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Kindel, W. F. (Ph.D., Physics)

Generation and Efficient Measurement of Single Photons Using Superconducting Circuits

Thesis directed by Prof. Konrad W. Lehnert

In this thesis, I demonstrate and evaluate an on-demand source of single propagating mi-

crowaves photons. Working in the context of a quantum network, nodes are connected via propagat-

ing, nonclassical states of the electromagnetic field. As such, preparing and detecting propagating

quantum states is an essential task. I work with one particular node consisting of a microfabricated,

effective two level system coupled to a microwave resonator and study its ability to produce propa-

gating nonclassical states, such as single photon states. In principle, states generated by this node

could be sent to other such nodes. However, I send them into a Josephson parametric amplifier

(JPA) to characterize the source.

In particular, I discuss how to design and couple the two components that form my source:

a fixed frequency transmon qubit and a 3D superconducting waveguide cavity. I demonstrate the

ability to control of the dynamics of this combined system and implement a single photon gener-

ation protocol, which utilizes a single microwave control field that is far detuned from the photon

emission frequency. To characterize the generation, I perform tomography on the propagating pho-

ton state to determine its density matrix ρ. I perform repeated JPA-backed, linear measurements

of the propagating state. Based on the histograms of my measurements, I infer a maximum single

photon component ρ11 = 0.36 ± 0.01. I characterize the imperfections of the photon generation

and detection, including detection inefficiency and measurement backaction. I find that within

uncertainty my measurements match my expectation.
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Chapter 1

Introduction

In this thesis, I address a quantum node, or building block in the framework of a quantum

network. Specifically, I look at how these nodes transmit information. Many physical platforms

exist for building nodes of a quantum network, from trapped ions [1, 2] to Nitrogen vacancy

centers [3] and electron spins [4, 5]. In this chapter, I describe my experimental platform for

realizing a quantum node, which is a particular type of superconducting circuit, and introduce the

concept of a quantum network. Then, I provide an overview of the entire thesis. Lastly, I describe

my experimental approach to address this problem and compare mine to other approaches with

superconducting circuits.

With the advent of superconducting circuits used as quantum technologies, the prospect

of processing quantum information has become less remote. In particular, the circuit quantum

electrodynamics (CQED) concept has seen many recent successes. This architecture consists of a

superconducting qubit strongly coupled to a cavity [6, 7]. The cavity is an electromagnetic res-

onator, which, in the absence of coupling to the qubit, acts as a harmonic oscillator. Experimentally,

one can drive this cavity and the average number of photons increase linearly with drive power.

Although the qubit can also be considered an electromagnetic oscillator, it behaves intrinsically

differently than the cavity. When driven, its response is highly nonlinear. It can only absorb one

unit of energy, or quanta. As its state can only be measured in two different values, it is a two-level

system. This gives rise to two powerful properties. First, because it has only two possible states,

it can be used to encode a bit of information. Furthermore, because it behaves quantum mechani-
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cally, it can be prepared in a quantum superposition of these two states, and thus is referred to as

a quantum bit (qubit) [8]. Second, its nonlinear response to an electromagnetic field drive can be

used as a resource to prepare and readout nonclassical states of the cavity field (states of microwave

light that go beyond a classical description). For example, the cavity has been prepared in states of

quantum coherent superpositions of photon, with detectible interferences [9]. Moreover, quantum

coherent superpositions of the classical coherent state have been prepared, called Schrodinger cat

states in a nod to Schrodinger’s notorious cat [10].

Together, these qubit-cavity systems can be viewed as a building block. In a broader context,

one can think of a quantum network where qubit-cavity systems are nodes that perform elementary

operations [11]. In order to have these nodes working together to process quantum information,

one has to couple them coherently. In other words, one must have channels connecting the nodes

to propagate quantum information among them. In a local approach, physically separated qubits

communicate via a cavity bus [12]. Using this bus, the states of the two qubits can be tied together

in what is known as entanglement. Harnessing this entanglement between two physically separated

qubits, the quantum state of one qubit is destroyed and recreated in the second qubit without

measurement, in a process known as quantum teleportation [13]. In the approach I consider, the

communication channel takes the form of a transmission line along which electromagnetic waves

can propagate. This approach allows for arbitrary connectivity among quantum modules such as

QCED systems. Commutation among these nodes via propagating modes along transmission lines

can entangle the nodes, forming a larger quantum system or quantum network [14].

In addition to their utility in establishing quantum networks, propagating non-classical states

can be an interesting resource in various other contexts. In particular, in the field of quantum micro-

mechanics, a current challenge is to prepare profoundly nonclassical states of motion, such a single

phonon states or Schrodinger cat states. Mechanical systems can be coupled strongly to propagating

microwave modes, enabling their preparation in coherent states [15, 16]. But by themselves, they

lack sufficient intrinsic nonlinearity to evolve spontaneously into a profoundly nonclassical state.

One path is to prepare a profoundly nonclassical propagating microwave field and transfer that
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state to a mechanical oscillator.

Given the importance of these propagating modes in forming a quantum network and in

creating non-classical states of motion, I focus on generating one of the simplest nonclassical states:

a single photon. The core of this thesis studies how a single photon can be created in the cavity

using the qubit, how this photon’s wavefuntion can slowly move out of the cavity and into the

transmission line, and how I can detect this photon.

In the optical domain, photon detectors are available and routinely used to detect single

photons. These detectors register the presence or absence of a photon with a binary output signal;

i.e., they click as one photon is measured. At microwave frequencies, such detectors are not available

because the energy carried by a single photon is too small to create an electron-hole pair in a

semiconductor. What is available are voltage amplifiers or linear detectors. Due to the small power

of these single photon signals, stringent noise requirements are placed on these detectors. Meeting

these requirements is impossible with commercially available amplifiers. I therefore use a home-

made amplifier that achieves near-quantum limited amplification 1 . This amplifier is a parametric

amplifier called the Josephson Parametric Amplifier (JPA).

