping phase to spin-polarize the atoms if
desired. As a result, H2 is the de facto quantization axis in the experiment.

Optical access is provided at several locations. Immediately after the oven nozzle, a cube with

2 3/4” flanges provides access for transverse cooling beams. The next location in the apparatus with
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significant optical access is the main chamber itself, which is octagonal in shape (in fact, it is called
a “spherical octagon” by the manufacturer, Kimball Physics). Here, two large 6” flange-mounted
viewports allow a wide range of optical access from the top and bottom of the chamber. The top
viewport serves multiple functions, including providing optical access for florescence detection, the
optical lattice, and MOT beams. Almost all of the sides of the octagon also have 2 3/4” flange-
mounted viewport, utilized for the mot beams and optical imaging, as in Fig. 2.3. The viewport
labelled “imaging viewport” in Fig. 2.3 provides access for an amplified CCD camera. All viewports
are anti-reflection coated for visible wavelengths.

The trapping and cooling of 87Sr is performed using two transitions for laser cooling. The
atomic cloud is directly cooled into a far off resonance optical lattice comprising a standing wave
of laser light at 813 nm. To avoid uncontrolled vector and tensor light shifts—which will be
further described later—the dipole trap polarization is aligned with H2 with a high extinction-
ratio polarizer (~10%). The first transition for laser cooling is the 'Sy —!P; transition at 461 nm,
which is used for both slowing the beam and trapping and cooling 87Sr in a magneto-optical trap
(MOT). The second transition employed is the narrow 'Sy —3P; intercombination transition,
which permits direct laser cooling to sub pK temperatures. These stages of laser cooling and

trapping are described in detail in the next sections.

24.1 Laser cooling at 461 nm

The first stage of laser cooling is performed on the broad 'Sy —!P; transition, which is shown
in Fig. 2.1 and the hyperfine structure of which is shown in Fig. 2.4. We note that the presence of
hyperfine structure in 87Sr complicates the cooling dynamics, and can lead to sub-Doppler cooling
[117]. In clock operation, we use the first-stage 461 nm MOT to quickly accumulate ~ 2 x 10°
atoms in 500 ms. This quantity is approximately 10% of the maximum 37Sr 461 nm MOT peak
atom number.

The laser light utilized for the 461 nm MOT is derived via second harmonic generation. An

external-cavity laser diode (ECDL) seeds a tapered amplifier, which provides approximately 1.6 W
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Figure 2.4: Hyperfine structure of the 5s5p'P; and 5s5p°P; levels.

of power at 922 nm. After being spatially filtered via a single-mode fiber, approximately 350 mW of
power at 922 nm is delivered to two separate doubling cavities employing KNbOj3 crystals. Phase
matching is achieved via temperature, with an operating temperature of approximately 150° C.
Details can be found in Refs. [112, 114]. Each cavity produces approximately 150 mW of power at
461, which is utilized for slowing, cooling, and trapping with the 'Sy —!'P; transition, as described
below.

After exiting the oven, the atoms are cooled transversally by elliptical beams tuned 10 MHz
below the 'Sy —!'P; F = 11/2 (Fig. 2.3). After the transverse cooling stage, they are subsequently
slowed in a Zeeman slower with a peak field of 600 G, optical power of ~60 mW, and detuning of
-1030 MHz below the 'Sy —!'P; F' = 11/2 transition. Finally, upon reaching the main chamber the
atoms are collected in a MOT operating on the 'Sy —!P; transition. The horizontal MOT beams
have ~3 cm diameter and the horizontal beams have 8 mW of power, while the vertical beam has
3 mW of power. The field gradient utilized for the 'Sg —1P; MOT (AKA “blue mot”) is 50 G /cm

in the vertical direction.

While the 'Sy —!P; transition is nearly closed, as shown in Fig. 2.1, there is a decay pathway
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to the metastable Py level. In order to maintain efficient MOT operation, the 3Py level must be
repumped by a separate laser at 679 nm connecting the 5s5s 3Py and 5s6s 2S; levels. Due to the
fact that the 5s6s 3S; level employed in the repump scheme can in turn decay to the metastable
3Py state, an additional repump laser must be utilized to cycle these atoms out of 3Py , again
via 5s6s Sy. Since the hyperfine manifolds of the 5s5s®Py and 5s6s 3S; are quite large, we scan
the repump lasers so that all the hyperfine levels are reached by a single laser. Finally, in order
to prevent dark states from forming, the repump lasers are propagated along both the H1 and V
MOT axes. Ultimately, the repumps make a huge difference, with a factor of ~40 improvement in

the observed fluorescence, and an order of magnitude increase in the MOT lifetime.

2.4.2 Narrow line cooling with 8"Sr

A significant body of literature exists that explores the qualitative differences and challenges
of laser cooling 7Sr as opposed to its bosonic counterpart, 83Sr [118, 112, 114]. Here we briefly
summarize some of the key differences and describe the experimental methods used to cool and

trap 87Sr on the 'Sy —3P; transition.

2.4.2.1 The 8Sr 689 nm MOT: principle of operation

In ®Sr, the narrow line cooling transition is an ideal J = 0 — J = 1 cycling transition, which
allows the MOT to operate very efficiently. In the case of 87Sr | with nuclear spin I = 9/2, one must
consider the hyperfine levels of the 3Py level, with quantum number F € {7/2,9/2,11/2}. At first
glance, it might seem straightforward to operate the MOT on the 'So (F = 9/2) — 3P (F = 11/2)
transition. However there is a large disparity between the ground state g-factor of gg = —6x107% ~
0 and the excited state g-factors of g7/ = —1/3, g9/2 = 2/33, and g11/o = 3/11 [118, 112]. This
means that the Zeeman shift in an applied magnetic field is almost exclusively restricted to the
excited state manifold. This has two important implications for the MOT operated on the 'Sy
—3P; F = 11/2 transition. First, the differential Zeeman shift of the 87Sr 1Sy —3P; (F = 11/2)

transition, as depicted in Fig. 2.5, has significant implications for MOT operation. To simplify
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Figure 2.5: Schematic depiction of the 689 nm MOT for the F' = 9/2 — F' = 11/2 transition. Due
to the absence of an electronic magnetic moment in the ground state, several mpg sublevels are not
trapped. The relative ot /o~ transition strengths play a role in optical pumping and maintaining
the MOT restoring force as well.

the discussion, we consider only one MOT axis. For a cooling laser detuned below the zero-field
resonance with detuning 4, if the motion of the atom brings it into a region of the MOT with B > 0,
there are a large number of ground-state mp levels that are not trapped (specifically mp > 3/2).

[43

This is because the increasing magnetic field will tune the Zeeman shift in the “wrong” direction
for these states, and they will sail away without scattering any photons. An example of such a
non-trapped state is depicted with blue arrows in Fig. 2.5. An identical effect prevents the states
with mp < —3/2 in the region with B < 0 from being trapped (assuming we use the same definition
of quantization axis as before).

A second important implication of the 87Sr 1Sy —3P; (F = 11/2) Zeeman structure arises
when the atom is brought into resonance by the Zeeman shift. As depicted for the mp = —9/2 state
in Fig. 2.5, both ¢ and ¢~ transitions are allowed. An immediate concern is that the position

dependent light force could be artificially small or even nullified by scattering photons from both

MOT beams. However, it turns out that the Wigner-Eckart theorem effectively eliminates this
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Figure 2.6: Ratio of oF absorption as a function of ground state magnetic sublevel, Myg.

concern [118]. We can write the ratio of transition probabilities for a ¢~ transition with respect to

a ot transition for a general ' — F + 1 transition as

) (g L 1P+ 1,mg = 1) (24 F —my)! (F +my)!
T (mg) = 7 = (2.27)
[(Fymg; 1,1|F +1,mg + 1) 2+ F +my) (F —my)!

(++)

Similarly, 75/, (my) is defined as the ratio of o to ¢~ transitions, and is related to rgi)l (mg)

simply as rl([;;)l (mg) = 1/70%;)1 (mg). Both ) (+)

41 (mg) and 7/, (my) are plotted with respect to
myg in Fig. 2.6. Remarkably, for the situation in Fig. 2.5 with B > 0 and m, = —9/2 the ratio
of “good” o~ photons absorbed to “bad” o™ photons absorbed is 55 : 1. As seen from Fig. 2.6,
if a state is trappable, the ratio of “good” absorptions to “bad” absorptions is greater than unity.
Furthermore, we can expect that as a result, the atom will be quickly pumped to the stretched
state, which causes the ratio to be maximized.

As we’ve seen, nature already provided one built-in solution to multi-level alkaline earth
atoms to permit their trapping, in that the relative transition strengths play an essential role in
ensuring the MOT operates stably. However, the first complication that we briefly discussed, namely
that there are untrapped ground state my levels, requires more direct intervention. The technique

developed by the Sr group at U. Tokyo was to utilize a second laser, termed the “stirring laser”

[118]. In contrast to the trapping laser, which operates on the F' = 9/2 — F = 11/2 transition, the
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stirring laser operates on the F' = 9/2 — F = 9/2 transition. The effect of this second laser is to
randomize the ground state m, distribution so that trappable m, states are occupied.

The F' = 9/2 — F = 9/2 transition is ideal as a “stirring” transition for two reasons. The
first is that the g-factor is much smaller for the F' = 9/2 level meaning that a near resonant laser
will scatter over a larger range of magnetic field. Secondly, and unlike the F' = 9/2 — F = 11/2
transition, the ratio of o™ absorptions to o~ absorptions is fairly uniform. To quantify this, we
can define r%i) (mg) as in Eq. 2.27. This quantity is plotted in Fig. 2.6, and it is clear that there
is very little variation with mg,, meaning that the atoms are indeed efficiently stirred through the

ground state my manifold, and also that the pumping slightly favors moving atoms away from the

untrappable mg, levels.

2.4.2.2 The 8"Sr 689 nm MOT: experimental details

To operate the 689 nm MOT, we employ two cooling lasers whose use was motivated above:
the “trapping” laser and the “stirring” laser. These two systems are phase locked with variable
frequency offset from a master laser, with linewidth of ~500 Hz and whose central frequency is
locked to the 88Sr 1Sy —3P; (m = 0 — m = 0) transition via a Doppler-free spectrometer based
on a heat-pipe vapor cell with 25 mTorr of Ar buffer gas, which keeps the Sr from coating the
windows. Details can be found in [80, 112, 114]. As depicted in Fig. 2.4, the trapping and stirring
lasers’ frequencies are chosen such that they are near-resonant with the F' = 11/2 and F' = 9/2
hyperfine states, respectively.

In order to enable efficient transfer from the 461 nm MOT into the 689 nm MOT, three
distinct MOT phases of the 689 nm MOT are utilized. In the first stage, the trapping and stirring
lasers are modulated with a few MHz bandwidth. The modulation parameters are chosen such that
the spectrum extends from just below resonance with the 9/2 — 9/2 and 9/2 — 11/2 transitions,
to several MHz below. The modulation is chosen to provide good overlap with the Doppler profile
of the atoms after being pre-cooled in the 461 nm MOT, with final temperatures of ~1 mK.

In the initial broadband phase of the red MOT, the field gradient is reduced from the 50 G/cm
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Figure 2.7: Field gradient programming during the three MOT stages: 461 nm (blue) MOT,
broadband red MOT, and single-frequency (SF) red. After the single-frequency red mot, the anti-
Helmbholt (A-H) coils are turned off to prepare the system for optical pumping and spectroscopy.

employed in the 461 nm MOT, to ~4 G/cm. This provides good spatial overlap, or mode-matching,
between the blue MOT atomic density distribution and the broadband red MOT. Subsequently,
the field is ramped to ~11 G/cm over 100 ms. The ramp compresses the MOT in all three spatial
dimensions. When the field gradient reaches 11 G/cm, the broadband frequency modulation is
switched off, and both the trapping and stirring laser are tuned near resonance, to form the final
stage of MOT cooling, the single frequency red MOT. This field ramping procedure and MOT
stages are depicted in Fig. 2.7.

The transfer efficiency from the blue MOT is approximately 15%, and results in a sample of
atoms with uK temperatures. When the atoms are cooled in the presence of the optical lattice, an
additional fraction of the atoms in the red MOT are cooled into the lattice. Due to poor spatial
mode-matching between the optical lattice and the red MOT density distribution, the transfer
efficiency between the lattice and red MOT is also approximately 15%. Ultimately, we can load
approximately Nio; = 5000 87Sr atoms into ~ 100 lattice sites. The distribution of population in

the lattice sites is derived in Appendix F, and on average, atoms share lattice site with ~ 20 other
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atoms for N;io = 5000.

2.4.2.3 Nuclear spin-polarizing for spectroscopy

The final step prior to clock spectroscopy on the lattice-trapped sample is to nuclear spin-
polarize the 87Sr so that a single mp level is occupied. This serves two purposes: first it prepares
an ensemble of identical fermionic 87Sr atoms, meaning that collisional interactions due to the s-
wave channel should be suppressed or completely eliminated, which is important for clock accuracy.
We will discuss the collisional interaction in detail in Chapter 5.Second, spin-polarized atoms all
contribute to the useful spectroscopy signal utilized to operate the clock.

As a consequence of the differential g-factor between the clock ground and excited states,
the clock transition possesses a small magnetic field sensitivity, even for mg preserving transitions
between 'Sy and *Py are resolvable in a few hundred mG magnetic bias field. Specifically, there is

a Zeeman shift between the clock states given by [119]
Avy = —dgmpuoB/h, (2.28)

where g is the differential g-factor, pg is the Bohr magneton, and the subscript « indicates
that the formula is for non-mys changing transitions (“z” transitions). The quantity —dguo/h =
108.4(4) Hz/G [119]. In order to clearly resolve each nuclear spin sublevel via clock spectroscopy,
a ~500 mG field is applied during spectroscopy.

In order to prepare the atoms in the single nuclear spin state, we employ optical pumping
on the 'Sg —3P; F =9/2 — F = 9/2 transition with circularly polarized light (both o+ and o~
orientations) along a bias field applied along H2, which is the same axis as the bias field applied
during clock spectroscopy. During the polarizing, a small bias field of ~100 mG is applied to define
a quantization axis. A liquid crystal wave plate allows us freedom to switch between o and o~
polarization. This freedom to switch polarization is important for removing 1st-order sensitivity to
magnetic fields; by alternating between mp = +9/2 and mp = —9/2 states, the average of the two

transition frequencies, as indicated by Eq. 2.28, will be first-order insensitive to magnetic fields [31].
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Figure 2.8: Clock operation with stretched nuclear spin states for first-order Zeeman insensitivity.
Two independent locks are averaged to find the linear Zeeman shift-free center frequency, fo.

Figure 2.8 shows the principle of operation for the dual-spin clock operation. Two independent
PID locks—one for mp = +9/2 and the other for mp = —9/2—are used to extrapolate the linear

Zeeman shift-free center frequency, fy.

2.4.3 Optical dipole trap and clock spectroscopy: experimental configuration

As described in the previous section, the atoms are directly cooled from the 689 nm MOT
into the optical lattice, for which the basic principle of operation was described in Section 2.3. Here
we describe the experimental apparatus utilized to create the optical lattice trapping potential.

The lattice optical dipole trap potential is formed by a Gaussian beam retro-reflected upon
itself, such that the foci of the input beam and retro-reflected beam coincide. As depicted in
Fig. 2.9, the input lattice beam is focused to a 1/e? radius of 32 um by an input lens with focal
length of 14 cm such that the beam waist lies at approximately the geometric center of the main
chamber. The lattice beam then passes out through the bottom viewport after which it is folded

onto a curved retro-reflector mirror with 20 cm radius of curvature. The longitudinal position of
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Figure 2.9: Optical lattice dipole trap and clock laser pathway. The lattice is approximately 19°
from vertical. The focusing lens has a focal length of 14 cm and the radius of curvature of the
retro-reflector is 20 cm.

the mirror is translatable, and its position and orientation are chosen such that a maximum of the
lattice light is back-coupled into the single-mode from which the lattice beam originates.

The lattice light is produced by an amplified external cavity laser diode. Approximately
35—40 mW derived from a Littrow-configuration laser diode are injected into a tapered amplifier
(Eagleyard EYP-TPA-0808), which produces 800 mW of output power. The output of the tapered
amplifier is spectrally filtered with a ~ 1 nm spectral bandwidth interference filter. An optional

filter cavity with Finesse ~ 100 can further spectrally filter the output of the tapered amplifier
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chip. These precautions are taken because tapered amplifier chips are known to possess amplified
spontaneous emission (ASE) spectral pedestals. This uncontrolled stark shift due to these pedestals
has been recognized as an important effect to be controlled in lattice clocks [34]. To date, all
published systematic evaluations of the JILA 87Sr lattice clock uncertainty were performed with a
Ti:Sapphire laser, which will not suffer from an ASE problem.

In order to perform clock spectroscopy, the clock laser light is injected through the lattice
retro-reflector with 99% transmission. A focusing lens ensures that the clock laser is concentrated at
the atoms, while the waist of the clock light is kept several times larger than the lattice waist, thus
ensuring that inhomogeneities due to the k-vector spread of a tight focus are minimized (discussed

more fully in Section 2.5).

2.4.3.1 Clock laser path and RF phase chirp cancellation

The clock laser light is derived from an ultrastable laser system in a separate room, which we
describe in Chapter 4. This separate room was chosen for its temperature stability, acoustic noise
levels, and relative calm, from which the name “Jan’s quiet room” is derived. The clock laser light
is delivered to the “distribution center” (Fig. 2.10). In the distribution center, the clock laser light
is amplified by injection locking a second diode with ~ 500 uW of optical power. The output power
of the injection system is around 35 mW, which provides ample power for multiple experiments, as
well as interface with a femtosecond frequency comb.

After exiting the distribution center, a fiber delivers clock laser light near the experimental
chamber. An acousto-optic modulator (AOM) provides the frequency shift for scanning the clock
laser onto the atomic resonance, as shown in Fig. 2.10. The delivery of pulsed light to the atoms that
is free from switching transients and phase chirp errors is a challenging problem [120]. As shown
schematically in Fig. 2.9, care is taken to cancel phase shifts due to RF-induced heating of the
AOM, by referencing the light for the fiber noise cancellation system [121] through the AOM, using
the Oth-order diffracted light. In this way, the fiber noise cancellation system is always engaged,

yet samples approximately the same optical path deviations as the —1st diffracted order, which is
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Figure 2.10: The clock laser delivery system. The ultrastable laser is operated in a separate room
and is delivered via noise-cancelled fiber to the distribution center. In the distribution center,
~ 500 pW of clock laser light are used to injection lock a laser diode. A second “fiber noise eater”
(FNE) system ensures that the light is faithfully delivered to the atoms. Importantly, the effect of
RF-heating of the spectroscopy acousto-optic modulator (AOM) is mitigated by including it in the
fiber noise cancellation loop.

used for spectroscopy. We have tested that phase chirp-induced frequency shifts can be reduced to
—3(8) mHZ, corresponding to a fractional frequency shift of -0.7(2) x 10717 with the AOM diffracting
at ~ 50% efficiency (corresponding to ~ 1 W RF drive) and with short 10 ms pulses. We expect
that reducing the RF drive and elongating the clock pulses, as typically utilized in clock operation,
can further reduce this shift by an order of magnitude. The 10 ms pulse duration was specifically
chosen to emphasize the effect, and an experimentally relevant “cooling off” period of 1 s was used
between cycles. In contrast, we measure a large phase chirp when the fiber noise cancellation plane
is moved before the AOM, thus the cancellation pathway does not “see” the phase chirp. In this
case, the frequency shift was measured at —129(14) mHz, corresponding to a fractional frequency
shift of 3.0(3) x 1076, This indicates that an active cancellation or characterization of the AOM

phase chirp is indeed necessary for a high-accuracy clock.
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2.4.4 Atom state detection and measurement

In order to detect the fraction of atoms in the metastable clock state, a series of fluorescence
measurements are performed. As depicted in Fig. 2.11, the first step in the detection process is to
count the number of ground state atoms, N,. This is achieved by measuring the fluorescence from
a strong probe beam that completely overlaps the lattice-trapped atoms and is retro-reflected, so
that each atom cycles many times before being lost. The power in the probe beam is ~ 30 mW,
which is enough to strongly saturate the transition. On average, we collect 2 6 useful photons
per atom in the trap in a photo-multiplier tube (PMT). This quantity already includes the PMT
quantum efficiency. The effect of the probe is to completely remove the lattice-trapped ground
state population. We then repump the excited state atoms to the ground state using the 707 nm
and 679 nm repumping transitions. The ground state population is again counted, but represents
the number of atoms that were in the excited state, N.. In between the measurements of N, and
N, a third fluorescence measurement characterizes the signal background, Nyp,, so that N, and
N, are accurate representations of the lattice-trapped populations. The fraction of atoms in the

excited state can then be calculated from N, N4, and Ny, as

N, — Nig

fexc: Ne‘f‘Ng—QNbg'

(2.29)

2.5 Lattice spectroscopy

The precision of the 87Sr optical lattice clock arises from the pairing of an ultrastable laser
with sub-Hz linewidth, with an extremely narrow optical transition, whose fundamental limit is the
natural linewidth of 87Sr . However, in order to realize the potential of such a precise spectroscopy
system, interaction times between the atoms and probing optical field must be at the 1 s timescale.
While it might be possible to envision a multi-pulse Ramsey-Bordé optical fountain clock, there
are systematics such as the wave-front curvature of the beams leading to first-order Doppler shifts,
that will limit the ultimate accuracy of this technique [107, 122], not to mention that the apparatus

for 1 s interrogation would be quite large and complex.
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Figure 2.11: Atomic state detection scheme. After the atoms are placed in a superposition of
1Sy and 3Py by the clock laser, the state detection proceeds in three steps: (1) the ground state
population is counted (2) the excited state population is moved to 'Sy via repumping and (3) the
ground state population is again counted.

A better way to realize long-term optical and atomic coherence times is to strongly localize
the atoms. This technique was used to demonstrate recoil-free optical spectroscopy [103] and
subsequent record-breaking line-Q (Q = Av/v) with a single trapped Hg™ ion, tightly localized in
a quadrupole trap [22]. In fact, the Hg™ ion was so localized, that the characteristic length scale
of its thermal motion was much less than the wavelength of the spectroscopy laser. This regime
of spectroscopy is known as the Lamb-Dicke regime, where the characteristic energy scale of the
confining potential is larger than the photon recoil energy.

During free-space spectroscopy, conservation of momentum requires that as an atom absorbs
a photon, it receives an impulse of hk, resulting in a shift of the frequency of

B, = hw, = M, (2.30)

2m
where w, is the recoil frequency, k = A/ (27) and m is the mass of the atom. In general, when an
quantum emitter/absorber is more localized than a wavelength of light, its absorption spectrum
will be strongly modified. For example, a bound atom or ion with quantized motional eigenstates
(e.g. harmonic oscillator eigenstates) can only emit or absorb between initial and final quantized

eigenstates, leading to a quantized energy spectrum. Early demonstrations of recoil-free spec-
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troscopy were performed with Mossbauer spectroscopy, where the recoil momentum is absorbed by
the crystalline lattice of the absorbing or emitting material [123] and can lead to extremely high
line @ ~ 10% [124], which has only recently been matched by the 37Sr lattice clock reported in this
thesis with a Q of 9 x 104 [125].

Optical lattices used in optical lattice clocks play an analogous role to the crystal lattice in
Mossbauer spectrscopy in the sense that they can tightly localize the atoms and also absorb the

recoil momentum. We consider the case where the optical potential is harmonic, such that

1 1 1
V(z,y,2) = 5mwﬂ;az2 + §mwyy2 + imwzzz, (2.31)

where w, = wy = 27V, w, = 271v,, and v,(1;) is the longitudinal (radial) trapping frequency given
by Eq. 2.25 (Eq. 2.26). In a one-dimensional optical lattice, as depicted in Fig. 2.12, w, > w, ~ w,
The corresponding motional eigenstates of the system are the harmonic oscillator energy eigenstates,
which we label as |i7) = |ng)|ny)|n.). These will be discussed in detail in Chapter 5.

When performing spectroscopy in a trap with motional eigenstates given by |i7), there are two
classes of laser-driven transitions possible. The first is where the motional states are left unchanged,
such that |77) — |7) and is referred to as the carrier transition. The second class of transition is
where one or more motional quantum numbers are changed such that |7) — |n/), and is referred
to as a sideband transition. The simplest and most experimentally relevant cases are the carrier
transition and the sideband transitions for which a harmonic oscillator level is changed by one
vibrational quanta, as depicted in Fig. 2.12. Fig. 2.13 shows the measured sideband transitions
with respect to the carrier transition in both the radial and longitudinal directions. In this way, we
are able to quantify our trap frequencies fairly accurately, which in turn gives us precise knowledge
of the harmonic potential in which the atoms sit.

The motional states of an atom in a harmonic trap will also affect its interaction with a
radiation field. The relevant dipole moment for a general transition in a quantized trap is given by
[15)

dar = (7™ ) {glde). (2.32)
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Figure 2.12: Spectroscopy in a one-dimensional optical lattice. The clock probe beam is aligned
along the lattice propagation axis. The frequency of the transition is modified according to the
change in motional quanta. A blue sideband transition excites an additional motional quanta, while
the red sideband transition de-excites a motional quanta.

As a result, we can write the mode-dependent Rabi frequency as a function of the bare Rabi

frequency Qo = (g|E - d|e) /h as [15, 126]

Qi = Qo(Aile™ |y = Qo [[ e/
J

I —_—

Here7 ] € {x,y,z}, Anj = J

n

nj}, nj< is the lesser of n; and n;-, and 7; is the Lamb-Dicke

parameter in the jth direction. Specifically, the Lamb-Dicke parameter is defined as
nj = kjaj/V2 (2.34)

where a; is the characteristic length for the jth harmonic degree of freedom a; = +/h/ (mwj).
Finally, k; is simply the probe k-vector projection along the jth direction.

As clearly seen from Eq. 2.34, the Lamb-Dicke parameter scales as the ratio of the harmonic
confinement length to the wavelength of the probe light. One general statement is that if n; < 1,

the Rabi frequency for an n; changing transition is suppressed relative to the carrier by a factor of
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Figure 2.13: Spectroscopic resolution of longitudinal and radial sidebands in a 1D optical lattice
potential. (a) The laser frequency is scanned over 100 kHz on either side of the carrier transition,
revealing An, = =+1 sideband transitions. The asymmetric shape of the sidebands arises from
coupling between the radial and longitudinal optical potential. (b) Radial sidebands with An, =
+1. In order to excite the radial sideband transition, the clock laser was misaligned from the lattice
by Af# ~ 10 mrad.

njAnj . Furthermore, in the case where 71 = 7/, Eq. 2.34 simplifies significantly, such that
—n2
Qﬁ:QOHe "J/QLnj (n?) :Q()Hl—(nj—i—l)n?, (2.35)
J J

where the final approximation is valid in the limit 77? < 1. Equation 2.35 demonstrates a dependence
of the Rabi frequency on |77). In general, for a one-dimensional lattice, the optimal situation is to
align the spectroscopy laser along z (the axis of strong confinement) to minimize radial sideband
excitation and Rabi frequency inhomogeneity.

One final detail to address is the effect of tunneling on lattice spectroscopy. Tunneling in an
optical lattice can give rise to frequency shifts and line broadening due to the band structure of the
lattice [127, 128]. In order to circumvent this problem, it was prescribed to work in an accelerated
frame, achieved by tilting the lattice so that a component of gravity lies along the standing wave.
In the so-called Wannier-Stark ladder, tunneling effects are effectively detuned by the ~ 1 kHz

energy detuning between adjacent sites due to the effect of gravity [127].
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Figure 2.14: Spectroscopic lineshape obtained with Rabi spectroscopy performed on the 'Sy =3P
clock transition at 429 THz with a 7-pulse time of T}, = 160 ms. Inset: High-resolution scan
taken with Tjse = 3 s. Both scans were taken without any averaging. The ultra-high resolution
of these lineshapes is enabled by the clock laser described in Chapter 4.

2.5.1 Lattice spectroscopy: experimental

When performing spectroscopy on the lattice-trapped atoms, the three main parameters of
relevance are the duration of the clock pulse(s), the number of clock pulses applied, and the intensity
of the clock laser beam. The most common form of spectroscopy employed is Rabi spectroscopy.
As seen from the preceding discussion, care must be taken to make sure that the clock probe beam
is well-aligned with the optical lattice so that the atoms are well within the Lamb-Dicke regime.
Ideally, for the 1D optical lattice, the clock probe has no projection along the x or y directions, such
that 7, = 1y = 0. In principle, there are small deviations from this due to a beam misalignments,

such that, e.g., n, = ksin (6) a,. Here, typical misalignments are at the few mrad level.
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Figure 2.15: Rabi flopping as a probe of the spread in Rabi frequency. (a) Rabi flopping with
a longitudinally cooled (7, = 1.5 pK) and radially hot (7, = 3.0) uK sample. The circles are
experimentally recorded data and yield an effective misalignment of 2.5 mrad, resulting in AQ/Q =
0.02 (b) Series of Rabi flopping curves taken with 7, ~ T, ~ 4 uK. The extrapolated effective
misalignment varied from 3 mrad to 8 mrad (AQ/Q between 0.06 and 0.11.) Inset: Theory curve
for the best-aligned case.

Clock spectroscopy is performed by sending a pulse or pulses of clock laser light onto the
atoms along the z axis—the direction along which the atoms are strongly confined by the lattice.

In the case of Rabi spectroscopy, the applied pulse is chosen such that the Rabi frequency satisfies
VT puise = 7. (2.36)

This results in unity excitation probability on resonance. After the pulse is applied, the excited
state fraction of the atoms is detected as described in Section 2.4.4. An example of a Rabi lineshape
with 7 = 160 ms is shown in Fig. 2.14. The full-width at half-max (FWHM) of the rabi lineshape is
related to Thuise by Avewam = 0.8/Tpyise, resulting in a 5 Hz FWHM for the 160 ms pulse duration
depicted in Fig. 2.14. The theoretical lineshapes and details of both Rabi and Ramsey spectroscopy
are discussed in Appendix 1.

In order to experimentally measure the 7i-dependence of the Rabi frequency, we performed
several experiments. With our best alignment at T, = 3 uK and 7, = 1.5 uK (temperature along
the longitudinal and radial directions, resctively), we measured very long Rabi coherence, as a

function of the number of on-resonance Rabi “flops” (i.e. excitation cycles |g) — |e) — ..., where
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the population returns to the ground state). In order to provide a theoretical fit for the data,
we calculate a Boltzmann-weighted sum of different evolution frequencies, whose n-dependence is
given by Eq. 2.35a. We assume a fixed misalignment between the clock probe, which is assumed
to be a perfect plane wave, and the lattice. The data for the cold, well-aligned case, is shown in
Fig. 2.15. The theoretical fit indicates that the effective misalignment is as small as 2.5 mrad, and
that for these conditions, the RMS spread of Rabi frequencies AQ is about 2%. This is a significant
improvement over previously reported results from our group [112, 114]. At hotter temperatures,
we measure much faster decay due to the larger number of motional states that are populated. We
took numerous traces, as shown in Fig. 2.15b, with varying misalignment. Again, at the optimal
alignment, we find an effective misalignment of 3 mrad, while the most severe misalignment shown
here is only about 8 mrad. As seen from the figure, probe misalignments are most visible at hotter
temperatures, and we used this to our advantage when trying to optimize alignment between the
probe and the lattice.

While the agreement between the theory and the data shown in Fig. 2.15 is qualitatively
quite good, there are minor discrepancies. There are several reasons for this. The first is that
2-body inelastic losses can affect the evolution of the atomic coherence at longer times (we describe
the inelastic losses in detail in Chapter 5). A second reason is that we assume that the only
wavefront misalignment between the lattice and the clock probe is due to an angular misalignment.
In fact, the probe itself is focused, and the act of focusing the clock probe results in a Gaussian
spread of wave-vectors k. It can be shown that for a probe with 1/e? intensity radius wo, the

mode-dependence of the Rabi frequencies is

% = ﬂwge_”g/Qan (772) /dfxdfye”2(f£+fyz)(“’3+ai)Lm (QWwaai) Ly (27r2fwa§) ) (2.37)
0

A more complete description of the sidebands would include this effect as well, but for all practical
purposes the measured AQ/Q ~ 0.02 is more than sufficient for high-precision spectroscopy, and

we choose to characterize the misalignment as an “effective” one.
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2.6 Limits to atom-laser coherence due to photon scattering

The question as to whether optical-atomic coherence in an optical lattice suffers due to photon
scattering is of central concern for optical frequency standards employing optical lattices. In the
case of Sr, some estimates have placed the scattering rate as high as ~3 Hz for a lattice depth
of ~100 Fyec [129], which would already have negative consequences for the clock and precision
spectroscopy reported in this thesis. It is the purpose of this section to calculate the rate of photon
scattering from the two clock states.