1.1 Thesis overview

I begin by introducing the concept of photon generation and detection experiment within a

modular architecture of a quantum network. In doing so, I introduce the two key elements of the

experiment: the qubit-cavity system, which generates single propagating photons, and the JPA,

which acts as a detector. I specifically discuss the concept of photon generation and detection and

contrast my work with other photon generation experiments in superconducting circuits. In Chapter

2, I introduce a quantum mechanical formalism for circuits, including models for CQED system and

their dynamics, and the quantum mechanics of measurement. In Chapter 3, I discuss designing

a qubit-cavity system within the constraints of the photon generation demands. In Chapter 4

I experimentally characterize the qubit-cavity system and demonstrate its basic operations. In

1 The added noise is close to what is required by quantum mechanics [17]
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Chapter 5, I describe single photon generation and detection. Finally, in Chapter 6 I discuss

extending my generation from single photons to flying qubits, and discuss integrating the photon

generation with other quantum modules, such as mechanical systems.

1.2 Experiment overview

1.2.1 Photon source

In designing the photon source, I consider parameters such as the itinerant photon’s frequency

and bandwith to ensure compatibility with the target module. So that I am not limited by qubit

lifetimes, I choose to make the source module from most coherent, yet fixed frequency qubits. These

systems consist of a transmon qubit embedded in the center of a superconducting cavity [18].

These so called 3D transmons are both simple to fabricate and have lifetimes (T1 ≈ 100 µs)

compatible with narrowband modules such as: electromechanical devices [16, 19], microwave to

optical convertors [20], and other 3D transmon systems; i.e., bandwidths (inverse lifetimes) that

do not exceed 1 MHz. However, in this style of CQED system that I use, neither the qubit nor the

cavity have tunable resonance frequencies; thus, the only controls available are microwave fields.

Because I am limited to control fields, I am interested in a single transition that creates a

photon in the cavity. In CQED systems, the qubit or two level system breaks the harmonicity

of transitions, and thereby allows deterministic photon generation protocols to be implemented

by driving these transition [21]. The transition I am interest in is known as a blue sideband

transition (Section 2.2.3.2). This transition can be used to generate a single photon while exciting

the qubit. It is a two photon process, roughly at the average of the qubit and cavity frequency

ωblue ≈ (ωc + ωq)/2. Hence, this transition is off resonance with both the qubit and the cavity.

Experimentally, blue sideband pulses have been utilized in CQED systems, demonstrating

their ability to generate cavity excitations or photons. The blue sideband transitions were initially

spectroscopically studied in these QCED system [22]. Generating cavity excitations (photons)

was indirectly demonstrated through an experiment that entangled two qubits [23]. In Ref. [23]’s
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experiment, the blue sideband creates a photon as an intermediate step while entangling the two

qubits. By verifying the entanglement between the two qubits indirectly, this work shows that blue

sideband pulses can create photons in QCED systems.

Given the experimental demonstrations of the blue sideband pulse and long coherence times

of QCED systems, I combine these two elements to form an elementary protocol for generating

itinerant photons. First, I use a control field at the blue sideband transitions to generate a single

photon in the cavity. Then, the photon in the cavity decays through a strongly coupled output

port, creating the propagating photon.

1.2.2 Photon detection

Rather than using a second CQED module as the target, I use a quantum module which acts

as a detector of the propagating photon: namely, the JPA. This quantum module preforms a re-

versible and deterministic transformation on the propagating mode, amplifying one quadrature and

deamplifying, or squeezing, the orthogonal quadrature [24, 25]. I choose the JPA because Josephson

junction based parametric amplifies (like the JPA) are among the most efficient microwave ampli-

fiers and have been successfully integrated with QCED systems. Their development has enabled

30 fold efficiency improvements over the best commercial low noise amplifiers (HEMTs) because

JPAs add only a small fraction of vacuum fluctuations on top of amplified signals [17]. JPAs are

the natural choice for measuring the propagating, single photon state because they have been used

to perform efficient measurement of propagating nonclassical states [26, 27, 28, 29]. Moreover, sim-

ilar Josephson junction based parametric amplifiers have already been integrated with qubit-cavity

systems to perform qubit readout [30, 31, 32, 33]. In these systems, the parametric amplifiers

have improved qubit detection to nearly ideal quantum non-demolition (QND) [34]. Simultane-

ously demonstrating high efficiency and compatibility with CQED modules, they have been used

to measure multiple quantum trajectories of a qubit [35].

A JPA is a nonlinear LC resonator that can act an amplifier when pumped with strong rf

power. The pump can either be at a single frequency that defines the center of the JPA band,
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or it can consist of two tones where the average of the two defines the center of the JPA band.

Additionally, JPAs can be operated in one of two modes (Section 2.3.1). In one mode, heterodyne

mode, the JPA amplifies a tone regardless of the tone’s phase. In the second mode, homodyne

mode, the JPA is phase sensitive. The JPA amplifies one quadrature of signal that is in phase with

a reference. For technical reasons, when I use the JPA as a homodnye detector, I double pump,

and when I use the JPA as a heterodyne detector, I use one pump tone. To operate the JPA as a

homodyne detector, the center of the JPA’s band must be centered on the band of signal. In this

case, I double pump the JPA because I do not want the strong pump to resonate with the cavity

which defines the photon frequency. To operate the JPA as a heterodnye detector, the signal band

is detuned from the center of the JPA’s band. Because the single pump is already detuned, I use

a single pump.

1.3 Other single photon generation protocols

1.3.1 Photon like coherent states

As a stepping stone to nonclassical communication between modules, communication between

CQED modules has been studied using classically described coherent states. In Yin and Wenner’s

experiments [36, 37], the coupling between the cavity and the transition line is controlled dynam-

ically. By adjusting the coupling, a propagating coherent state with an average photon number

n̄ = 1 is captured in the cavity of a CQED module. The captured photon can be released and

sent to another module. Though this work utlizes classical states, it demonstrations that CQED

modules are capable of catching and releasing states whose energy is the same as nonclassical states

such as single photon states.

1.3.2 Purcell limited decay

Initial work on photon generation using superconducting qubits by Houck [38] relied on

coupling the qubit directly to an output mode. In this simple protocol, a pulse at the qubit frequency
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excites the qubit. The qubit then decays through the output port creating a propagating photon at

the qubit frequency. In this method, the pulse is at the same frequency as the photon and couples

to the output mode. As a result, the photon and the pulse are neither spectrally or temporally

isolated during the pulse. Therefore, the single photon cannot be completely distinguished from

the control field, partially spoiling the single photon character of the generated state. Furthermore,

because the pulse is at the same frequency as the photon, the large control pulse may also excite

the target module.

Similar to Houck, my protocol for generating photons is simple in that it relies on a single

calibrated control pulse. But, because I use a blue sideband pulse, the control field is detuned

from the single photon. The photon is emitted at the cavity’s resonance frequency ωc, whereas the

control pulse is approximately at the average between cavity and qubit (ωq + ωc)/2, giving the

photon spectral isolation.

1.3.3 Frequency tunable qubits

There are several demonstrations of photon generation with qubit-cavity systems that do

not use control fields, but rather rely on frequency tunable qubits [39, 36]. When the qubit is

tuned to the cavity frequency, excitations oscillate between the the qubit and cavity [40, 6]. By

controlling the interval that the two are on resonance, then excitation can be swapped from the

qubit into the cavity. Thus, by preparing the qubit in the excited state with a qubit pulse, and

then tuning the qubit to swap the excitation into the cavity, a single photon is created in the

cavity. By strongly coupling the cavity to an output mode, a propagating photon is created. In

one particular example, Eichler [39] generated propagating arbitrary superpositions of zero and one

photon Ψ = A |0〉+B |1〉, which can be thought of as a propagating or flying qubit.

However, in the type of qubit-cavity system that I adopt and is discussed in Ref. [18], the

qubit is not easily tunable. To create a more coherent qubit, this style of qubit-cavity system

places the qubit in the center of a superconducting cavity making it difficult to apply the magnetic

flux used to tune qubits because the superconducting cavity shields magnetic fields. Therefore,
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protocols relying on frequency tunable qubits cannot be easily implemented.

My work is further distinguished by its detection. In Eichler’s work [39], the photon gen-

eration protocol was repeated billions of times to overcome the inefficient HEMT measurements

in order tomographically reconstruct to an inference of generated state. In my approach, I use

an efficient JPA to measure the photon state. I perform the tomography on the measured state,

without artificially removing the added noise of the measurement.

1.3.4 Higher order transitions

More recently, Pechal [41] has demonstrated photon generation using only control fields

detuned from the photon. Thus, this protocol is compatible with 3D transmons. It used multiple

transitions including higher level states of the qubit making it more complicated than my single

pulse protocol. Pechal also removes the added noise from inefficient measurements, rather than

implementing an efficient measurement of the photon state.



Chapter 2

Quantum mechanics of photon generation and measurement

To establish a mathematical language and a consistent notation with which to describe photon

generation and detection experiments, I review a portion of the quantum optics formalism. Because

I am interested in generating and measuring states of cavities (resonators) and transmission lines, I

begin by discussing the quantum mechanics of these modes, which are harmonics oscillators. Then,

I look at examples of common classical and nonclassical states of these modes. Next, I cover a

simple quantum mechanical model for a qubit coupled to cavity, and discuss a method for photon

generation in an ideal limit. Lastly, I cover the framework for representing and measuring these

quantum states. I discuss both how to operate the JPA to measure states, and how to calculate

the expected probability distribution of these measurements for particular quantum states.

2.1 Circuits as harmonic oscillators

Modes of cavities, resonators and transmission lines behave as harmonic oscillators. To

understand these modes and the states of these modes, I start by writing the Hamiltonian of a

harmonic oscillator

Hho = ω(a†a+ 1/2) (2.1)

in terms of the unitless raising a† and lowering a ladder operators. Here and for the rest of the

document, I have omitted the ~’s. It is therefore understood that angular frequencies must be

multiplied by ~ to recover units of energy. The energy eigenstates called Fock states, or photon

states, I label as |0〉, |1〉, ... |n〉. These eigenstate have energy 〈Hho〉 = ω(n + 1/2) and thus form
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a harmonic spectrum. The creation ladder operator a† acting on eigenstate state |n〉 results in

a† |n〉 =
√
n+ 1 |n+ 1〉 . (2.2)

Thus, some combinations of these ladder operators acting on the ground state, the vacuum state

|0〉, can generate any pure quantum state. For a more detailed description of mode quantization,

consult a Quantum Optics text book such and Gerry and Knight’s [42].

2.1.1 Transmission line decay

In this experiment, I am interested in measuring states propagating down transmission lines

that are generated by the cavity. Specifically, I want to think about: what propagating mode does

that cavity evolve into. To understand this, I consider how incoming and outward propagating

states of the transmission line relate to the internal state of the cavity. Because I can represent

pure quantum states with combinations of ladder operators acting on the vacuum state, I consider

how operators of the cavity a relate to operators of incoming and outward propagating states ain

and aout, respectively. Considering a cavity coupled to a transmission line with power decay rate

κ, these relations are:

ȧ = −κ
2
a+
√
κain (2.3)

aout =
√
κa− ain (2.4)

according to input/output formalism [43]. Consequently, to find the cavity’s output at all times, I

must solve Eqn. 2.3:

a(t) = a(0)e−
κ
2
t +
√
κe−

κ
2
t

∫ t

0
e−

κ
2
zain(z)dz. (2.5)

I am not interested in a continuum of output modes, but a single mode propagating down

the transmission line. Therefore, I define a particular output mode by considering the temporal

profile of excitations decaying out of the cavity. Because amplitude decays out of the cavity at a

rate κ/2, I define the temporal profile as

fout(t) =
√
κe−

κt
2 Θ(t) (2.6)
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in terms of the Heaviside step function Θ(t). With fout(t), I define the output mode as

Aout =

∫
fout(t)aout(t)dt =

∫ ∞
0

√
κe−

κt
2 aout(t)dt (2.7)

Using Eqns. 2.4 and 2.5, I write out the output mode as being equal to

Aout = a(0)

∫ ∞
0

κe−κtdt+

∫ ∞
0

γ3/2e−κt
∫ t

0
e−

κ
2
zain(z)dzdt−

∫ ∞
0

√
κe−

κt
2 ain(t)dt. (2.8)

This equation simplifies to

Aout = a(0). (2.9)

Thus, the state of the output mode Aout defined in Eqn. 2.7 is the same as the state of the cavity

a at t = 0. Consequently, if the cavity is prepared in a single photon state at t = 0, then the

output mode Aout is in the single photon state. Therefore, in this experiment, I am interesting in

generating and measuring propagating modes similar to the mode Aout defined in Eqn. 2.7.