We begin by noting that the question of decoherence due to light scatter is a nuanced one,
primarily because there are two scattering processes that can occur. The first type of light scattering
is Rayleigh scattering, where a photon is scattered from the lattice beam but the internal state of
the atom does not change. In a recent study of a qubit formed by the ground-state spin of a Be™
ion, it was found that even if the Rayleigh scattering rates of the two qubit states were matched, the
relative sign of the Rayleigh scattering amplitude was the important quantity for the decoherence
of the qubit [130]. In a magic wavelength lattice, the AC polarizability and the Rayleigh scattering
rate are intimately linked, as it is the induced dipole that both allows the atom to be trapped and
that causes Rayleigh scattering.

The second kind of scattering is Raman scattering. Here, the “color” of the absorbed photon
and the emitted photon are different, implying that the internal state of the atom has been changed.
In the case of Sr, the only Raman scattering processes that are relevant are 3Py —3P; and ®Py
—3Py . Of these two, it is the first process that is harmful for the coherence of the clock state,
since the 3Py state can decay back to the ground state. Thus, this process can be considered
as a modification of the clock state lifetime due to a small but finite optical pumping from the
lattice. The 3Py —3Py simply appears as loss from the excited clock state, and thus should not

significantly affect the coherence.
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2.6.1 Kramers-Heisenberg formula

In order to calculate all the relevant scattering rates, we begin with the Kramers-Heisenberg
formula® which describes the cross section for scattering between two internal states of an atom—

labelled by a and b and connected via an intermediate state j—as [88]

(2.38)

do o 5 m° 3 [(5"dbj)(5'dja) L (E-dy) (& dja)

— = rjww’” ——
df) 0 Wjqg — W A

h2et

Here, 7 is the “classical electron radius” and is given by rq = €?/(4megmc?); o' is the wavelength
of the (energy conserving) scattered radiation; € and &’ are the polarizations of the incoming and
scattered photons, respectively; and wj, is the complex transition frequency between states a and
n, given by

Wjq = Wj — Wq + Z'AT7 j/2, (2.39)

where A7 ; is the Einstein A-coefficient of the excited state j (inverse the excited state lifetime).
When a = b we have Rayleigh scattering, and w = «w’. When a and b differ, we have Raman
scattering, and ' differs from w to conserve energy. Here, j is a shorthand notation for all possible
intermediate states connected by the dipole operator. The dipole matrix elements, are given by,
e.g.,

djo = (jlet|a), (2.40)
where a, b, and j are shorthand for a specific state, with each described by a term symbol 5L,
electronic configuration, and angular momentum projection, m . Since we consider the clock states,
the initial and final states a and b are restricted to be € {5s? 'Sy, 5s5p 3Py, 5s5p 3Py, 5s5p *Pa}. To

determine the photon scattering rate, we multiply the cross section by the incoming photon flux

such that
d'y . I do
ar N 2.41
70 (575) o X aQ ( )
2
_ wa [(5/ ~dy;) (€ - dja) + (€ - dyy) (¢ '/dja) (2.42)
(47€)? 2R3 Wjg — W Wjg + W

3 A good derivation of this formula is found in [131]
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The interpretation of dv/dS) is photons scattered per second into a solid angle d€). This quantity
depends on the incoming intensity.
At first glance, Eq. 2.42 looks fairly intractable. After all, we want the total scatter rate

given by the integral over 47 of solid angle, namely

7:/% (¢,€') dS. (2.43)

However, we can modify Eq. 2.42 to look more reasonable. Focusing on the sum, we note that

3 [(5/'dbj) (£-dja) | (€ dyy) (€ dja)} —a Yy [(dbj) (€-dja) | (€-dy) (dja)

- Wjg — W Wja +w' - Wjg — W Wjaq +w’

g.D. (2.44)

The term D (no subscript) can be thought of as a net induced dipole for the scattered radiation.
Now the angular integral can be performed, and we must also sum over the two final polarization

states which we label as &} (n) and &, (n). This can be written as

Iw/3 /’
——— [ dQ2
(47€)? AR5 [

It turns out that the integral in Eq. 2.45 is exactly the same equation that appears in the treatment

& (n) D"+ 2 (n)-Dﬂ . (2.45)

of spontaneous emission (see problem 4.2 of Ref. [88]), and the final result for + is given by

Tw"™ 8
y = WQ <7T |D|2> : (2.46)
(4meg)” c*h3 \ 3

where the term in parentheses is the evaluated integral of Eq. 2.45 and D is defined as

D=). [dbj € dia) | dia & db,j)] . (2.47)
r Wjg — W Wjq + W

We proceed by noting that in Eq. 2.46, we have a simple expression that depends on |D]2, which

is defined in Eq. 2.47. The meaning of |D|? is simply

1
ID* = [Dyf* + [Dy[* + D= = ) D[
q=-—1

Here, D, is given by

D, = Z [<b!erq!j>i;iji + <jerq]a>m] . (2.48)
j
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Figure 2.16: Raman scattering rate as a function of wavelength for scattering from 3Pg into Py
(solid), and ®Py (dashed). The lattice peak intensity is 3.4 x 10* W/cm?, corresponding to v, =
80 kHz for an 813.428 nm lattice. The inset (span indicated by a grey bar) shows a detailed view
of two magic wavelengths, including the 813 nm magic wavelength used for clock operation.

At this point, if we assume linear polarization of the input beam (lattice), there is a natural
choice of quantization axis that simplifies things even more. If we choose the quantization axis
to be along the direction of the lattice polarization (also realized in the experiment, conveniently)

then Eq. 2.49 becomes

D, =37 | ler) LMY . Glegjy AT (249)
J

Wjq — W ja + W’
At this point we can use Eq. 2.46 along with Eqs. 2.48 and 2.49 and the treatment in Appendix B
to calculate the scattering rate for a lattice frequency w and scattered photon frequency «’. In this
calculation, the sum over intermediate states n is carried out for the states given in Table 2.1 for

scattering from 3Py and 'Sy.
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Figure 2.17: Rayleigh scattering rate as a function of wavelength for ®Pg (solid) and 'Sg (dashed).
The lattice peak intensity is 3.4 x 10* W/cm?, corresponding to v, = 80 kHz for a lattice at
813.428 nm. As before, the inset (span indicated again by a grey bar) shows a detailed view of two
magic wavelengths, including the 813 nm magic wavelength used for clock operation.Note that the
Rayleigh scattering rate is the same at the magic wavelength, as expected.

Finally, we extrapolate the lattice laser intensity, I, from the observed sideband frequencies.
For the purposes of this work, we assume that the atoms are at the very bottom of the wells,
such that they are subject to the maximum lattice intensity. In principle, the finite temperature
of the sample will reduce the average intensity seen by the atoms, and the fractional reduction is
approximately the same as the ratio of the atomic temperature to the trap depth.

As presented previously, we assume a lattice intensity profile given by

P
I ({1}7 y7 Z) = 8706727‘2/102(1';:9,'2) COS2 (kz) , (250)

mw? (z,y, 2)

where Py is the power of a single beam. The longitudinal trap frequency associated with this profile
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Results at 813.428 nm.
3Py =3Py | 7.3 x 1072 x (1,/80 kHz)? [1/s
3Py —3P1 | 6.4 x 1072 x (v,/80 kHz)
3Py =3Py | 4.4 x 1072 x (1,/80 kHz)?
ISy =180 | 7.3 x 1072 x (1./80 kHz)? [1/s
Results at 505 nm.
3Py =3Py 4.9 x (1./260 kHz)? [1/s]
3Py —°P; | 1.7 x 10! x (1,/260 kHz)* [1/s]
[1/
]

3Py =3Py | 8.2 x 101 x (1./260 kHz)? [1/s]
1Sy =18 4.9 x (1,/260 kHz)* [1/s

Table 2.2: Scattering rates from 3Py into the 3P fine structure manifold and 'Sy Rayleigh scattering
at the magic wavelength. The Rayleigh rates agree at the magic wavelengths, as expected. The
Raman process 3Py —3P; is expected to be the most detrimental to clock coherence. In all relevant
conditions at both magic wavelengths we find that this rate is well below 1 Hz.

is given by

o= GtV eadt = T\ it 251
where Ipeax = 8P/ (7rw2). For v, = 80 kHz, I cax = 3.4 X 10* W/cm? corresponding to Py =
140 mW. Using this value for intensity, we find the scattering rate into the 3P fine structure
manifold from 3Pg as a function of wavelength as shown in Fig. 2.16., while the comparison of the
Rayleigh rates of scattering out of 'Sy and 3Py is shown in Fig. 2.17. It is important to note that
no saturation effects are taken into account, so only the far-off resonant segments of this plot are

valid for such high intensity.

2.6.1.1 Numerical values and experimental confirmation

The wavelengths of greatest practical importance are the magic wavelengths near 813 nm
and 505 nm. For both these magic wavelengths, we tabulate the scattering rates for a lattice
depth corresponding to v, ~ 80 kHz with A,y = 813.428 nm, which corresponds to 140 mW input
power and a lattice depth of 130 E, (22 u K). In order to calculate the scattering rate at 505 nm,
we simply assume the same input power (140 mW), but due to the difference in wavelength and

polarizability, v, is significantly larger than for the lattice formed with the equivalent power at
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Figure 2.18: Experimental measurement of optical pumping due to lattice scattering. The extrap-
olated *Py —'Sy decay rate is due to the both spontaneous decay and optical pumping due to
Raman scattering of lattice photons in addition to spontaneous emission from the metastable clock
state.

813 nm. In Table 2.2, we summarize the result of the scattering rate for 140 mW input power.
The rate will scale with the total input power, and we show the scaling as a function of trap
frequency. We note that for 80 kHz sidebands at 505 nm, only 15 mW of optical power are
required and all scattering rates—especially the Raman rates—are small. Thus, we anticipate that
a lattice at this wavelength could be an intriguing possibility, especially for applications requiring
low power consumption. Finally, we note that an important modification must be considered when
the ensemble average of the scattering rate is desired; instead of using the I,¢a obtained by inverting
Eq. 2.51, it is necessary to find the RMS intensity averaged over the thermal density-distribution
of the atoms. This effect roughly scales as the ratio of the total trap depth to kgT; and kgT,. For
T, =T, = 3.5 uK, the average scattering rate is 70% of the peak scattering rate given in Table 2.2.

In order to test the accuracy of the scattering rate calculation, we performed a measurement
of the 'Sy population as a function of hold time of the lattice. In order to initialize the system,
we first excited close to 100% of the atoms to the 3Py state with a clock pulse and subsequently
removed residual ground-state atoms by using the 461 nm probe beam as a method to “blow-away”
ground state atoms. We observed that the ground state population grew at a rate proportional

to the excited state population. Due to the effects of two-body inelastic collisions between ®P
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atoms (described in Chapter 5), the excited state population also decayed while the ground state
population was being populated due to Py —3P; Raman scattering, and we took this effect
into account. By fitting the rate of accumulation in 'Sy , we were able to extrapolate that the
atoms in 3Py were decaying with I'c_,; = 5.0(5) x 1072 1/s. We expect this to be consistent
with the temperature corrected 3Pp —3P; Raman rate in Table 2.2, of I‘epffgan =44 %1072 1/s.
Interestingly, while there is fairly good agreement between these numbers, there is one effect that
we have not taken into account: the natural lifetime of 87Sr due to spontaneous emission. The
3Py —!Sy natural decay rate has been calculated as TePor® = 9(3) x 1073 1/s, and thus there is
good agreement between the predicted TePort + rfaman — 53(3) x 1072 1/s and the measured
ey = 5.0(5) x 1072 1/s.

Finally, we note that this general technique of measuring decay to 'Sy should permit an
accurate evaluation of the 87Sr natural lifetime. By measuring the optical pumping rate as a
function of lattice intensity, the zero-intensity decay rate could be extrapolated, representing a

measurement of the natural lifetime. This measurement would benefit from the fact that its analysis

will not depend heavily upon the details of the scattering rate calculation.

2.7 In situ thermometry and cooling

As described in the previous section, the atomic temperature can have direct and noticeable
impact on degree of dephasing between atoms during the laser excitation process. As we will see
in Chapter 5, knowledge of and control of excitation inhomogeneity is important for characterizing
density-dependent frequency shifts. Furthermore, the atomic density itself is dependent on the
temperature, which is also important for characterizing density-dependent effects. In this section,
we describe the techniques used for measuring the temperature of the atomic sample in the longi-
tudinal direction (7%) and in the radial direction (7)), as well as additional cooling we can perform
on the lattice-trapped atoms.

In order to extract T, the red and blue longitudinal sidebands are compared in size. Since

atoms with n, = 0 cannot lose any further motional quanta, atoms in the longitudinal ground do



O.Sjw B e ——— —— — —
a ]
04 ]
c = T, =21pK ] s
S I —T.=33uK v, =80kHz | &
O 03F [] i S
£ . £
S 02} : ] 2
s I | o]
0.0 M ‘ ‘ ,
i ‘—100‘ — =50 — 0 — 50 — 100 — R 5
Detuning (kHz) Detuning (kHz)

Figure 2.19: Temperature extraction and effect of additional cooling. (a) Uncooled (red) and cooled
(blue) longitudinal sideband structure. (b) Uncooled (red) and cooled (blue) Doppler-broadened
clock transition. The black line is a Gaussian fit to each temperature condition.

not contribute to the red sideband, thus creating a temperature-dependent asymmetry between the
red and blue sidebands. This is in contrast to the other motional states with n, > 0 that contribute
to each sideband equally? . It can be shown that the ratio of the sideband areas is related to the

temperature as [126]

total —Eo/(kBT:)
e e JenTo)" (2:52)
Oblue anzo e Tn= ?

Here, the sum is taken over the approximate number of bound states in the longitudinal direction,
which is approximately 6 for a typical 80 kHz lattice. The mode dependent energy, E,,_, includes

the effects of quartic distortion of the cos? (kz) potential and is given by [126]

1
E,. = hv, <n + 2) - ”’;C (n2+mn.+1), (2.53)

where Vpee = Wree/ (27), where wyec is the recoil frequency as defined by Eq. 2.30. In order to find
T,, we simply numerically solve Eq. 2.52 for T,.

The technique we employ to find 7T, is more straightforward. A secondary clock laser beam
pathway along the H2 axis (see Fig. 2.3) probes the lattice-trapped atoms along the weakly-confined

axis, resulting in a Doppler-broadened transition profile. We fit the doppler width of the profile

4 From Eq. 2.33 it might be expected that there would be an asymmetry between the excitations of each sideband.
Experimentally, we utilize pulses that “over-drive” the transition, meaning that the excitation saturates to a constant
value due to the dephasing explored in the previous section
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using a Gaussian distribution P, () o exp [—(v — 19)? / (20)] where [88]

kgT

me?’

(2.54)

o =1

Typical values for the frequency width o are 15-30 kHz, representing temperatures in the 1-4 puK
range.

In order to reduce the temperature of the lattice-trapped 87Sr , we employ two techniques.
In order to cool the longitudinal temperature, we employ additional cooling on the lattice-trapped,
spin-polarized sample using MOT on the !Sqg —3P; , F = 9/2 — F = 11/2 transition, and whose
frequency is tuned to optimize the longitudinal temperature. During this sideband cooling stage,
the optical pumping beam and bias magnetic field used in the spin-polarizing procedure are left
on, ensuring that the atoms cycle primarily on the mp = 9/2 — mp = 11/2 transition and do not
depolarize. Since the optical pumping beam (along H2) and the MOT beam along this same axis
compete, we must disable this MOT beam pathway during the cooling. In order to cool the atoms
in the polarizing transverse dimension, we optionally apply an additional cooling beam along the
imaging axis, which cools the atoms transversally along that axis. Figure 2.19 shows the effect of

these extra cooling steps on the measured T, and T;.

2.8 Systematic uncertainty

The 87Sr optical lattice clock was the first neutral atom standard to surpass the Cs primary
frequency standard in its reported systematic uncertainty. In a series of measurements in 2007-2008,
we characterized many relevant clock systematics of the Sr lattice clock below the 10716 optical
lattice clock by comparing the 87Sr clock frequency with the NIST Ca clock [31]. The comparison
was facilitated by the use of an ultrastable octave spanning frequency comb [132] in order to connect
the 87Sr clock frequency to a transfer laser at 1064 nm. The transfer laser was transmitted through
a noise-cancelled ~ 3.5 km fiber to NIST [55] where a second frequency comb allowed comparison
with the Ca clock, which served as a stable reference at intermediate timescales. Due to slow

drifts in the Ca clock, data was typically taken in an interleaved fashion, with 100 seconds per



Contributor

Correction (1071°)

Uncertainty (10~19)

Lattice Stark (scalar/tensor)
Hyperpolarizability (lattice)

BBR Stark

AC Stark (probe)
1%¢ order Zeeman
27 order Zeeman

-6.5
0.1
54.0
0.2
0.2

0.36

0.5
0.1
1.0
0.1
0.2
0.04

o8

Density 3.8 0.5

Line pulling 0 0.2
Servo error 0 0.5
27 order Doppler 0 <0.01
Systematic total 52.1 1.36

Table 2.3: Systematic frequency shifts and their uncertainties for the 87Sr frequency standard (as
in Refs. [1, 2]). The largest contributor to clock uncertainty, the black-body radiation (BBR) shift,
is marked in red.

condition (e.g., high-density vs. low-density operation). The net result of the evaluation is shown
in Table 2.3. Using the same fiber for microwave frequency transfer, we measured the 87Sr lattice

clock against the NIST F1 primary frequency standard, and obtained [1]
v = 429, 228, 004, 229, 873.65(37) Hz. (2.55)

We note that this value is in good agreement with all previous and subsequent measurements
[133, 33, 134, 34].

In the intervening four years, the optical lattice setup was changed from an injection-locked
Ti:sapphire system to an all-solid state one. Additional improvements to the lattice were made
at that time, allowing better overlap between the input and retro-reflected lattice beams, thus
increasing the longitudinal trap frequency from ~ 40 kHz, to ~ 80 kHz. This change greatly
facilitated the collisional physics studied in Chapter 5 of this thesis, but will require a re-evaluation
of systematics. However, as we show in Chapter 4, a new ultrastable laser system permits evaluation
of a systematic through interleaved measurement (as utilized in [135]) on a very rapid timescale. In
contrast to the result presented in [135], where data records spanning several weeks were required
for systematic evaluation at the 1 x 10~!7 level, the new laser system presented in Chapter 4 of

this thesis allows for similar measurement precision to be obtained in 30 minutes. Thus, one could
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Figure 2.20: Two-dimensional lattice geometry. Here, the single-site occupancies are mainly re-
stricted to zero, one, or two atoms.

envision doing a complete clock systematic evaluation at the 10717 level in one day if averaging
time were the only impediment to such a measurement!

As will be shown in Chapter 5, a high-density lattice clock does not make the best frequency
reference due to the strong interactions between atoms in the optical lattice. The current ex-
perimental configuration is best suited for experimental studies of collisional physics due to the
high operating density. However, we have still been able to evaluate the density shift to the low
2.4x 1077 fractional frequency uncertainty in the current experimental configuration with a reduced
operating atom number of Ny, = 1000. In the meantime, a second 87Sr clock under development
at JILA employs a much lower-density operating condition by utilizing a buildup cavity for the
lattice, allowing a large reduction of density. This second system has been able to demonstrate a
density shift uncertainty for operation with 1000 atoms of 8 x 10719 [43].

A second approach to reducing the density shift that we employed was to confine the atoms
in a 2D lattice, depicted schematically in Fig. 2.21. Here, a reduction of the density shift to the

1 x 10717 was observed, which was made possible primarily by the single-site occupancy combined
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with strong interactions for the particles in doubly- and triply- occupied sites [135]. The additional
operational complexity of the 2D lattice is not favorable for robust clock operation, but this work
was an important demonstration of methods for reducing density shifts by reducing the chance an
atom resides in a multiply-occupied site. A three-dimensional lattice would be a natural extension
of this technique, and we note that 3D lattice geometries have also been realized with bosonic
8Sr [136]. For the remainder of this thesis, we restrict ourselves to the one-dimensional lattice
geometry. In this configuration, the single site occupancies are large enough to constitute quantum
many-body systems, and we study them in this context in Chapter 5.

We note that a significant exploration of all lattice-induced shifts has been presented in [110],
where effects such as hyperpolarizability (two-photon-induced stark shifts which scale with lattice
intensity as I2) and shifts due to magnetic dipole and electric quadrupole transitions [137], which
scale as v/I. The conclusion of Ref. [110] is that lattice systematics can be controlled at below the

1 x 1077 level for the lattice depths we employ in the clock.

2.8.1 Blackbody radiation

As seen from the systematic uncertainties listed in table 2.3, black-body radiation is the
largest contributor the 87Sr clock uncertainty (highlighted in red), and this is the case for all 87Sr
lattice clocks currently at the 1 x 107! uncertainty level [31, 33, 34]. The frequency shift arises
due to room-temperature radiation coupling to the AC-polarizability of the clock states. To first
order, however, the black body radiation (BBR) depends primarily on the DC polarizability of the

clock states as [138, 139, 115]
1
hAVBBR = —§<E2>TA04 (0) [1 +n (T)} . (256)

Here, (E?)7 = (8.319 V/em)? (T/300 K)* is the average squared electric field magnitude for a
given temperature; Aa (0) = a (0) — oy (0) is the differential DC polarizability, where a. (0) and
agy (0) are defined in Egs. 2.19 and 2.20, respectively; and n (7') is the dynamic correction, which

takes into account shifts due to corrections beyond the DC polarizability. Until recently, lack
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of knowledge of several oscillator strengths utilized for the calculation of c. (0) had limited the
theoretical uncertainty of the room-temperature BBR correction at 7 x 10717 [140].

Two experiments have successfully measured A« (0) in Yb [139] and Sr [115] optical lat-
tice clocks. In the case of Sr, a discrepancy between the theoretical Sr blackbody frequency cor-
rection calculated in Ref. [138] and the measured value was discovered by Middelmann et al.
[115]. The discrepancy amounts to an additional fractional frequency correction of —1.8 x 10716
at 300 K. Additional theoretical work has resolved the discrepancy [141], indicating the mea-
sured values should supersede the original calculation. For Sr, the measurements of Middel-
mann et al. indicate Aa = 4.07865(11) x 1073 C m?/V, resulting in a static BBR shift of
— - (E%)rAa (0) = —2.130186(60) x (ﬁ)4 Hz. Additionally, Refs. [115] and [141] agree regarding
the contribution of the dynamic polarizabilities to the frequency shift as —5-(E*)rAa (0)n (T) =
—0.1477(23) x (555)® Hz (Middelmann et al, [115]) and —0.1492(16) x (7/300)® Hz (Safronova
et al., [141]).

The measurements have essentially eliminated the systematic uncertainty associated with
knowledge of the static polarizability of Sr. However, the total BBR uncertainty quoted in Table 2.3
includes two contributions: the now-irrelevant uncertainty in A« (0) and the uncertainty in the
BBR environment experienced by the atoms. The latter effect still contributes the largest and
most difficult-to-characterize systematic shift to the 87Sr lattice clock. A 1 K uncertainty in the
temperature induces a 7 x 10717 systematic effect. This reflects the unfortunate fact that Sr has the
largest BBR shift coefficient of all lattice clock atomic species. Future work will undoubtedly focus
on providing a well-characterized, or possibly cryogenic [142] environment for the lattice-trapped

atoms.

2.9 Quantum projection noise and the Dick effect

One of the strongest motivating factors for developing optical lattice clocks is the potential for
extremely high stability due to the large signal-to-noise ratio provided by the parallel interrogation

of > 103 atoms. For a clock operated at average excitation fraction given by p, the number of atoms
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Figure 2.21: Ramsey (dashed) and Rabi (solid) lineshapes compared for quantum projection noise
calculation. (a) Here, the ratio of Rabi to Ramsey pulse times is 1.6, such that the full width at
half maximum (FWHM) of the Rabi and Ramsey lineshapes are equivalent. In this scenario, the
slope at p = 0.5 is nearly identical. (b) Thuise is the same for both traces. For a given Tpyise, the
FWHM of the Ramsey lineshape is a factor of ~ 1.6 narrower.

found in the excited state follows a binomial distribution, assuming the atoms are uncorrellated
(i.e., the system is not spin-squeezed). It then follows that the variance of the measured excitation
fraction, (see Eq. 2.29) is

2 = Var o = ZO ) (2.57)

This relationship between the noise and the total atom number is known as quantum projection
noise. In fact, measuring quantum projection noise is the method we employ to calibrate the
constant of proportionality between our fluorescence detection and the actual total number of
atoms in the lattice.

Equation 2.57 is a key result for noise in optical lattice clocks: as the number of atoms
increases the noise decreases. However, this is only part of the story. One must convert the atomic
noise into frequency noise by use of the spectroscopic lineshape. Typically, clocks are operated
with p = 0.5, as depicted in Fig. 2.21, where the slope of the excitation probability with respect to

frequency is maximized. From the analytic shapes of the Rabi and Ramsey lineshapes, it can be
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shown that
O_Rabi( Av Rabi TCyde (258)
4 3 0319y Niot
URamsey 7) = Av Ramsey Tc}’cle (2‘ 59)

Y B 7m0V Niot

where Tiyce is the experimental cycle time, vy is the frequency of the transition, and AyRabi

(AvRabl) s the FWHM of the spectroscopic feature used for feedback. AvrR#P and AvRabi are

given by

AVRabi =~ O'SO/Tpulsea (260)

AURISY — 1 /(2T5.00) (2.61)

where Ty, is the Ramsey free evolution time. Thus, even for a modest spectroscopy time of 200 ms
and only Nyt = 1000, quantum-projection noise limited clock operation is still 1 x 1076/ \/m
for Rabi spectroscopy.

One roadblock to benefiting from the SNR afforded by thousands of atoms is broadband laser
noise, which ends up contaminating the error signal through the Dick effect. The Dick effect is a
process through which a periodic clock interrogation with spectroscopic dead time writes noise onto
the correction signal, degrading long term stability [36, 143]. For example, for every 1 s of time
per clock interrogation cycle a neutral atom system might spend cooling and trapping atoms in an
optical lattice, the time during which is spectroscopy is performed might only by 100 ms. Thus,
there is an inevitable dead time between spectroscopy sequences, resulting in a periodic sampling
of the laser phase noise, and leading to aliasing of higher-frequency laser noise, deteriorating the
stability.

Specifically, it can be shown that the Dick effect-limited Allan deviation due to the aliasing

mechanism is given by [37]

2.62
g (262)

1 X |R(m/T.)|* G, (m/T,
;Z /| (/).

Here T, is the clock cycle time, including both atom loading and spectroscopy time; R (f) is given
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Figure 2.22: Fourier and time-domain representation of the Dick sensitivity function and its im-
plications for reaching quantum-limited clock performance. (a) Fourier sensitivity for Rabi (red)
and Ramsey (blue) corresponding to the sensitivity functions shown in the inset. Here the time T
corresponds to Tpyise (T4ark) in the case of Rabi (Ramsey) spectroscopy. For the frequency-domain
plots, Ty = 200 ms. (b) Here, the loading time is 1 s, such that the cycle time T, = 1+ 7. We plot
the quantum projection noise-limited instability for N,y = 1000 for both Rabi and Ramsey spec-
troscopy (red and blue, respectively) and the Dick-limited instability for lasers with oy, (1) = 10715
(dashed black/grey) and o, () = 10716 (solid black/grey). The black (grey) lines are using the
Rabi (Ramsey) Dick sensitivity function to calculate the Dick-limited performance. In all cases the
instability has been extrapolated to 1 s, so that o (1) =0 (1) /y/7/1s.
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R(f)=F[r@®)], (2.63)

where F[...] is the Fourier transform operation; and G, (f) is the laser frequency noise power
spectral density. The function r(t) describes the spectroscopic sensitivity to a phase shift in the

local oscillator laser and is defined through [36]

1 [T
Ofexe = 5 /O dtAw ()7 (t), (2.64)

where Aw () is time varying laser detuning (i.e., noise) and 0 fox. is a fluctuation about the expected
excitation fraction due to laser noise. The upper limit of the integral is simply the duration of the
spectroscopy, which is assumed to start at ¢ = 0. We will return to a detailed discussion of
sensitivity functions in Chapter 6. For the moment it is sufficient to give g (¢) for Ramsey and Rabi

spectroscopy. The Rabi sensitivity function is given by

pRabi () = — (Ag?‘%) {sin (Qt) — sin (wéi) + sin [f?o (m — th)] } : (2.65)

where generalized Rabi frequency  is related to the bare Rabi frequency € by Q = /Q2 + A2

and Ay is a static laser detuning from the transition chosen so that p = 0.5. The Ramsey sensitivity

function is given by

pRAMSEY (1) ~ rect, [

- 1/2] . (2.66)

dark

A derivation of Eq. 2.65 is given in Appendix A. In Chapter 6, we additionally show that Eq. 2.66
is a simple case of the class of sensitivity functions that arise from spin-echo sequences with fast
m/2- and m-pulses. Figure 2.22a shows the time and frequency-domain behavior of these functions.
Figure 2.22b shows the implications of the Dick effect on the long-term stability of an optical
frequency standard. Here, two different flicker-noise limited local oscillator spectra are considered,
representing a laser with o, (7) = 1 x 1071°, as originally used in the 87Sr lattice clock [40], and a
laser with o, (7) = 1 x 10716, which is the thermal noise floor of the ultrastable laser reported in

this thesis and described in Chapter 4. As seen from Fig. 2.22, only the laser with o, (1) = 1x 10716
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is not limited by the Dick effect over wide range of spectroscopy times, and furthermore the overall
clock performance is better by an order of magnitude. Here, flicker noise is chosen because it
corresponds to the frequency noise caused by thermal noise in optical interferometers, and is the
subject of the next chapter.

As the preceding discussion indicates, laser stability is a crucial aspect of an optical atomic
clock. Through the Dick effect, the stability of the local oscillator laser always impacts the sta-
bility of the clock. Furthermore, the short term stability of lasers greatly impacts the amount
of time required to make systematic evaluations via interleaved measurements. Here, a factor of
10 improvement in laser stability yields a 100-fold reduction of the measurement time necessary,
reducing month-long measurement campaigns to mere hours. In the next two chapters, we explore
some challenges to improving laser stability, and present three separate laser systems that perform

at or near the 1 x 10716 level of instability.



Chapter 3

Thermal noise in optical interferometers

The goal of this chapter is to introduce the concepts of thermally-driven noise in (opto)-
mechanical systems in a qualitative manner; we then proceed into detailed equations that describe
noise in optical interferometers. A careful consideration of the sources of noise is necessary for
developing state of the art ultrastable lasers, and we use the detailed formalism summarized here
to motivate current highly successful optical cavity designs, as well as potential future ultrastable

laser systems with instability at the level of 1 x 10717,

3.1 Introduction

Optical interferometers are found at the heart of experiments that probe the physical world,
from quantum mechanical [144, 145, 146] to cosmological scales [147]. As introduced in Chapter 2,
cavity-stabilized lasers are essential components of the most precise optical atomic clocks [43] and
their performance directly impacts the ultimate stability of clocks employing thousands of atoms.
The mechanism that currently sets the stability limit for interferometers—from pm to km length
scales—is detrimental thermal coupling to the environment. This coupling is a direct consequence
of mechanical losses in the interferometer substrates and coatings and causes a mechanical displace-
ment which directly impacts the optical phase. In the case of Fabry-Pérot interferometer-based
laser stabilization, the length stability of the interferometer directly impacts the frequency noise of

the stabilized laser, leading to frequency noise that is directly proportional to the fractional length
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change of the interferometer as!

v 2o (3.1)

Here, L is the length of the Fabry-Pérot interferometer and v is the central frequency of the laser
stabilized to it.

In this chapter, we describe the mechanism by which both Brownian noise and thermodynam-
ical temperature fluctuations in the interferometer components become effective length fluctuations
of optical interferometers. We emphasized that understanding these mechanisms is important for
designs which mitigate the effect of thermal noise. We also describe a second thermal noise mech-
anism that arises due to statistical temperature fluctuations in the bulk of optical substrates and
coatings. This in turn will also drive length changes in the interferometer through thermal ex-
pansion and the thermo-optic effect. In Chapter 4 we will extensively discuss systems developed

utilizing these insights.

3.2 Thermo-mechanical noise in physical systems

According to the fluctuation-dissipation theorem, the thermally-driven displacement fluctu-
ations of a system are directly proportional to the admittance of the system such that the single-
sided displacement power spectral density for any mechanical degree of freedom with dissipations

is [148, 149, 150, 151]
_ ksTR[Y (NIl

Ga (f) 2 (3.2)
Here, R[Y (f)] is the real part of the systems complex admittance, which is defined as
Y(H=VH/F), (3-3)

where V (f) is the velocity response to an applied force F'(f) in the Fourier domain.
Since G (f) depends directly on Y (f), the displacement noise in a system depends directly

on the type of mechanical damping model that is employed. In the case of bulk mechanical samples,

! In Chapter 4 we rigorously derive the relationship.
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(1+ i)k

Figure 3.1: Modified Hooke’s law system. Here the addition of the loss angle ¢ creates a
displacement-dependent dissipation such that the energy dissipated in one period of motion is

27¢ and thus Q = 1/¢.

such as mirror substrates and optical coatings, a type of damping called “internal damping” applies,

which can be thought of as a modification of Hooke’s law such that [150]

F(f)==Q0+ip) kX (f). (3-4)

Here, ¢ is the loss angle, which parameterizes the energy dissipated in the material. It is straight-
forward to show that the fraction of energy dissipated in a cycle is 2m¢, such that @ = 1/¢, where
Q is the material quality factor.