2.1.2 Quadratures

Next, I construct operators that are tied closely to linear measurement. I construct these

quadrature operators Y1 and Y2 out of the ladder operators a and a† by forming linear superposi-

tions. They are defined as

Y1 = 1
2(a+ a†) (2.10)

Y2 = 1
i2(a− a†). (2.11)

This definition of Y1 and Y2 is in the lab frame. In this frame, the operators a and a† oscillate at

ω as seen from the Heisenberg’s equation

ȧ = i[Hho, a] = −iωa. (2.12)

Therefore,

a(t) = a(0)eiωt (2.13)

a†(t) = a†(0)e−iωt (2.14)
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Because a and a† oscillate in the lab frame, Y1 and Y2 oscillate. I define quadratures X1 and X2

that do not oscillate by transforming into in a frame that rotates at ω:

X1 = cos(ωt)Y1 + sin(ωt)Y2 =
1

2
(a(0) + a†(0)) (2.15)

X2 = − sin(ωt)Y1 + cos(ωt)Y2 =
1

i2
(a(0)− a†(0)). (2.16)

For the remainder of this document, quadratures refer to these quadratures in the rotating frame.

Looking at the electric field operator of a mode, we can gain intuition about these two quadratures.

At a particular location in the mode and aligned with the polarization, the electric field operator

is [42]

E = 2E0 (X1 cos(ωt) +X2 sin(ωt)) , (2.17)

where E0 is a constant with units of electric field. Thus, we can think of X1 as the cosine and the

X2 as the sine component of an oscillating field.

These quadratures X1 and X2 are the operators that the JPA measures. When the JPA

operates phase sensitively in homodyne mode, it measures X1, X2 or a linear combination of the

two

Xθ = X1 cos(θ) +X2 sin(θ). (2.18)

When the JPA operates phase insensitively in heterodyne mode, it measures both quadratures.

However, both quadratures X1 and X2 cannot be determined with arbitrary accuracy because of

their commutation relation

[X1, X2] =
i

2
. (2.19)

The measurements of X1 and X2 have an uncertainty relationship

〈(∆X1)2〉 〈(∆X2)2〉 ≥ 1

16
. (2.20)

Thus, two-quadrature measurements must add noise.
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2.1.3 States of the field

Having introduced the types of modes I am working with, and the operators I can measure, I

highlight a few classes of classical and non-classical states that I work with. Additionally, I discuss

some relevant properties of these states including quadrature expectation value and variance.

The state I want to generate and detect is the single photon state |1〉. It is one of the Fock

states |n〉. These states have on average a quadrature value of

〈Xθ〉 = 0 (2.21)

for any |n〉. They have a quadrature variance

var(Xθ) = 〈X2
θ〉 − 〈Xθ〉2 =

1

4
(2n + 1). (2.22)

Thus, quadrature measurements of a photon states |n〉 can determine n through their variance (or

higher cumulants), but not their average.

Another state I encounter in this experiment is a thermal distribution of states. This distri-

bution, the thermal state, is a statistical mixture of pure Fock states characterized by a Boltzmann

distribution. Because it is a statistical mixture of pure states, it must be described by a density

matrix ρ rather than a single state vector. The dentistry matrix for a thermal state ρth(n̄) is

parametrized in average photon occupation n̄ as

ρth(n̄) =
∑
n

n̄n

(n̄+ 1)n+1
|n〉 〈n| . (2.23)

Here, the average photon occupation is

n̄ =
1

exp(~ω/kBT)− 1
(2.24)

in terms of the temperature T and the Boltzmann constant kB. Because the thermal state is not

a pure photon or number state, it has nonzero number variance. Its number variance is

var(n) = Tr(ρthn2)− Tr(ρthn)2 = n̄ + n̄2. (2.25)
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Like the pure Fock states, the thermal state has an average quadrature value

Tr(ρthXθ) = 0. (2.26)

Its quadrature variance is

var(X) = Tr(ρthXθ
2) =

1

4
+

n̄

2
. (2.27)

Quadrature measurements of thermal states also manifest themselves in the variance of the field,

highlighting the need for a more sophisticated approach to distinguishing the n = 1 photon state for

other states. Consequently in Subsections 2.3.3 and 2.3.4, I compute the probability distribution

for one and two-quadrature measurement of the signal photon state.

The last major class of states I encounter in this experiment is the classically described

coherent state. Quantum mechanically, I can generate a coherent state by taking the eigenvalues

of the ladder operator a. Thus,

a |α〉 = α |α〉 , (2.28)

where |α〉 is the coherent state and α is the coherent state’s complex amplitude. In the Fock basis,

the coherent state is

|α〉 =
∑
n

e
1
2
|α|2 α

n

√
n!
|n〉 . (2.29)

The coherent state has an photon number variance

var(n) = n̄, (2.30)

where

n̄ = 〈α|n |α〉 = |α|2. (2.31)

It has a quadrature variance

var(Xθ) =
1

4
(2.32)

equal to the vacuum state.
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2.2 A two level system coupled to a cavity: CQED

The qubit is an important element for my photon generation experiment that is not described

as a harmonic oscillator. Instead, it is a two level system. The qubit is coupled to a cavity to from

the QCED system. To utilize and understand this system I must write out a quantum mechanical

framework for it [21]. To do so, first I write out the Hamilton for the system including the direct

coupling between the qubit and cavity. Then, I look at a useful limit, the dispersive limit, where

the cavity and qubit affect each other, but do not spontaneously exchange excitations. Finally, I

look at dynamics of the system including a method of photon generation.

2.2.1 Hamiltonian

By coupling a cavity mode to a qubit, I can create a system with richer dynamics. The qubit

has resonant frequency ωq and bare Hamilton

Hq = ωq
σz
2

(2.33)

where σz is a Pauli matrix. It has two eigenstates labeled |g〉 and |e〉 for ground and excited,

respectively When an anharmonic 3 level system is considered, the third level is labeled |f〉.