Equation 3.4 represents the simple case where we consider one mechanical degree of freedom.

For the mass on a spring depicted in Fig. 3.1, it is easily shown that
2mif

(1+ip) k —m (2rf)*

In the low-frequency limit, where 27 f < y/k/m and ¢ < 1, R[Y (f)] — 27 f¢/k and thus for the

Y (f) =

(3.5)

simple mass-on-a-spring system considered in Fig. 3.1,

G (f) = 2’:5? (Z) . (3.6)

In Eq. 3.6 lie all of the essential considerations for a mechanical system driven by Brownian noise:

the low-frequency limit of the noise is 1/f in its frequency dependence, it is proportional to the
loss angle ¢ (and thus inversely proportional to @) and T', and it is inversely proportional to the
material stiffness k.

While the case of a mass on a spring is instructive for building a basic understanding of

thermally driven fluctuations in a mechanical system with one degree of freedom, the components
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of optical systems, such as mirrors, are much more complicated. The mechanical displacement of
a bulk object such as a mirror can be decomposed into normal modes, each of which are effec-
tive degrees of freedom with a generalized displacement amplitude. Early attempts to apply the
fluctuation-dissipation theorem of Eq. 3.2 to such systems relied upon a decomposition into these
normal modes, whose frequencies were numerically calculated [152]. In this approach, the beam
profile is weighted by the normal mode displacement amplitude to properly evaluate the optical
phase shift due to a given mode. In general, this sum-over-modes method should work, but it is
computationally intensive and converges slowly [152, 151]. To solve these issues a new approach

was developed, and is the subject of the next section.

3.2.1 Fluctuation-dissipation theorem and Levin’s “direct approach”

In 1997, Levin published a landmark work describing a new approach to calculating the effect
of Brownian motion on the stability of optical interferometers [151]. At the heart of this method
lies the use of a generalized coordinate. It can be shown that the quantity which affects the optical
phase of a reflected beam with electric field amplitude profile E (x,y) o v;; (z,y) at the mirror’s

surface is [152]
Aj = / i; (2, 9) 2K - s () derdy. (3.7)

Here A¢ indicates the resulting optical phase shift cause by s (z,y) (and is distinct from the loss
angle ¢), the mirror displacement evaluated at the mirror surface; and k is the laser propagation
wave-vector with |k| = 27/A. It is assumed that the laser is propagating in the z-directions. The

mode profile is normalized such that

/%’j (z,y) Y (z,y) dedy = 605, (3.8)

where § is the Kroeneker delta. The indices ¢ and j could in principle label Laguerre-Gauss modes
for the case of a spherical mirror resonator, or other solutions to the paraxial Helmholtz equation for
other types of boundary conditions (e.g. the case of conical or Mesa beams [153]). For the remainder

of this Thesis, we will consider only Gaussian beams (i.e. the TEM00 mode of a spherical-mirror
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optical resonator), as these are the lowest-order stable solution in a resonator formed by spherical

mirrors, such that

)P = v (29) = —se )/l (39)

where w (z) is the beam waist at the mirror under consideration.
The phase shift A¢ of Eq. 3.7 can be used to define an effective displacement—essentially

the mirror displacement weighted by the beam intensity profile—as
x=A¢/ Kk|. (3.10)

Thus, even though the mirror itself is a complicated object with many relevant degrees of freedom,
it is thus possible to reduce this to a single relevant coordinate, z, via Eq. 3.10.

Levin’s technique allows direct computation of the displacement of this coordinate via the
fluctuation-dissipation theorem. The whole point of the calculation is to calculate the behavior of
R[Y (f)] at frequencies well below the lowest-frequency resonant mode. However, it is not clear
what the generalized force should be with respect to the generalized coordinate. The approach that

Levin developed was to define a generalized force via a pressure of the form
P (z,y;t) = Fy |[vij (z, y)|” cos (27 ft) e.. (3.11)

Here, f is the Fourier frequency of the oscillating pressure. In this way, the total hamiltonian for

the generalized force and generalized displacement is

H = —Fycos (27 ft) / Vi (, y)|*e. - s (z,y) = —Fycos (2nft) x (3.12)

which shows that the generalized force enters the Hamiltonian as in the case where only a single
mechanical degree of freedom was considered.

The next step of Levin’s procedure is to calculate R [Y (f)] from the generalized force and
displacement. Here, the admittance is now defined with respect to the generalized variables. For

the admittance defined in Eq. 3.3, it is easily seen that that the average dissipated power (by which
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we mean the total energy lost in one cycle divided by the cycle time) is?

Wi = 5R{F x (Y ()]} = SRRV (). (3.13)

Thus, we can quite simply solve for the generalized R [Y (f)] such that [151]

_ 2Waiss _ 47TfUmax¢
|Fol? |Fol?

RY (f)] (3.14)

Here, the last equality simply relates the dissipated energy to the maximum elastic energy stored,
Umax, via the loss angle. This follows directly from the modified Hooke’s law of Eq. 3.4. Finally,

by applying Eq. 3.2 to the case of generalized displacement we obtain Levin’s result [151]

— kBThR[Y (f)“ _ QkBT(b <2Umax>
7T2f2 7Tf ’FO‘Q )

which is anologous to the simple spring case of Eq. 3.6, where Unax = |Fo|* / (2k).

G (f)

(3.15)

The final step of the procedure requires a “simple” calculation of Wy for the generalized
force given by Eq. 3.11 via a calculation of Uy for a static generalized force. The use of a static
force is allowed as long as the frequency is well below any resonant frequencies of the system. In
principle this can be done numerically very straightforwardly [155]. However, analytic solutions for
the case of a Gaussian beam profile on a cylindrical mirror have been obtained [151, 156]. Finally,
we note that the calculation method is easily extended to include the surface contribution due to a
thin dielectric coating film [156]. As it turns out, this aspect of the mirror is absolutely crucial to
consider, as the loss angle can be from one to four orders of magnitude larger than the bulk mirror
substrate, depending on the substrate material.

Before proceeding further, we can make some qualitative statements. As in Eq. 3.6, we see
that the noise of the generalized coordinate x will scale linearly with the temperature and loss
angle, while it will scale inversely with the material stiffness, which is parameterized by an effective
spring constant k = |Fy|? / (2Umax). In the case of the bulk substrate, which can be thought of as
an infinite half-plane, dimensional analysis indicates that k o wokF, where F is the bulk Young’s

modulus and wyp is the beam 1/e? intensity radius.

2 This computation is similar to time averages performed in electrodynamics. See, e.g., Jackson [154] for a
derivation of the time average formula for oscillatory fields.
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Figure 3.2: Schematic of the relevant optical components for calculating the thermal noise of an
optical cavity. The mirrors substrates (blue), optical coatings (thin red line), and spacer (tan) all
contribute to thermally-driven displacement noise at the mirror surface.

3.2.2 Brownian motion in optical cavities

As seen in the previous section, a powerful formalism exists for evaluating Brownian thermal
noise in optical components. In the case of a cavity, the components of concern are the spacer,
mirror substrate, and mirror coatings, as depicted in Fig. 3.2. In each case, the thermally driven
fluctuations of the effective displacement are calculated as outlined in the previous section. While
we do not go into the details of the calculation, we note that in the specific case of a Gaussian beam,
it entails calculating the stored energy in an infinite half-plane (which approximates the mirror)
when subject to a Gaussian pressure profile. It has been found that the one-sided power spectral

density of position fluctuations (in units of m?/Hz) arising from each of the cavity components at
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Fourier frequency f are® [156, 157, 155]
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Some of the parameters used in these equations are defined in Table 3.1. We note that for the
purposes of calculations in this Thesis, we assume that the coating parallel loss angle (¢)) and the
coating perpendicular loss angle (¢ ) are equivalent.

Two qualitative remarks can be made at this point, the first of which is that both the
substrate and coating displacement noise power spectral densities, given by Equations 3.16 and 3.17,
respectively, do not depend on the length of the cavity. This is due to the fact that the fluctuations
are localized to the mirror surface and this property can be exploited in order to reduce frequency
noise. By increasing the cavity length, the fractional length fluctuations decrease, resulting in
a substrate and coating thermal noise-induced optical frequency noise spectral density that is

proportional to 1/L2. Secondly, while the spacer thermal noise contribution scales with length, and

2

spacer- Lhus, for a spacer with constant aspect ratio, the spacer contribution to the

inversely with R
total thermal noise in fact decreases with length. This is due to the fact that to convert the power
spectral densities to fractional frequency fluctuations, they must be divided by L?. Additionally,
longer optical cavities typically have larger radii in order to maintain favorable mounting geometry,
meaning that as L increases, so too does Rspacer-

One clear avenue to decrease this noise limit is to decrease the material losses, lower the
temperature, or do both. However, the situation is not so simple. For example, the loss angle

of fused silica—a commonly-utilized mirror substrate material—begins to increase sharply at tem-

peratures below ~ 250 K, ultimately suffering an almost four orders of magnitude increase before

3 There has recently been an important correction to the spacer contribution [155].



’ Definition of parameters

wo Beam 1/¢? intensity radius

d Coating thickness

s Substrate loss angle

e1( Coating loss angle perpendicular (parallel) to substrate
Eyo) Substrate (coating) Young’s modulus

Ts(c) Substrate (coating) Poisson ratio

Q) Substrate (coating) coefficient of thermal expansion
Ks(c) Substrate (coating) thermal conductivity

Cs(e) Substrate (coating) heat capacity

wEUb(Coat) Substrate (coating) cutoff frequency

Rgpacer (Tspacer) | Spacer (spacer central bore) effective radius

Table 3.1: Summary of the parameters used in the text.

’ Substrate and spacer materials

Material 0] E (GPa) | o
Fused silica (SiO2) 1075-1078 | 72 0.17
ULE glass 1.7x 107" | 68 0.18
Silicon 1078 130-190* | 0.05-0.35*
Sapphire 3x 1077 | 400* 0.29*

’ Dielectric multilayers
Material o) E (GPa) | o
Si0y/TagOy Bragg stack 4x107* 110 0.2
GaAs/AlgoGagAs Bragg stack | 2.5 x 107° | 85* 0.32*

75

Table 3.2: Mechanical properties of typical optical materials. Values are obtained from [163, 164,
156, 165, 157, 166, 167]. *Orientation-dependent

it levels off at 50 K, completely eliminating the benefit of operating at these temperatures [158].

However, crystalline materials such as sapphire [159], calcium fluoride [160], and silicon [158] offer

the benefits of low thermal expansion and low loss angle at cryogenic temperatures. Unfortunately,

typical coating loss angles exhibit an approximate factor of 3 increase at cryogenic temperatures

[161], which offsets some of the gains of operating at low temperatures. We note in passing that

there is an active search for low-loss coating materials or dopants to reduce the mechanical loss of

the existing coating technolgy [162]. It should also be noted that it becomes increasingly difficult

to shield cryostat vibrations at very low temperatures, due to the large cooling powers required.

A powerful and ground-breaking approach to the coating noise problem—which currently
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sets the ultimate noise floor of ultrastable optical cavities [155, 168, 43]—is to use a fundamentally
different coating material for the high-reflectivity dielectric coating. The standard material is an
alternating structure of A/4 layers of SiO9 and TayO5. However, as seen in Table 3.2, the loss angle
of a SiO9 and Tay Oy is large [169] compared to fused silica, a commonly-utilized substrate material.
Indeed, for a typical optical cavity employing fused silica mirror substrates, a ULE glass spacer,
and Si09/Taz05 coatings, = 80% of the Brownian thermal noise power spectral density results
from the excess mechanical loss of the conventional coating. The benefit of SiOy/TagO5 coatings is
their extremely low optical loss, which is at the few ppm level [170]. However, recent breakthroughs
in engineering both high-reflectivity and low-mechanical-loss structures for use in optomechanics
have lead to simultaneously high optical- and high mechanical-quality microresonators employing
AlGaAs heterostructures[171]. As seen from the mechanical quality factor listed in Table 3.2, the
loss angle of AlGaAs structures is at least an order of magnitude lower than SiOs/TasOj coatings.*
With a recent demonstration of optical losses of order ~ 15 ppm [172], these coatings promise an
order of magnitude reduction of coating thermal noise. Experimental developments along this front
will be discussed further in Chapter 4.

Finally, it is worth mentioning that a final alternative approach to reduce Brownian coating
and substrate thermal noise relies not on reducing the temperature or utilizing novel materials, but
instead on using specially shaped beams, such as mesa, conical, or higher order Laguerre-Gauss
beams [153]. This has the effect of better averaging the position fluctuations of the mirror surface
due to thermal noise. While one could simply envision working near the stability edge of an optical
cavity with typical spherical mirrors to create larger mode-areas on the mirrors, the input pointing
stability requirements become more stringent in these regimes. Specially shaped beams also have
their own challenges as well; controlling the manufacturing process to create satisfactory mirror
profiles and alignment (including linear displacement) in small-scale optics used in optical cavities

is difficult, limiting the optical quality [173].

4 These measurements of the loss angles of AlGaAs were performed on free-standing micro-scale structures. We
present evidence in Chapter 4 that verifies that the loss angle is still valid when applied to a macroscopic coating
bonded to a substrate.
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3.3 Thermodynamic noise

Brownian motion is not the only thermally-driven source of effective length fluctuations in
optical interferometers. For any thermodynamical system comprising a bulk material, there are
temperature fluctuations whose magnitude is given by [174]

kpT?

0T?) = i
(6T=) oV

(3.19)

Here p is the material density, C' is the heat capacity, and V is the volume over which the tempera-
ture fluctuations are considered. In materials for which the coefficient of thermal expansion (CTE)
and the thermo-refractive coefficient are non-zero, these statistical temperature fluctuations can
couple to the reflected phase of the optical field by two mechanisms. The first involves both the
thermo-refractive and thermal expansion response of the coating itself and is know as thermo-optic
noise. Thermo-optic noise is usually restricted to describing only the coating. The second mecha-
nism involves the thermal expansion of the substrate alone and is known as substrate thermo-elastic
noise.

In the theoretical treatment of both thermo-optic and thermo-elastic noise, the general ap-
proach is to calculate the effect of the bulk fluctuations as described by Eq. 3.19 on the effective
degree of freedom, x, as introduced in Section 3.2.1. The general approach is to solve the heat
equation in the mirror with a Langevin driving term that reproduces equation 3.19 for an arbitrary
volume [174]. The solution for the heat equation then acts as a driving term for elastic expansion,
and in the case of thermo-optic noise, the thermo-refractive effect. The final solution for the spec-
tral density of fluctuations is the net result of this process. In the case of thermo-optic noise, the
thermo-refractive effect and the elastic displacement must be added coherently, because they share
the same driving temperature fluctuations [175].

Substrate thermoelastic and coating thermo-optic noise have been studied as a noise source
for gravitational wave detectors [176, 177, 175]. There are two Fourier frequency regimes in the
analysis of thermo-optic noise. The first is where the thermal diffusion length scale is smaller than

the laser spot size, allowing an averaging effect to take place. This regime is known as the adiabatic
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limit and only applies to time-domain Fourier frequencies f that satisfy 27 f > w. where the cutoff
frequency, we, is given by

We = w;:)(f (3.20)
Here, & is the thermal conductivity and wq is the intensity 1/e? radius of the laser beam. Due
to the small beam sizes (~ 100 ym) and interest in the frequency noise spectrum all the way to
DC in cavity-stabilized laser systems, one must be aware that w. is typically in the 1 Hz range.
Thus, consideration of thermo-optic noise in the semi isothermal regime, at Fourier frequencies
21 f < we, is necessary for a complete picture of the various contributions to the frequency noise of

cavity stabilized lasers. Typically the coating cutoff frequency and the substrate cutoff frequency

are different.

3.3.1 Substrate thermoelastic noise

To date, many optical cavities have employed mirrors made from ULE substrates [40, 178].
As a result, consideration of substrate thermoelastic noise is not necessary for these systems, as the
material coefficient of thermal expansion (CTE) is close to zero. This approximation has also been
made in the case of fused silica substrates [179]. In fact, while alarming predictions for substrate
thermoelastic noise can be obtained by extrapolating the high—frequency behavior of fused silica
thermoelastic to 1 Hz-level frequencies, using the appropriate expression for the low-frequency
behavior verifies that the substrate thermoelastic noise is at least an order of magnitude below the
Brownian noise of the substrates and coatings in the case of fused silica. For other materials such
as sapphire at room temperature, this will not be the case.

It has been shown that the one-sided power spectral density of mirror length fluctuations due

to the substrate is [174, 176]

4
G (f) = —=a? (1 + o)



79

Here, Q (f) = 2nf/w™, and J [Q] is given by

0o 00 3,—u?/2
JQ] = \/73/ du/ dv ve . (3.22)
™ Jo —oo (u2 +02) [(u2 + v2)? + Q3

While the integral can be evaluated numerically, it is more instructive to calculate thermal noise

in the low and high frequency limits. Specifically,

8v/2 KpT?

GTE,sub N 2 1 < 2 —_—_— 9 1 3.23
z 37 as (1+0y) 27 f ks psCs < ( )
1 KpT?kq
GEE,Sub - iag (1 + 05)2 B—K/Q’ 0 > 1. (324)
ﬁ (27Tfpscsw0)

These equations indicate that at low frequencies, thermoelastic noise rises less rapidly than extrap-
olated from the high-frequency behavior. Qualitatively, this effect can be explained as a crossover
from the regime where the thermal diffusion length is smaller than the spot size to one where it
is larger. Thus, this change in behavior can be thought of as an averaging effect that is no longer

valid at low frequencies [176, 177].

3.3.2 Coating thermo-optic noise

A second way that optical cavities are sensitive to thermodynamic temperature fluctuations
are through a pair of correlated mechanisms present in the mirror coatings: thermorefractive and
thermoelastic effects, collectively called thermo-optic noise. Typical dielectric mirrors are made of a
stack (also known as a Bragg stack) of alternating high- and low-index materials whose thicknesses
are chosen such that the optical path length in each layer is A/4, where A is the vacuum wavelength
of the optical frequency of interest. For ultra-low loss coatings comprised of alternating quarter-
wave layers of SiOy, and TapOs, 20 pairs of such layers will give a transmission loss of 1 ppm (see,
e.g., [180]). For such a mirror, it has been shown that the typically opposite signs of these coherent
mechanisms reduces their impact and the total effect can be written as [175]

2
GEO (f) = Gar (f) <0_46d - Bc/\ - 0_ésdgc> . (3.25)

S

The term in parentheses is the coherent sum of thermoelastic and thermorefractive effects; the

thermo-optic noise. The parameter a. (@s) is the effective coating (substrate) coefficient of ther-
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mal expansion, and f3. is the effective coating thermo-refractive coefficients, as defined in [175].
Modifications to the mirror Bragg stack, such as depositing an extra 1/2 X\ cap on the surface (a
“half wave cap”), can be used to modify 3. and thus in principle the thermo-refractive noise can
be coherently cancelled or reduced via Bragg stack engineering [181, 182]. Table 3.3 lists thermal
and thermo-optic parameters for relevant materials.

As shown in Ref. [183], the averaged thermodynamic fluctuations that contribute to coating

thermo-optic fluctuations coupled through the CTE are

2 oo [ee) ]{J2 k2 1
G0 () = SEBTw / 2k Lko N / dk, 2+ L e (3.26)
(pcCe) Jo (2m) 0o 2T g4 (k:§ + k‘i) + w? 1+ k212

Here, g = wo/V2, a = \/k/ (p.C.) and [ is the optical penetration depth in the coating and is
typically < 1 um. The rightmost term in parentheses is only present in the treatment of thermore-
fractive noise [183, 165], and is not present for thermoelastic coating fluctuations. However, since
the penetration depth, [ is much smaller than wg. Ignoring this term only introduces an error of

order [/wgy. This expression can therefore be written

19 () = 22EE T e ) 1 0 1)), (3.27)

TRW(
with

%) /9 -
K(Q) =% [ / du ue—e 2 Y EL (3.28)
0

B Vul + 2

Here, Q = w/w where w, is the cutoff frequency defined in Eq. 3.20 applied to the coating

material properties. Two important limits for K (2) are

) = \/g Q<1 (3.29)

K () — \/ﬁ’ Q>1 (3.30)

Thus, the two corresponding limits for the temperature fluctuations are

2K pT?
GO, =BT 0«1 3.31
AT \/7>TU}0K/C’ < ( )

22K gT?
ng RePeCow

G19 O>1 (3.32)
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Material | a[ppb/K] | B[1/K] |k [W/mK][pxC[J/m>K]| n |
Fused silica (SiO2) | 2.6 x 10 | 8 x 107° 1.4 1.6 x 10° 1.45
ULE glass ~ 0 NA 1.31 1.7 x 108 1.48
TasO5 3.6 x10% | 1.4x107° 33 2.1 x 10° 2.06
Silicon (124 K) ~ 0 NA 6 8§x10° 3.96
Sapphire 6 x 103 NA 46 3.1x10° 1.77
GaAs 5.7 x 103 | 3.66 x 10~* 55 1.8 x 109 3.48
AlgoGagpgAs 5.2 x 103 | 1.79 x 1074 70 1.8 x 10° 2.98

Table 3.3: Thermal and thermo-optic/optical properties of common optical materials at room
temperature and at 1064 nm. The symbols are «, the thermal expansion; 3, the thermo-refractive
coefficient; k, the thermal conductivity; p x C, the per-volume heat capacity; and n, the index
of refraction. Values are obtained from [165, 175, 184]. For GaAs the material properties were
found from [185, 186, 187, 188, 189]. Full temperature dependent material values for many of the
materials listed above can be found in [184]. The thermo-refractive coefficients of ULE, Sapphire,
and silicon are not applicable to the discussion because they are not used as coating materials.

A final correction comes about due to the finite thickness of the coating. We do not go into
detail here, but for large coating thicknesses, the coherence between the thermo-optic and thermo-
refractive effects is reduced at higher Fourier frequencies. The effect is parameterized by a function

' (f) as described in Ref. [175], such that GI© (f) — T'(f) GTO (f).

3.4 Total thermal noise contribution to cavity frequency stability

The total thermally-driven (effective) displacement noise is given by
G;Ot _ Z GEO + Z GEE + Z G;ubstrate + Z G;oating + G«sﬁpacer7 (333)
LR L,R LR LR
where the sum over left and right (L, R) takes into account that the beam waist is potentially
different at the left and right mirrors. The noises directly sum because they are statistically
independent.
Converting the total length fluctuation power spectral density, G (f), into optical frequency
deviations can be accomplished by use of Equation 3.1, which directly relates fractional length

change to frequency fluctations. We obtain

G (f) =G (f) /12, (3.34)
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where L is the length of the cavity and vg is the laser’s optical frequency.

3.4.1 Examples of thermal noise floor

We consider several test cases utilizing two different types of cavity materials and two different
types of coatings: SiOg/Tag0s5 and GaAs/AlgeGag. We perform calculation utilizing Egs. 3.21,
3.25, 3.33, and 3.34. In order to calculate the Allan deviation from the power spectral densities, a
transfer-function approach is used (see, e.g., [45] Eqn 5.12). Two spacer geometries are considered
due to their relevance for future experiments. Plots of the calculated Allan deviations and frequency

noise power spectral densities are shown on pages 84-89. The two cavities considered are

e Cavity A: The spacer 25 cm in length, cylindrical in shape, with a diameter of 10 cm.
The spacer material is ULE glass, while the mirror substrates are fused silica glass, each
with 1 m radius of curvature (mirror radii set the beam size on each mirror, as we show in

Chapter 4). The operating wavelength is 1064 nm and we consider operation at 300 K.

e Cavity B: The spacer is 22 cm in length, shaped as a tapered cylinder 8 cm in diame-
ter at its widest point. The spacer material and mirror substrates are both made from
single-crystal silicon, and the mirror substrates each have 1 m radius of curvature. This
design is identical to the one considered in [168] (aside from the slightly different mirror
radii we utilize here for clarity). The operating wavelength is 1542 nm and the operating

temperature is 124 K, so that the Si coefficient of thermal expansion is nulled as in [168].

As seen from Figs. 3.3-3.8, the use of crystalline materials at cryogenic temperatures can
result in a gain of an order of magnitude of stability for thermal-noise limited performance of a
cavity-stabilized laser. Also, the use of a coating half-wave cap is an effective strategy to reduce
the thermo-optic noise in the mirror coatings. The thermo-optic noise manifests itself at higher
frequencies, and thus does not affect the long term laser stability. However, frequency noise in this
band is still important for reducing the noise in atomic clocks, as described in Chapter 2, and also

for gravitational wave detectors [147].
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3.5 Conclusion

In this Chapter, we explored the relevant thermal noise sources for optical cavities. As shown
in the results plotted in Figs. 3.3-3.8, the cavity materials are an important factor in determining
the magnitude and character of the noise. The summary given in this chapter should hopefully serve
as a useful reference for future cavity designs. In the next Chapter, we describe high-precision laser
stabilization using optical cavities. Using the insights developed in this chapter, we will describe
the construction of four ultrastable laser systems, three of which operate at the level of 1x 10716, A
fourth system is described in which the new coating material described in this chapter—AlGaAs—is
tested, verifying its very promising optical properties and paving the way for lasers with thermal

noise-limited instability at 1 x 10717,
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Figure 3.3: Thermal noise of cavity A with SiOg/TagsOs mirrors, T=300 K. The Bragg stack is
assumed to be 20 high/low index pairs for a coating thickness of 6 ym. The beam radius at each
mirror is wy = 360 pm. (a) Allan deviation of a laser stabilized to this cavity configuration. (b)
Frequency noise power spectral density due to thermo-optic noise in the mirror coatings (blue),
thermo-elastic noise in the mirror substrate (red), and Brownian noise (black). The orange curve
is the sum of all these noise sources, while the green curve is the sum of only the thermo-optic
and thermo-elastic noise. In this case, the coating contributes ~ 85% of the total Brownian noise.
Here, the substrates contribute 13% of the Brownian noise, the coatings 84%, and the spacer 2%.
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Figure 3.4: Thermal noise of cavity A with GaAs/AlGaAs mirrors, T=300 K. The Bragg stack is
assumed to be 40 high/low index pairs for a coating thickness of 7 ym. The beam radius at each
mirror is wo = 360 pm. (a) Allan deviation of a laser stabilized to this cavity configuration. (b)
Frequency noise power spectral density due to thermo-optic noise in the mirror coatings (blue),
thermo-elastic noise in the mirror substrate (red), and Brownian noise (black). The orange curve
is the sum of all these noise sources, while the green curve is the sum of only the thermo-optic and
thermo-elastic noise. In this case, the coating only contributes ~ 25% of the total Brownian noise.
Here, the substrates contribute 64% of the Brownian noise, the coatings 24%, and the spacer 12%.
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Figure 3.5: Thermal noise of cavity A with GaAs/AlGaAs mirrors and a half-wave cap , T=300 K.
The Bragg stack is assumed to be 40 high/low index pairs for a coating thickness of 7 ym. The
beam radius at each mirror is wg = 360 pm. (a) Allan deviation of a laser stabilized to this cavity
configuration. (b) Frequency noise power spectral density due to thermo-optic noise in the mirror
coatings (blue), thermo-elastic noise in the mirror substrate (red), and Brownian noise (black).
The orange curve is the sum of all these noise sources, while the green curve is the sum of only the
thermo-optic and thermo-elastic noise. The half-wave cap dramatically reduces the thermo-optic
noise contribution. Again, the substrates contribute 64% of the Brownian noise, the coatings 24%,
and the spacer 12%.
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Figure 3.6: Thermal noise of cavity B with SiOy/TasO5 mirrors, ' = 124 K. The Bragg stack is
assumed to be 20 high/low index pairs for a coating thickness of 9 um. wy = pm. The beam radius
at each mirror is wy = 415 ym. (a) Allan deviation of a laser stabilized to this cavity configuration.
(b) Frequency noise power spectral density due to thermo-optic noise in the mirror coatings (blue),
thermo-elastic noise in the mirror substrate (red), and Brownian noise (black). The orange curve
is the sum of all these noise sources, while the green curve is the sum of only the thermo-optic and
thermo-elastic noise. Over 99% of the Brownian noise arises from the coatings.
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Figure 3.7: Thermal noise of cavity B with GaAs/AlGaAs mirrors, T' = 124 K. Since the AlGaAs
parameters are not well-known, extrapolated values based on the literature were used in the calcu-
lation. The Bragg stack is assumed to be 40 high/low index pairs for a coating thickness of 10 pm.
wp = pm. The beam radius at each mirror is wy = 415 pm. (a) Allan deviation of a laser stabilized
to this cavity configuration. (b) Frequency noise power spectral density due to thermo-optic noise
in the mirror coatings (blue), thermo-elastic noise in the mirror substrate (red), and Brownian
noise (black). The orange curve is the sum of all these noise sources, while the green curve is the
sum of only the thermo-optic and thermo-elastic noise. The thermal fluctuation noise is dominated
by the thermo-optic noise, as the temperature is chosen to be near the CTE null for silicon, which
also nulls the substrate thermo-elastic noise. Even with the high-Q crystallin coatings, 98% of the
Brownian noise is due to the coatings.
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Figure 3.8: Thermal noise of cavity B with GaAs/AlGaAs mirrors and an additional half-wave
cap, T = 124 K. Since the AlGaAs parameters are not well-known, extrapolated values based on
the literature were used in the calculation. The Bragg stack is assumed to be 40 high/low index
pairs for a coating thickness of 10 yum. The beam radius at each mirror is wy = 415 pm. (a) Allan
deviation of a laser stabilized to this cavity configuration. (b) Frequency noise power spectral
density due to thermo-optic noise in the mirror coatings (blue), thermo-elastic noise in the mirror
substrate (red), and Brownian noise (black). The orange curve is the sum of all these noise sources,
while the green curve is the sum of only the thermo-optic and thermo-elastic noise. The thermal
fluctuation noise is dominated by the thermo-optic noise, as the temperature is chosen to be near
the CTE null for silicon, which also nulls the substrate thermo-elastic noise. Again, the addition of
the half-wave cap dramatically reduces the thermo-optic contribution. Again, even with the high-Q
crystalline coatings, 98% of the Brownian noise is due to the coatings.



Chapter 4

High-precision laser stabilization with optical cavities

As discussed in Chapter 2, ultrastable lasers are central to the operation of atomic clocks.
Importantly, the most precise optical lattice clocks in existence today are limited by the noise
of these lasers, which arises from thermally-driven fluctuations of the optical cavities to which
they are stabilized. This chapter gives a detailed description of the technology required for high-
precision laser stabilization and describes the development of three ultrastable laser systems that
perform at the level of 1 x 10716, Additionally, we describe a new coating technology and present
experimental results that show that the 1 x 10717 level of laser stabilization is within reach. Finally,
we briefly summarize key results with optical frequency combs, as they will play an essential role
in transferring the stability of ultrastable lasers that operate in the near-IR wavelength region to

the visible spectrum.

4.1 Introduction

Optical cavities are extremely useful devices in laser-based research. Within the context of
precision measurement, they enable tests of the laws that govern the macroscopic structure of the
universe, embodied in the search for gravitational waves [147]. At the other end of the length scale,
cavity-stabilized lasers are powerful tools for precision spectroscopy that probes nature at the
quantum mechanical level, through tests quantum electrodynamics [190]. Furthermore, cavities
enable high-sensitivity broadband spectroscopy [191], which has practical applications in trace

gas sensing; exploration of new light-matter interaction regimes in cavity QED [192]; tests of
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fundamental physical principles including relativity [193, 194, 195], local position invariance [196],
and the time invariance of the fundamental constants of nature [61]; and nonlinear optics, including
coherent light build-up for studies of extremely nonlinear effects [51, 52]. In general, optical cavities
have become indispensable tools at the heart of many modern experiments.

As discussed in Chapters 1 and 2, cavity-stabilized laser systems have enabled the develop-
ment of highly precise frequency standards based on neutral atoms [197, 198, 199, 200, 31, 32| and
trapped ions [201, 202, 203, 28]. In recent years, several ion-based standards [57, 27, 30, 29], and
neutral atom clocks [31, 32, 33] have surpassed the fractional frequency uncertainty of the primary
cesium frequency standards that define the SI second [204, 205].

Accuracy is not the only benefit of optical standards; ultrastable lasers paired with ultra-
narrow atomic transitions in the optical domain have allowed the realization of optical clocks that
are orders of magnitude more stable than current microwave-based frequency references, with the
87Sr clock now operating at 3 x 10716/ \/m [43], and which we discuss in this chapter. With
increased stability, highly precise measurements of intricate physical effects can be made in short
periods of time. For example, in Chapter 5, we will explore collisional effects between ultracold at
the 10717 level. This precision can now be attained within a few thousand seconds due to a 10-fold
improvement of the Sr clock laser, which we describe in detail in this chapter.