Coupling the qubit to a cavity via the dipole interaction yields a coupling that is proportional

to the E field of the cavity dotted with that of the qubit. In other words,

Hint = g(σ+ + σ−)(a† + a), (2.34)

where g is the coupling strength and a the field operator for the cavity. The Hamiltonian for the

system becomes

HRabi = ωq
σz
2

+ ωca
†a+ g(σ+ + σ−)(a† + a) (2.35)

known as the Rabi Hamiltonian.
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2.2.2 Dispersive limit

I want to design the system so I can gain information about the qubit from the cavity mode’s

fields while minimally disturbing the qubit. Following Ref. [44], this condition can be achieved by

going into the limit where the two level system’s transition is detuned from the cavity mode by

greater than the coupling between the two, that is

|ωq − ωc| = |∆| > g. (2.36)

In this limit, called the dispersive limit, an excitation in the two level system shifts the frequency

of the cavity, yet at the same time excitations do not exchange between the cavity and the qubit.

In the dispersive limit, the Hamiltonian becomes

Hdis = ωq
σz
2

+ ωca
†a+ 2χ(

σz
2
a†a), (2.37)

where χ = g2

∆ and ∆ = ωq −ωc. The value of the dispersive shift 2χ can be determined by treating

the interaction listed in Eqn. 2.33 as a perturbation using second order perturbation theory.

Regrouping the a†a terms in Eqn. 2.38, I get an effective cavity frequency ω′c that is a function

of the qubit state

ω′c = ωc + 2χ
σz
2
. (2.38)

Therefore, the frequency of the cavity contains information about the state of the qubit. More

specifically, detecting the 2χ dispersive shift of cavity resonances detects the state of the qubit. This

dispersive shift forms the basis for a type of qubit readout I use in the my experiment. Similarly, I

can regroup σz
2 terms to get an effective qubit frequency ω′q that depends on the number of cavity

photons

ω′q = ωq + 2χa†a. (2.39)

Therefore, the frequency of the qubit contains information about the number of photons in the

cavity.
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2.2.3 System dynamics

Now, I describe a method of using oscillating fields to drive dynamics in the qubit-cavity

system, and control the state of the qubit. First, I consider driving fields to effect the dynamics

of the qubit. These fields alter the Hamiltonian of the qubit to drive transitions and allow us to

perform arbitrary operations on the qubit itself. Then, I use a quantum mechanical treatment of

the qubit-cavity system with drive fields to construct an effective Hamiltonian for the blue sideband

transition, that jointly creates or destroys single excitation of the qubit and cavity.

2.2.3.1 Rabi oscillations

To control the qubit, I follow closely Ref. [42] and consider the qubit coupled to an oscillating

drive through a dipole interaction. I treat the drive classically, where the drive adds an oscillating

term to the Hamiltonian of the qubit. To understand the dynamics, I solve the equations of motion

for the ground |g〉 and excited |e〉 states coefficients Cg(t) and Ce(t).

As result of the of the drive, I get an interaction Hamiltonian

Hint(t) = V0 cos(ωdt) (2.40)

where V0 = −d(σ−+σ+)E is the magnitude of coupling dipole energy, and ωd is the drive frequency.

The dipole moment of the qubit is d and the electric field of the drive is E . In this case, the time

dependent wavefuntion for the qubit is

|ψ(t)〉 = Cg(t) |g〉+ Ce(t)e
iωqt |e〉 . (2.41)

To arrive at the dynamics of the system I apply the Schrodinger equation

i |ψ̇(t)〉 = H(t) |ψ(t)〉 (2.42)

to |ψ(t)〉 listed in Eqn. 2.41. I use the two level system Hamilton with the interaction term in

Eqn. 2.40. I get a set of two differential equations in terms of Cg(t) and Ce(t) listed as:

Ċg = −idE 1

2
(ei(ωq+ωd)t + ei(ωq−ωd)t)Ce (2.43)

Ċe = −idE 1

2
(ei(ωq+ωd)t + ei(ωq−ωd)t)Cg. (2.44)
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Because I am driving a qubit near its resonance, the ωq + ωd term oscillates much faster than the

ωq − ωd term. Due to the fast oscillations, the dynamics of the ωq + ωd terms are averaged over,

and I can therefore drop these terms in what is called the rotating wave approximation. Solving

the differential Eqns. 2.43 and 2.44 with boundary conditions Cg(0) = 1 and Ce(0) = 0, I get

Ce(t) =
iEd
Ωr

ei∆t/2 sin(
Ωrt

2
), (2.45)

where ∆ = ωq − ωd and Ωr =
√

∆2 + d2E2. The exited state probability is Pe(t) = |Ce(t)|2.

Therefore,

Pe(t) =
(Ed)2

Ω2
r

sin2(
Ωrt

2
). (2.46)

This simplifies when driving on resonance (∆ = 0) to

Pe(t) = sin2(
Ωrt

2
). (2.47)

Eqns. 2.47 and 2.45 demonstrations that a microwave drive can control the state of the qubit.

Starting from any known pure state of the qubit, I can use an on resonance drive to prepare the

qubit in any desired pure state Ψ = A |g〉+B |e〉.

2.2.3.2 Sideband drives

Now I consider the whole qubit-cavity system’s response to drives that effect both the qubit

and cavity states. I can drive transitions that jointly create excitations of the cavity and qubit, or

swaps them. These transition are named as if the qubit modulates the cavity frequency (|ωc±ωq|).

The transition on the blue (higher frequency) side of the cavity (ωc + ωq), which jointly creates

excitation in the cavity and qubit, is called the blue sideband. The transition on the red (lower

frequency) side of the cavity (|ωc − ωq|), which swaps excitations between the cavity and qubit,

is called the red sideband. For my style of qubit, the transmon qubit, these transitions can only

occur as a two photon process. Therefore they are achieved by using two photons each of energy

|ωc ± ωq|/2.

To construct the sideband dynamics I closely follow Ref. [45]. I consider two drives acting on

the qubit and add them into the Rabi Hamiltonian. I then perform three unitary transformations on
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the Hamiltonian keeping only the lowest order terms to simplify the Hamiltonian. Finally, I set the

drive frequency to the sideband transition (ωc +ωq)/2 and perform a rotating wave approximation

to yield an effective Hamiltonian for the sideband drive. The effective, sideband Hamiltonian clearly

shows the blue sideband transition.