As discussed in Chapter 3, thermal fluctuations set the ultimate limit to the stability of a
given interferometer. The desire to further improve the stability of optical clocks will continue to
drive advances in cavity-stabilized laser systems, and the next milestone will be a laser with thermal
noise-limited fractional stability at 10717, In this chapter, we also discuss exciting new results that
indicate that this regime should be within reach.

We begin this chapter by reviewing the basics of optical cavities and Pound-Drever-Hall
(PDH) laser frequency locking. We then proceed to a detailed discussion of cavity design consider-

ations, which are applied to several systems.
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4.2 Review of optical cavities

A basic optical cavity is formed by an array of two opposite-facing mirrors (Figure 4.1). For
high-precision frequency stabilization, these mirrors are typically held apart by a rigid spacer and
are kept under vacuum to eliminate a varying intra-cavity index of refraction due to air. Although
more complicated cavity geometries exist, including ring-type cavities (e.g. a cavity formed from
a triangular mirror configuration) where the optical field is a running wave, we consider only this
basic configuration as it is most common for precision frequency stabilization. For an incident laser
of electric field amplitude Fj,., the steady-state electric field inside such a cavity, Esg, is obtained
by enforcing the condition

FEgs = Esseich + Eincﬁ. (4.1)

Here, ¢ is the round-trip phase accumulated by the light, 7 is the mirror intensity transmission
coefficient and R is the corresponding reflectivity. In the absence of mirror absorption and scatter,
it is possible to relate the magnitude of the R and 7T coefficients by R+7 = 1. However, we choose
to allow for the real-world situation, where mirror losses are influential, by leaving these distinct.
The cavity phase shift, ¢, can be re-written in terms of the cavity length, L, and the laser’s optical

_ 1
frequency, w = 27y, as

2Lw
(p et T + (pmﬂ.b. (4.2)

The term ¢y, 5, is due to an additional mode-dependent diffraction phase term and is given by
Omn =—2(m+n+1)AC. (4.3)

Here, the indices m and n label higher-order transverse modes (e.g., TEMO01, TEM11, TEMO02,
etc.), while for the TEMO0O0 (Gaussian) mode, m = n = 0. A( is the differential Gouy phase, which
is given by

AC = tan™t (29/29) — tan™! (21/2) (4.4)

! We also note that the cavity length, L, includes the effects of optical field penetration into the mirror coating,
which typically requires a correction to the physical length on the order of an optical wavelength. For macroscopic
cavities, this effect is negligible, but it becomes important for cavities whose size is of the order of an optical wavelength
[180].
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Figure 4.1: Schematic of an optical cavity in the standing wave configuration. The mirror amplitude
reflectivity and transmission coefficients are given by r and ¢, respectively. Egg is the steady-state
electric field for a given incident field, F;. Some of FE; is transmitted as E;, while some is reflected
as FE,. For simplicity, we assume the mirror properties are identical.

where zy(1) is the position of right (left) mirror and zg is the Raleigh range of the stable mode within
the optical cavity, whose waist is defined to occur at position z = 0. In general, for a resonator
comprised of a pair of opposite-facing, concave, spherical mirrors, the Rayleigh range is given by

d(R1 —L) (R2 —L) (R2+R1 —L)
(Ry 4+ Ry — 2L)?

2 = : (4.5)

which is related to the beam waist at the center of the cavity as

wo = 1/ 220, (4.6)
™

where, as usual, wy is the 1/e? intensity radius. It can also be shown that [207]

a L(Ry— L)
2 \/(Rl —L)(R2 +R1— L) .7

and similarly

z9 - L (Rl — L)
0 \/(Rz "D (Rat Ri— D) (45)

allowing us to find the beam waist at the end mirrors as

2
z
w (21(2)) = Wo 1 + (1(2)> . (4.9)

20
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Commonly, R = Ry = Ry and thus

A¢ =2tan™! (,/ML_J . (4.10)

By solving Equation 4.1 for the steady-state field, we find that the transmitted field ampli-

tude, given by F; = /T Fsg is
Ey(w) e/

= — 4.11
Einc(w) 1—e¥R ( )
Similarly, the reflected field, E,, is given by
Er(w) 1— eitp (T + R)
= = : . 4.12
Boe(w) — F@) =T [ 1— %R (4.12)

The cavity reflection transfer function, R (w), is plotted in Fig. 4.2. As can be seen from Equa-
tions 4.11 and 4.12, the transmission (reflection) is maximized (minimized) when the round trip
phase is a multiple of 2. When this condition is met, the cavity is said to be on resonance. This

results in the resonance condition

A c
Vg = q+(1+n+m)7 Bk

(4.13)
where ¢ is the longitudinal mode index, L is the distance separating the mirrors, c is the speed of
light, and A( is given by Eq. 4.4. We note that there are geometrical configurations of the cavity
such that A( is a rational multiple of 7. In these configurations, it is easy to see that there will
be accidental frequency degeneracies of modes. One such example is the confocal geometry, where
Ry = d. Here, every even mode (i.e., m + n is even) is frequency degenerate with the TEMO00
mode. Another example is Ry = 2d, which results in degeneracy for every third higher-order
mode. It should be stressed that these accidental frequency degeneracies should be avoided, as
exact degeneracies are unlikely, but line-pulling due to near-degeneracies is a possibility and can
be problematic.

From Eq. 4.13, it is obvious that the longitudinal modes are spaced in frequency by ¢/2L, a

quantity known as the free spectral range (FSR). By analyzing the denominator of Eq. 4.12, the

width of the cavity resonance in units of intensity (i.e. the width of a dip in |R[?), denoted as
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Figure 4.2: Reflection coefficient and corresponding phase shift of the reflected light incident upon
an optical cavity. If there are no mirror losses, there is a discontinuity in phase as the reflected
light drops to zero. Here, a small mirror loss term has been included, causing the reflection dip to
not reach zero.

Avpwam, is related to the FSR by

r_ Avpsg 71 _T('\/EN s
_AI/F\)VHM_1—7’2_1—R_1—R7

(4.14)

where the last equality is accurate if F > 100. This ratio, F, is known as the cavity finesse and, as

Eq. 4.14 shows, depends only on the mirror reflectivity.

4.2.1 Measuring Finesse

In order to measure the finesse of an optical cavity, one approach is simply to scan a tunable
laser across the cavity resonances as depicted in Fig. 4.2 and measure the width of the resonance
dips. However, for very high finesse cavities, this is not a feasible approach as the resonance dip

can be extremely narrow with respect to the FSR and even with respect to the laser linewidth.
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The general approach used to circumvent this problem is to use a time-domain measurement.
Quite generally, if an oscillatory system loses energy at a rate proportional to the amount of energy
stored, then the associated time dynamics are exponentially decaying such that U (t) = Upe V7,
where U (t) is the energy stored. Many physical systems can be described in this way. We then
associate a field, u (t), with the stored energy U (t), such that U (t) = |u (¢)]>. The time dynamics
of u (t) are then [154]

u(t) = upe™ot=t (27 (4.15)

and the transfer function of the system is given by

1

|H (w)[* o i (4.16)

Thus, the FWHM of the resonance in frequency is given by
Avpwam = 1/ (277) . (4.17)

The decay constant 7 is related to the quality factor, Q, as
Q = vo/Avrwam = WoT. (4.18)

The Q-factor can also be understood as the rate of stored energy loss divided by wy.

In an optical cavity we can calculate 7 very easily. We assume that in a time L/c, the stored
energy will have been reduced by (1 — R). This implies that the intensity loss rate is given by
1/7 = (1 — R)e/L such that

dal 1—-R)c

(-, 19
We can thus calculate the finesse by noting that Avpwnm = ¢/(2LF) = 1/(2n7). We thus find
that

F=—. (4.20)

Equation 4.20 implies that finding the photon decay time of the optical cavity allows a
determination of the cavity finesse, assuming the length is well-characterized. One way to measure

T is to stabilize a laser to the optical cavity under test and then very quickly switch off the power.
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Figure 4.3: Measurement of cavity photon storage lifetime. Here, a laser was actively stabilized to
the optical cavity and its power abruptly extinguished. The red solid trace is the intensity ringdown
data with a exponential fit (dash-dotted line). The agreement between the measured data and the
exponential fit is excellent. Also shown is the combined response time of the detector and optical
power switching (dashed grey line). The photon storage time is found to be 7 = 81.3(1) us.

This method assumes that the the laser stabilization has already been achieved—making this
method technologically complicated—but the results are exceedingly easy to interpret. Figure 4.3
shows an example of such a procedure. Here, a laser was locked to a high-finesse optical cavity of
length L = 39.4 ¢cm (which we will later describe in detail) and a ringdown time of 7 = 81.3(1) pus
was measured. This results in a finesse of F = 194, 000.

In many instances, it is desirable to make a finesse measurement without the added com-
plications of locking. An alternative approach is to sweep the laser frequency across the cavity
resonance and record either the transmitted or reflected time-domain signal. However, when the
laser stays near the cavity resonance for a duration that is comparable to the photon storage time,
interference effects can emerge which make interpreting the signal difficult. Specifically, the field
inside the optical cavity given by F (t) can be described by a simple differential equation for a

linearly swept laser [208] as

dE

Y (1 —iot') E +in. (4.21)
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Here t' = t/75 is the time normalized by the field ringdown time (as opposed to the intensity
ringdown time) where 75 = 27. The constant 7 is the drive rate, given by n = VT FE;/7 (here T

is the input mirror transmission as in Fig. 4.1). The sweep rate is parameterized by 7, where

b= %7 (4.22)

mwe

with the laser frequency sweep rate denoted by w (in units of radians/s?). Here, t' = 0 when the
laser is on resonance with the cavity.

While Eq. 4.21 is trivially solved numerically, it turns out that closed-form solutions exist
for any initial condition. In the limit that the laser sweep starts far off resonance and we ignore all

other cavity modes, the solution for the reflected and transmitted power are

2
5 |: T 012 1o (97 - z—‘,—t/ﬂ
E ) = B> 1~ e HIR2 ) 1 /90D 4.23
B0 = 1B |1 = | _ (1.23)
and
2
32 |E;|? \/?_, 2 oo i+t
E, (¢ 2: - Ze t'+ivt'? /2 Z/(2V)—|—Z\/§D 4.94
1X0) ; V3o (1.21)
Here, D (x) is the Dawson integral?® , and 3 is the cavity contrast parameter, given by
B=T/(1-R). (4.25)

On cavity resonance, the fraction of transmitted power is 32 while the fraction of reflected power
is (1 — 6)2. The closed-form solutions to Eq. 4.21 facilitate extracting 7 from swept-laser ringdown
measurements. As an example of a swept-laser cavity finesse measurement, Eqs. 4.24 and 4.23 were
used to fit time-domain transmission and reflection signals from two different optical cavities. As
seen in Fig. 4.4, the agreement with the data is excellent.

The reason 7 and R typically differ is due to absorption or scatter in the mirror coatings,
leading to extra losses beyond those due to light exiting the cavity through transmission (see e.g.,

[180] ). Measurements of § and cavity finesse allow 7" and R to be extracted. In steady-state, the

_z2

2 The Dawson integral is D (z) = e Oz & d¢ and is built into Mathematica as the DawsonF function.
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Figure 4.4: Measurement of photon storage time with a swept-frequency optical field. (a) Time-
domain signal of the reflected optical power from a swept ringdown measurement of the cavity
presented in [40]. Here the photon storage time is 14 us, indicating a finesse of 180,000 (b) Swept-
frequency transmission signal of the cavity presented in [56]. Here, the photon storage time is 10 us,
indicating the finesse is 280,000.

power that enters the cavity is related to the power leaving the cavity and the total input power,

Py by
Pn =P [1—(1-B)?] and Poy = PS> (4.26)
We can solve for 3 as
P — (4.27)
N 1 + ]Din/Pout ’ ’

Thus, a simple measurement of P, P,yt, and cavity photon storage lifetime is sufficient to determine

the mirror properties.

4.2.2 Pound-Drever-Hall Locking

As seen in the previous section, an optical cavity defines a series of narrow resonances in the
frequency domain. A common way to stabilize a laser to such a resonance is through a frequency
modulation locking technique. The most commonly used and successful frequency modulation
technique for laser stabilization is the Pound-Drever-Hall (PDH) stabilization scheme [209], where
the frequency modulation is performed at a much higher frequency than the cavity linewidth.

There are several reasons for the widespread adoption of PDH locking. First, there are no
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restrictions upon the phase modulation frequency, as long as it is larger than the cavity linewidth.
A higher modulation frequency gives the lock immunity to common laser amplitude noise offsets
and also permits the use of resonant electro optic modulators (EOMs). Additionally, in the PDH
scheme, the lock bandwidth is not restricted by the cavity linewidth, allowing extremely narrow
cavity resonance features to provide high-bandwidth stabilization.

Given the reflection spectrum of Fig. 4.2, one could imagine that a very simple locking scheme
would be to slowly frequency modulate the probing beam and use this signal to determine where
on the reflection dip the laser frequency lies. However, one main reason not to take this approach
for high-finesse cavities is that laser relative intensity noise (RIN) increases at lower frequencies,
in addition to electronic noise floors. These amplitude fluctuations would contaminate the locking
signal, affecting the lock stability. Additionally, the lock bandwidth would be severely limited.

One way around this noise problem is to increase the laser modulation frequency well above
the cavity bandwidth and beyond the spectral region with significant laser amplitude noise. In this
configurations, it is best to think of the laser electric field distributed as shown in Fig. 4.5. When
the modulation sidebands are well outside the cavity transmission bandwidth, the PDH locking
configuration [209].

Several reviews of PDH locking and laser feedback control theory exist [210, 211, 212, 213].
Here, we briefly discuss the important results of the PDH locking technique. In order to mea-
sure the PDH error signal from an optical cavity, the laser must first be phase modulated. A
phase modulated signal can be decomposed into a carrier and sidebands using the Jacobi-Anger

expansion [214]:

EoefiwotfiAapsin(Qt) = EyJy (A(,O) e~ iwot

0o
+ EOZJn(ASO) [e—i(wo—I—nQ)t + (_l)ne—i(wo—nQ)t ) (4.28)

n=1
Here, the term Ay is the phase modulation (PM) depth and Q is the PM frequency. From this
expansion, it is clear that the first order sidebands are 180 degrees out of phase (as are all odd

order sidebands), as pictured in Figure 4.5. When the PM frequency is well outside the cavity
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Figure 4.5: Pound-Drever-Hall sidebands and error signal. (a) Electric field amplitude in Fourier
space in the presence of phase modulation of depth Ag. (b) Pound-Drever-Hall error signal as a
function of laser detuning from the cavity resonance.

bandwidth, these sidebands are sufficiently detuned from the cavity resonance such that they are
promptly reflected from the cavity unaffected. The carrier, which is near the cavity resonance, is
affected by the complex response of the cavity (as shown in Figure 4.2 and given in Equation 4.12)
and interferes with the PM sidebands upon reflection.

This interference term can be explored by assuming that the PM sidebands are completely
reflected and finding the time-dependent reflected optical power, P¢(t), when the carrier is near

resonance. Making use of only the first order sidebands of Equation 4.28,

1 . .
Pref(t) = 5 ‘Ec, ref Ese_th — Eseth’2
= P, ref + 2P — 2Im { E, 1t B } sin () 4 292 terms. (4.29)
Here, E¢ et (Fe, ref) is the reflected electric field amplitude (power) in the carrier and Eg (F) is
the reflected electric field amplitude (power) in the sidebands. Keeping everything that oscillates
at  or below, and making use of Equations 4.28 and 4.12,
Pret(t) = Po [J3 (Ap) [RI? + 27 (Ap)]

+ 4Py Jo (Ap) Ji (Ap) Im {R} sin () . (4.30)
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When the carrier is less than a cavity linewidth from resonance,

—28F

Im{R} ~ Avrsn

Sv (4.31)

Here, dv is the laser detuning from cavity resonance given by dv = Vjager — Veavity and 3 the cavity
contrast parameter defined in Eq. 4.25. The term in equation 4.30 that oscillates as sin (), is

thus given by

Dovsin (Qt) (4.32)
where we have used the definition
P, A A
DE—86 040 (Ap) Ji ( 90)’ (4.33)
AvpwHM

along with the relationship Avpsr/F = Avpwam to derive Equation 4.33.

Equation 4.32 gives the component of optical power that oscillates at the phase modulation
frequency. For small detunings, the amplitude is linear in dv, and can thus be used to lock the laser
to the optical cavity after the optical power has been detected on a photodiode and demodulated.
The degree to which the amplitude changes for a given detuning is characterized by the parameter
D, which, as should be expected, varies inversely with cavity linewidth and is proportional to the
product of the zero and first-order Bessel functions. In passing, we note that this can be used to
define an optimal modulation depth, given by Ay = 1.08. By measuring this oscillating RF signal,
and demodulating by mixing in the proper quadrature at the frequency 2, a linear control signal
can be obtained with which to feedback upon the laser frequency.