To start, the two drives have a Hamiltonian

Hdrive =
∑
j=1,2

Ωj(a
† + a) cosωd,jt. (2.48)

I add the driving terms to the Rabi Hamiltonian (Eqn. 2.35) HRd = HRabi +Hdrive. I then perform

the first unitary transformation

HQCD = U †2dHRdU
†
2d − iU

†
2dU̇2d (2.49)

built from two displacements corresponding to the two drives

U2d = Πj=1,2D(αj(t)), (2.50)

where D(α) is the displacement operator, with αj(t) chosen to eliminate direct drive couplings by

setting

α̇j(t) = −iωcαj(t)− iΩje
−iωd,jt. (2.51)

By applying a rotating wave approximation on the drive, the transformed Rabi Hamiltonian be-

comes

HQCD = ωq
σz
2

+ ωca
†a+ g(σ+ + σ−)(a† + a) +

∑
j=1,2

Ωj(σ+e
−iωd,jt + σ−e

iωd,jt). (2.52)

Next to remove the direct coupling between the qubit and drive, I apply a second unitary transfor-

mation on the Hamiltonian of the form H ′ = U †βHQCDUβ − iU †βU̇β with

Uβ = exp(βσ− − β∗σ+), (2.53)

for

β =
1

2

∑
j=1,2

Ωj

ωq − ωd,j
eiωd,jt. (2.54)
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Applying Uβ to the Hamiltonian in Eqn. 2.52, I get the Hamiltonian

H ′ = ω′q
σz
2

+ ωca
†a− g(σ+ + σ−)(a† + a)− g(β∗ + β)(σz − β∗σ+ − βσ+)(a† + a). (2.55)

Now, I preform the third and final unitary transformation on the Hamiltonian, the dispersive

transformation

Udis = exp[
g

ωq − ωc
(a†σ− − aσ+)], (2.56)

which eliminates spontaneous qubit-cavity transitions. By applying this transformation to the

Hamiltonian in Eqn. 2.55, I get an effective Hamiltonian for a qubit cavity system with two off

resonance drives

Heff = ω′q
σz
2

+ ωca
†a− g(β∗ + β)σz +

∑
k,k′=1,2

g
Ωk

ωq − ωk
Ω′k

ωq − ω′k
(a+ a†)

× [(ei(ωk−ωk′ )t + e−i(ωk+ωk′ )t)σ− + (e−i(ωk−ωk′ )t + e−i(ωk+ωk′ )t)σ+]. (2.57)

This Hamiltonian fully describes a qubit-cavity system that has two drives.

I now consider drives at the blue sideband transition to get the effective blue sideband Hamil-

tonian. I set both drives to the same frequency such that 2ωk(′) = ω′′q + ωc in Eqn. 2.57. The

frequency ω′′q is the shifted qubit frequency with value

ω′′q = ωq +
Ω2

1

ωq − ω1
+

Ω2
2

ωq − ω2
+ 2χ

〈
a†a
〉
. (2.58)

Then, I preform two last rotating wave approximations on Eqn. 2.57 at the qubit and cavity

frequency by performing rotations defined by Uq = e−iωq
σz
2
t and Uc = e−iωca

†at and dropping the

fast oscillating terms. At last, I get the Hamiltonian for the blue sideband transition

Hblue =
Ω2

1

ωq − ω1

Ω2
2

ωq − ω2

g

4
(a†σ+ + aσ−). (2.59)

Written more simply

Hblue = Ωblue(a
†σ+ + aσ−). (2.60)

For the system starting in |g, 0〉 state (where the labels are |qubit state, cavity photon number〉),

Hblue causes the system to oscillate between |g, 0〉 and |e, 1〉 states at rate Ωblue. Therefore, I can
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drive the blue sideband transition to prepare the system in the |e, 1〉 state, and thus create a single

photon in the cavity.

2.3 Measuring a quantum state

Now that I have introduced a quantum mechanical description of circuits and single photon

generation, I discuss the framework for performing measurements on the photon state. I briefly

describe the transformation that the JPA performs to amplify states. Then, I move on to the theory

of measuring a quantum state. Before discussing specific measurements, I introduce a quadrature,

or phase space, representation of quantum states called the Wigner function. I form expectations

of single quadrature and two quadrature measurements of quantum states. Finally, I introduce a

model that incorporates loss or inefficiency into these measurements.

2.3.1 Parametric amplifier measurements

The JPA is a microwave amplifier that amplifies propagating fields over a tunable frequency

band. In an ideal sense, the JPA performs transformations of two incident quadratures XJPA
1,in and

XJPA
2,in in a frame that rotates at the center frequency ωJPA of the JPA’s band. These transformations

amplify one quadrature while deamplifying the other to create two outgoing quadratures. This

amplification occurs on an arbitrary quadrature XJPA
in with phase set by the pump tone(s). After

the quadrature is amplified in the ωJPA frame, the measurement is completed by demodulating

the JPA’s output XJPA
out by ωJPA. This demodulation turns measurements of XJPA

in in the rotating

frame to measurements of XJPA
in in the lab frame which do not oscillate in time, and therefore can

be directly digitized.

Regardless of whether the JPA operates in homodyne or heterodyne mode, in the ωJPA

frame the JPA’s fundamental transformations are the same. By defining XJPA
1,in as the amplified
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quadrature, the JPA’s transformations are summarized as [24]

XJPA
1,out = GQX

JPA
1,in (2.61)

XJPA
2,out = 1

GQ
XJPA

2,in (2.62)

with quadrature gain GQ.