While Equation 4.32 describes the behavior of the error signal near the cavity resonance, one
may go a step further and include the frequency dependence of Im{R} to calculate the shape of
the error signal over a broader range, as shown in Figure 4.5 [211]. When this detail is included,
it can be shown that the frequency response of Eq. 4.31 needs to be multiplied by a single—pole
low-pass filter function with a corner frequency equal to the cavity half-width in order to provide
a better approximation of the system’s frequency response. This effect can be compensated for by

appropriate servo design, such that the lock bandwidth need not be limited by the cavity linewidth.
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Physically, this low-passing effect represents a transition from a regime in which the cavity is
sensitive to frequency fluctuations of the laser to one in which the error signal is proportional to

phase fluctuations of the laser. As expected, this transition occurs at the cavity half-width.

4.2.3 Sources of lock error

There are two important considerations when frequency stabilizing the laser. The first is
that the reference cavity optical length must be as stable as possible and will be discussed later.
However, an equally important question is whether there are any effects that can prevent a laser
from precisely tracking the reference cavity resonance, due to either technical or quantum effects.

The most fundamental but least important source of error in cavity locking systems is quan-
tum noise (see e.g. [215, 210]). The optical power spectrum of shot noise on the light at the detector

is given by the single-sided power spectral density
Gp = 2hv Py [W?/Hz]. (4.34)

Thus, assuming § = 1, the expected frequency noise due to shot noise in the most ideal case (and

with an ideal demodulator) is

Gp hVAI/I%WHM

G — —
Y D2 161 P J2

[Hz?/Hz] , (4.35)

where 7 takes into account the detector quantum efficiency and v = ¢/ is the optical frequency.
Substituting in the very modest parameters A = 1 um, Py = 10 uW, n = 0.5, and Avpwam =
10 kHz, the very low shot noise floor of S, = 4 x 10~7 Hz?/Hz can be achieved. This can be related
to the locked laser linewidth by

AVipcked = 7TG1/7 (436)

where it is assumed that G, is white noise. For the parameters given above, this results in a
locked linewidth of 1 yHz. Thus, for high-finesse cavities, the shot noise locking limit is far below
any cavity locking result, even in experiments designed to exclude other technical and thermal

effects [215]. This indicates that in practical situations, “technical” effects are most important.
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Residual amplitude modulation (RAM) is a term that collectively describes a variety of effects
that induce amplitude modulation at the phase modulation frequency. For example, temperature-
dependent parasitic etalons within the optical system can induce RAM which is then demodulated
along with the cavity error signal. This causes an offset to be introduced in the locking system.
Other effects that can cause RAM are typically related to the phase modulation device, most often
an electro-optic crystal-based (e.g. LiNbO3, ADP, KDP) modulator. For instance, stress-induced
birefringence in crystal devices can rotate the principle crystal axis, creating not only an electric
field-dependent phase shift, but also a corresponding polarization rotation, which can be distributed
across the optical wave front.

While in many cases a temperature-controlled electro-optic (EO) crystal has low enough
RAM for acceptable performance, a certain degree of success has been achieved by using a DC
electric field on crystal-based EO modulators to actively servo the RAM [216]. However, beam
pointing deviations can cause slightly different regions of the crystal to be sampled, causing the
phase of the RAM to shift, and limiting the effectiveness of the active system.

It is important to note that the effect of RAM on laser stability is reduced for cavities with
narrower resonances due to the fact that a given fractional change in RAM results in a smaller
change in frequency for a narrower resonance. Thus, for a given cavity length, higher cavity finesse

is always desirable to help mitigate RAM-induced line pulling.

4.2.4 Choice of EOM crystal

In many cases, limiting RAM is of central importance for high-precision locking. As new
materials continue to be developed to lower the fundamental thermal noise limitations to cavity
locking (see Chapter 3 for a detailed description of thermal noise in interferometers), RAM-induced
lock error will continue to be an important factor in high-precision laser stabilization. Here we
discuss strategies for mitigating EOM-induced RAM.

Crystal symmetry plays a big role in the properties of an EOM. Lithium niobate and lithium

tantalate are uniaxial crystals that both belong to the trigonal 3m crystal group, while ammonium



105

LiNbO3 ADP

/ x g 7

Figure 4.6: LiNbO3 and ADP modulator configurations. In the case of ADP, the beam that receives
the phase modulation (horizontally polarized in this figure), walks off from the vertically polarized
component.

dihydrogen phosphate (ADP) and potassium dihydrogen phosphate (KDP), also uniaxial, belong to
the tetragonal 42m crystal group. While a full discussion of the crystal symmetries and implications
for electro-optic modulation of light is beyond the scope of this section, we note that in general
the electro-optic coefficients—the coefficients that modify the crystal impermiability tensor in the
presence of an applied field—depend directly on the type of crystal symmetry. For example, the
r3g coeflicient in trigonal 3m crystals—which produces an index change for light polarized along
the extraordinary axis with an applied electric field along the same axis and is widely used in
LiNbO3-based EOMs—is zero for tetragonal 42m crystals, such as ADP.

We begin our discussion of the most conceptually simple of the two classes of crystals con-
sidered, the trigonal 3m crystal group, to which LiNbOgs and LiTaOs belong. For light polarized
along the z-direction and with a modulation electric field also applied along z, the change of the

index of refraction can be shown to be [207]

1
ne (E) ~ne — ingrggEz. (4.37)

Here, n. ~ 2.2 is the index of refraction of the extraordinary axis (z-axis). This configuration is also
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shown in figure 4.6. For the specific case of LiNbOs, the 733 coefficient is approximately 30 pm/V
and is the largest electro-optic coefficient among all of the LiNbO3 EO coefficients [217].

One of the most important intra-EO sources of RAM is a polarization-rotation at the drive
frequency that gets converted to RAM by polarization-sensitive optics in the PDH system later
on [216]. Specifically, if there is any misalignment between the incoming light polarization and
the LiNbOg3 extraordinary axis (z)-axis, there will be a RAM effect. Temperature fluctuations
can couple to stress-induced birefringence to make the z-axis a moving target. Thus, temperature
control and a very high quality, carefully aligned input polarizer are necessary for reducing the
time-dependent RAM in LiNbOj crystals.

It turns out that ADP largely addresses the issue of polarization rotation. Due to the different
crystal symmetry of tetragonal 42m crystals® the EO coefficient of interest is r4; and the crystal
should be cut as in Fig. 4.6. It can be shown that the index change for the ray polarized along the
y' axis is [218]

1
ny (E) ~ n, + 5ru;,mEgc, (4.38)

where n,/ is given by

\[ 1 1 -1/2
ny =V2( 5+ ~1.5. (4.39)

In the case of ADP, ry4; is approximately 25 pm/V [218], thus it is competitive with LiNbOg in
terms of phase modulation.

Due to the qualitatively different orientation of the axes for phase modulation, ADP can
serve as its own polarizer. As shown in Fig. 4.6, the polarization component along the 3 axis has
a walk-off due to the fact that this axis is not a principle axis. On the other hand, the (unwanted)
polarization component along x has no walk-off due to the fact that z is a principle axis. The angle
between the 3’ polarization k-vector and the z polarization k-vector is approximately 1.8° [219].
This means that the two polarization components can be spatially separated after transmission

through the crystal, as depicted in Fig. 4.6, effectively eliminating the polarization rotation effect.

3 The reader should be aware that the orientation of ADP discussed here is not common in the literature due to
the fact that a different configuration is commonly utilized for amplitude modulation.
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Figure 4.7: Experimental setup for active control of residual amplitude modulation (RAM) in a
waveguide electro-optic modulator. The RAM is detected using the same local oscillator as is used
to drive the crystal.

4.2.5 Active control of residual amplitude modulation

As discussed in the previous section, RAM can crucially depend on the polarization alignment
into crystals of the trigonal 3m family. In general, it is possible to control the polarization alignment
by careful control of the input light polarization, and to mitigate temperature-dependent stress-
induced birefringence. Wong and Hall [216] devised a further step, based upon applying a DC
electric field in addition to the RF drive, in order to actively cancel the polarization-rotation
induced RAM. Specifically, they show that for misaligments between the crystal extraordinary axis
and the input and output polarizers, given by angles 6; and 05, respectively, there will be RAM
that scales as [216]

AP (t) = Apsin () sin [A¢ (Eqc)] - (4.40)

Here

AO = —PO sin (201) sin (202) Jl (Atp) s (4.41)

where P is the input power, and 2 and Ay are the same quantities as utilized in Eq. 4.28; and
A¢ (Eqc) is the phase shift between the ordinary (o) and extraordinary (e) polarization components
within the crystal. This phase shift depends on the crystal length, the crystal temperature, the dif-

ference between n. and n,, and importantly the applied electric field. The electric field dependence
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Figure 4.8: Experimental demonstration of reduced residual amplitude modulation (RAM).(a)
RAM-induced frequency offsets in a lock. Here, the free running lock baseline signal was con-
verted to frequency by the known slope of the cavity frequency discriminant. Engaging the RAM
servo reduces the effect to the few-Hz level. (b)Allan deviation of the extrapolated RAM-induced
frequency offset.

was exploited in Ref. [216] to actively maintain A¢ (Eq4.) = 0.

Equation 4.41 suggests that if #; = 62 can be enforced, there will be no RAM. While free
space modulators can come close to attaining this condition if temperature-dependent effects are
carefully controlled, it rules out a fairly attractive class of modulators: waveguide-based EOMs.
Waveguide EOMSs can provide high modulation depth for very low applied voltage, allowing easy
optimization of cavity locking systems. However, fiber based devices do not offer precise control of
the input polarization due to manufacturing difficulty of aligning the polarization axes of the fiber
to crystal.

Despite this difficulty, we have had great success employing the technique of Wong and Hall
to null RAM-induced frequency noise. Modern fiber-based waveguide EOMs have the advantage
that the waveguide defines a precise interaction region. As a result, waveguide modulators are free
from beam-pointing fluctuations that can be converted to RAM. We attribute the success of this
technique to this key difference and we implemented RAM servos in several optical cavity systems,
most notably those described in Ref. [168]. For one cavity, the RAM servo allowed the cavity

resonance to be tracked with a fractional imprecision less than a part in 10°. Figure 4.8 shows
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an example of such a RAM servo in action, where the frequency offset of the non RAM-controlled
case would be at the kHz level. Engaging the RAM servo increases the stability by two orders
of magnitude. Since the RAM servo technique is insensitive to RAM beyond the RAM detection
photodiode, it is quite possible that the level of stability of the data shown Fig. 4.8 was limited in

part by optical etalons.

4.3 Mechanical design of optical reference cavities

Despite the considerable challenges present in building a high-quality cavity locking system
that is free from residual frequency offsets, these effects are not what limit most high-finesse optical
cavity frequency references. Instead, perturbations to the length of optical reference cavity are
ultimately what limit the frequency stability. These perturbing effects fall into two categories:
mechanical and thermal perturbations that are not fundamental, i.e. that are non-statistical in
origin; and fundamental statistical fluctuations in the cavity spacer, substrate, and coatings that
arise from their contact with a thermal reservoir at room (or cryogenic) temperature.

In this section, we discuss non-statistical perturbing effects and describe methods for their
mitigation. These mechanical effects can be divided into two categories: those caused by vibrations
(accelerations) that structurally deform the cavity, and those that couple through the coefficient of
thermal expansion (CTE) of the cavity materials. Use of finite element analysis to optimize cavity

geometries and choice of materials has drastically reduced and elucidated these effects.

4.3.1 Vibration sensitivity

Although optical cavity mirrors and spacers are typically made out of an extremely rigid
substance, such as ultra low expansion glass (ULE), the length stability requirements are stringent
for sub-Hz lasers. As can be seen from Equation 4.13, the fractional frequency change of a cavity

resonance is directly related to the fractional length change by

v AL

> - (4.42)
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A world record for cavity stabilization—and one that stood for over a decade—was set in 1999 with
1-second stability at 3 x 10716, and employed a very impressive vibration isolation scheme in order
to keep the cavity length constant: the entire optical table was suspended on giant rubber bands,
resulting in a highly-effective seismic isolation system [38]. Although the cavity length in Eq. 4.42
is the effective length sensed by the optical field, which is averaged over the mirror surface, it is
still astounding that the length stability needed for a sub-Hz laser is sub-fm (107!% m)—the length
scale of the proton radius! It should thus come as no surprise that length stability at or below one
part in 10'° takes significant engineering effort.

One approach that significantly reduces the dependence on vibration-isolating structures is
to design the cavity spacer such that mirror-spacer system is insensitive to vibrations. An intuitive
way to achieve this is to mount the cavity at its midplane in the vertical direction [39]. In this
way, the top and bottom mirrors move equal amounts when subject to vibrations along the vertical
axis. However, one can only get so far exploiting intuitive geometry for the simple reason that
the support structure breaks perfect vertical symmetry. Thus to finalize any cavity design finite
element analysis (FEA) must be employed [220]. This technique can be applied to a variety of
cavity geometries and tailored to a specific design goal, such as insensitivity in a specific direction,
and was employed to design the vertical cavity reported in [40], and which is still operating in the
lab as of the time of this thesis. Further improvements of the technique have yielded even better
results for a vertical design, with vibration sensitivty at the level of 107/ (m/s?) [221]. These
results are quite good given that the highest grade commercial isolation platforms can give isolation
performance at the 50 ng/ VHz level, resulting in a vibration-limited frequency noise performance
of order 10 mHz/ VHz for the sensitivities exhibited by modern cavities in the visible spectrum.

In principle, one is not restrained to vertical configurations. In fact, there may be good reason
to choose a horizontal configuration, especially if it is expected that the majority of vibrations will
be in the vertical direction. Other motivating factors include structural stability, especially for
larger cavities, and the experimental ease of access for horizontal geometries. Most importantly, in

the horizontal configuration, the coupling of vertical accelerations to deviations along the optical
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axis is reduced by the Poisson ratio, representing roughly an 80% reduction in sensitivity. However,
horizontal accelerations can still couple into mirror displacement, although the inherent symmetry

in the two horizontal axes limits this effect.

4.4 Designing two ultrastable lasers for the 10716 level performance

In this section, we discuss the design of two ultrastable optical cavities for laser stabilization
using finite element analysis. In both cases, the ULE glass spacers were pre-existing (i.e., they were
not ordered expressly for the purpose of creating a design with insensitivity to vibrations). As a
result, the geometry was fixed, permitting fewer degrees of freedom to explore in the modeling.

Despite this constraint, we find support configurations that yield immunity to vibrations.

4.4.1 Design of the “Big ULE” cavity

The cavity lovingly nicknamed the “Big ULE” is one of the largest ultrastable cavities to be
implemented in a force-insensitive configuration [2]. This cavity first joined our lab in the early
2000s to fulfill another role. Jason Jones et al. employed it for direct frequency comb stabilization,
and its length chosen such that the free spectral range matched the repetition rate of a Ti:Sapphire
laser [222]. At 39.4 m in length, it is over six times as long as the well-known (American) “football”-
shaped cavity of Ref. [199]. Its mass is over 20 kG. This author can assure the reader that every
moment transporting this cavity, often with nothing more than a steady grip, was a religious
experience!

In order to perform finite element modeling, we consider a symmetric half-cavity shown in
Fig. 4.9. The support strategy was chosen to give the feet a uniform surface on which to sit, yet
still be easy to machine. The support strategy that we decided to implement was based on milling
vertical shafts with a flat support surface into the sides of the cavity (see Fig. 4.9a).

Additionally, we wanted to take a risk and use fused silica (FS) mirrors. As seen from the
discussion in the previous chapter, fused silica has a much lower loss angle that ULE, and thus can

lower the thermal noise floor of a cavity by about a factor of two over an equivalent design with
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Figure 4.9: The finite element model considered for the “Big ULE” cavity. It is important to
note that the teflon legs shown here are no longer in use. (a) One half of the cavity was used in
the modeling due to the axis of symmetry in the midplane (b) Front view of the model used and
optimal support depth, d. (c) Top view of the model, and optimum support axial displacement z.

ULE mirrors. The risk comes in the mismatch of coefficients of thermal expansion (CTEs) of the
two materials. In order to mitigate the problems arising from the mismatch, we included ULE rings
in the design, which were assumed to be contacted to the back surface of the FS mirrors. This had
been shown to tune the the thermal expansion properties in a way that helps offset the difference
in CTEs [223] (we will discuss this in more detail in Section 4.4.4.1). We note parenthetically, that,
while the ULE rings were included i