The mode of operation (homodyne or heterodyne) is determined by whether or not the signals

are at ωJPA. For the JPA to operate in homodyne mode, the signal or the center of the signal’s

band must be at ωJPA. In this case, the quadratures in the signal’s frame Xsig
1 and Xsig

2 and the

quadrature that describe the JPA’s transformation XJPA
1 and XJPA

2 are in the same rotating frame,

ωJPA. Thus, when the JPA amplifies XJPA
1,in , it directly amplifies Xsig

1 . After demodulation at ωJPA,

the digitized output Vm(t) is a direct measurement of the signal’s quadrature Xsig
1

Vm(t) = GQX
sig
1 . (2.63)

For the JPA to operate in heterodyne mode, the signal must be detuned from ωJPA. For

detuning ∆, the quadratures that describe the signal Xsig
1 and Xsig

2 are in a frame rotating at

ωJPA +∆. The JPA still performs its amplifying transformation on the quadratures in a frame that

rotates at ωJPA. In terms of the quadratures in the signal’s frame, I write the JPA’s input in the

ωJPA frame as

XJPA
1,in = cos(∆t)Xsig

1 + sin(∆t)Xsig
2 (2.64)

XJPA
2,in = − sin(∆t)Xsig

1 + cos(∆t)Xsig
2 . (2.65)

Then, the JPA’s outputs are

XJPA
1,out = GQ(∆)

(
cos(∆t)Xsig

1 + sin(∆t)Xsig
2

)
(2.66)

XJPA
2,out = 1

GQ(∆)

(
− sin(∆t)Xsig

1 + cos(∆t)Xsig
2

)
, (2.67)

where GQ(∆) is the JPA’s quadrature gain ∆ from the center of the JPA’s band. After demodu-

lating the JPA’s amplified quadrature at ωJPA, I find the digitized output to be

Vm(t) = GQ(∆) cos(∆t+ φ)Xsig
1 +GQ(∆) sin(∆t+ φ)Xsig

2 . (2.68)
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Thus, the JPA’s one amplified quadrature contains information about both of the signals quadra-

tures. By fitting the output Vm(t) to a function C1 cos(∆t+φ)+C2 sin(∆t+φ) in terms of constants

C1 and C2, I can extract measurements of two quadratures Xsig
1 and Xsig

2 based on the values C1

and C2, respectively.

By considering multiple rotating reference frames, we can understand the origin of the 1/2

quanta (one vacuua) of added noise heterodyne measurements must introduce. At the JPA’s input,

both fields oscillating at ωJPA+∆ and fields oscillating at ωJPA−∆ are amplified and demodulated at

ωJPA causing Vm(t) to oscillate at ∆. Consequently, at best amplified vacuum noise (that oscillated

at ωJPA − ∆) is added to the amplified signal (that oscillated ωJPA + ∆) in the digitized output

Vm(t), both oscillating at ∆. The amplified vacuum is then indistinguishable from the amplified

signal. Thus at a minimum, vacuum noise is added to the amplified signal.

2.3.2 Wigner function

To visualize quantum states in phase space, I use a quasi-probability distribution function of

the two quadratures called the Wigner functionW (X1, X2). IfX1 andX2 were classical coordinates,

then the Wigner function would become a true joint probability distribution of the quadratures.

However, X1 and X2 are operators that have an uncertainly relation. They cannot be simultane-

ously measured without adding noise, therefore one cannot directly measure the Wigner function

from quadrature measurements. Because W (X1, X2) is not a classical probability distribution, it

is possible for W (X1, X2) to have negative values, further distinguishing it from a true probability

distribution.

The Wigner function is a valid representation of the density matrix. From a density matrix

ρ the Wigner function is calculated by

W (X1, X2) =
1

π~

∫
e−i2yX2 〈X1 − y| ρ |X1 + y〉 dy. (2.69)

As an example, I plot the Wigner function for a single photon (Fig. 2.1). The nonclassical nature

of the single photon state is seen in the negative values of the Winger function at the origin. Now
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Figure 2.1: The Wigner function for a single photon state (n = 1).
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that I have the Wigner function representation of quantum states, I can use it to calculate expected

probability distributions for one and two quadrature measurements.

2.3.3 Homodyne measurement of quantum states

Because single quadrature, or homodyne, measurements can ideally be performed without

the addition of noise, these can be directly calculated from the Wigner function without convolving

any additional Gaussian noise. To calculate the single quadrature probability distribution of a

quantum state, I integrate it’s Winger function over the orthogonal quadrature

P (X1) =

∫
W (X1, X2)dX2. (2.70)

As an example, I plot the P (X1) for a single photon state (Fig. 2.2). This probability distribution

is non-Gaussian, which distinguishes it from Gaussian probability distributions created by vacuum,

thermal, displaced thermal, squeezed, and coherent states. Therefore measuring these homodyne

and heterodyne probability distributions can form a method for identifying the n = 1 photon state

in this experiment.

2.3.4 Heterodyne measurement of quantum states

A two quadrature, or heterodyne, measurement adds at least vacuum noise because the two

quadratures are canonically conjugate variables. The two-quadrature probability distribution can

either be calculated by convolving the Wigner function with vacuum noise or calculated directly

from ρ. To calculate directly, I can calculate the Husimi-Q function

P (X1, X2) = Q(X1, X2) = 〈X1 + iX2| ρ |X1 + iX2〉 /π. (2.71)

Alternatively, I can calculate the distribution from the Winger function by performing the convo-

lution

P (X1, X2) =
2

π

∫
W (Y1, Y2)e−2|X1+iX2−Y1−iY2|dY1dY2. (2.72)
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Figure 2.2: Homodyne measurement of a single photon: single quadrature probability distribution
for the n = 1 Fock state.
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As an example, I plot the P (X1, X2) for a single photon state (Fig. 2.3). Just like the single

quadrature measurements, this probability distribution is non-Gaussian, and therefore distinguish-

able from Gaussian probability distributions.

2.3.5 Inefficient measurement

Measurement inefficiency and loss can be incorporated by using a model where a beam splitter

replaces some of the signal with vacuum fluctuations. In this model, one of the beam splitters inputs

is the density matrix ρin that I am measuring and the other is the vacuum state |0〉 〈0|. I measure

one of the outputs, and the other output represents degrees of freedom I do not measure. The

power transmission η of ρin to the measured output represents the efficiency of the measurement.

To calculate the measured density matrix, I first perform a beam-splitter transformation on the

input modes. Then, I sum over, or trace over, the mode I do not measure.

I define the beam splitter transformation in terms of two input modes labeled ain
1 and ain

2

and output modes labeled aout
1 and aout

2 . I inject my quantum state in input mode 1 and measure

output mode 1. The beam splinter transformation is defined as aout
1

aout
2

 =

 cosϑ i sinϑ

i sinϑ cosϑ


 ain

1

ain
2

 (2.73)

for a beams splitter with power transmission η = cos2 ϑ. I can perform the beam splitter transfor-

mation by either directly substituting the ladder operators according to Eqn. 2.73, or by applying

a unitary transformation operator

Ubs = eiθ(a
†
1a2+a1a

†
2). (2.74)

From the input modes (ρin in mode 1 and vacuum in mode 2), I apply the unitary transformation

to get the output

ρout
12 = Ubsρ

in
1 ⊗ |02〉 〈02|U †bs. (2.75)

Because I only measure output mode 1, I trace over output mode 2 to get the measured density
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Figure 2.3: Heterodyne measurement of a single photon: two quadrature probability distribution
for the n = 1 Fock state.
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matrix

ρmeas = tr2(ρout
12 ) =

∑
n2

〈n2| ρout
12 |n2〉 . (2.76)

With this framework, I can calculate the density matrix for measuring a single photon with

efficiency η. In this case

ρin = |1〉 〈1| . (2.77)

Then, the two-mode, output density matrix is

ρout
12 = η |1, 0〉 〈1, 0| − i

√
η + η2(|1, 0〉 〈0, 1| − |0, 1〉 〈1, 0|) + (1− η) |0, 1〉 〈0, 1| . (2.78)

After tracing over mode 2, I get the measured density matrix

ρmeas = η |1〉 〈1|+ (1− η) |0〉 〈0| , (2.79)

where |1〉 〈1| is the density matrix of a single photon. Thus, measuring a single photon with

efficiency η yields a mixed state with a single photon component ρ11 = η. Probability distributions

for homodyne and heterodyne measurements can be computed for ρmeas using Eqns. 2.70 and

2.72.



Chapter 3

Qubit and cavity design

The central resource for photon generation is the qubit-cavity system. To experimentally

realize this idealized system, I create and couple two elements. The first element is a nonlinear LC

circuit, which acts as the qubit. The second element, the cavity, is a single mode of a 3D waveguide

cavity. In this Chapter, I first discuss the design and fabrication of the individual pieces, then

discuss the details of combining and coupling them.

3.1 The qubit

The qubit is an LC circuit that contains a strong nonlinear element. The qubit is formed by

connecting a structure known as a Josephson junction to a capacitor. The Josephson junction is an

electrically nonlinear inductor, thus forming the LC circuit. In superconducting circuits, Josephson

junctions are the only means of implementing a strong nonlinearity with low dissipation [24, 46].

They form the basis of all types of superconducting qubits (flux, phase, charge, transmon) [47, 48,

49, 50]. A Josephson junction is formed by weakly connecting two regions of superconductivity [51].

The strength of the nonlinearity is set by a single parameter: the junctions critical current

I0, which is the maximum supercurrent that can tunnel across the junction. The nonlinearity of

the Josephson junction can be seen through its Hamiltonian

HJ = EJ(1− cos
Φ

Φ0
), (3.1)

where Φ is the flux through the junction. The constant Φ0 = π~
e is the magnetic flux quantum,
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where e is the charge of an electron, and

EJ =
I0Φ0

2π
(3.2)

is the Josephson energy [52]. Because the HJ depends on the cosine of Φ, this term is nonlinear.

Thus, I0 sets EJ and therefore the strength of nonlinearity. I can show HJ specifically corresponds

to a nonlinear inductance by Taylor expanding Φ
Φ0

to get

HJ = EJ

[(
Φ

Φ0

)2

−
(

Φ

Φ0

)4

+ ...

]
. (3.3)

In comparison, the Hamiltonian of a linear inductor is

HL = EL

(
Φ

Φ0

)2

, (3.4)

where EL = Φ0/(2L). Therefore, HJ is the Hamiltonian of an inductor with higher order Φ
Φ0

terms.

3.1.1 From linear to non-linear circuits

In order for the nonlinear LC circuit to act as a qubit, it must be an effective two level

system that I can control. To create an effective two level system from a non-linear circuit, the

circuit resonance frequency shift per excitation must be larger than the circuits linewidth or decay

rate [53]. As a starting point, let’s first consider a linear circuit. In a linear LC resonator, the

Hamiltonian is

HLC = EC(Q2) + EL(
Φ

Φ0
)2, (3.5)

where Q is the charge, and Ec is the charging energy. This Hamiltonian is equivalent to a harmonic

oscillator

HLC =
√

2ECEL(a†a+
1

2
), (3.6)

with energy levels spaced
√

2ECEL. Because all the transitions are harmonic, it is impossible to

address a single transition without inadvertently addressing other transitions, and therefore, it

cannot act as a two level system. If I introduce a weak non-linear term that shift the frequency by

K for each exciton added to the circuit, the Hamiltonian becomes

HJPA = ω(a†a+
1

2
)−Ka†aa†a. (3.7)
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If the circuit has a linewidth that is larger than the non-linearity term (κ > K), then the circuit

changes its resonance frequency by more than the linewidth only when there are many excitations

in the circuit (as is the case for the JPA). Therefore, it is impossible to address single transitions

because the difference in adjacent energy levels is smaller than their linewidths.

By using a strong nonlinearity, I enter a regime that is fundamentally different. For my qubit,

the non-linearity is quantified by the difference between the first transition |g〉 to |e〉 and the next

transition |e〉 to |f〉, which is |αK | = 0.25 GHz. The linewidth is κq = 26 kHz. Because |αK | is

much greater than κq, it is possible to treat this system as a two level system. Moreover, I can

drive the qubit with a fast pulse and not excite any higher order transitions as long as the pulse’s

spectral width is smaller than |αK |. Thus, |αK | sets how fast I can control the system’s dynamics

with it still behaving as an effective two level system [54].

3.1.2 Cooper pair box

My qubit combines a Josephson junction and capacitor to form what is called a Cooper pair

box (CPB). Specifically, I work in a special case of the CPB that is insensitive to charge noise

called a transmon qubit. The CPB is formed by taking a Josephson junction and connecting it

in parallel to a capacitor. A gate is capacitively coupled to the CPB to provide tunability of the

system. If an explicit gate is not present in the design, parasitic capacitance still forms an effective

gate [52, 55, 47, 56]. A circuit diagram is shown in Fig. 3.1, where the cross indicates a Josephson

junction.

I form the CPB Hamiltonian by combining the Hamiltonian for a Josephson junction (Eqn. 3.2)

with the Hamiltonian for a capacitor with a gate to control its charge. The CPB Hamiltonian is

then

HCPB = 4Ec(n− ng)2 − EJ cosφ. (3.8)

The first term is the charging energy, corresponding to the energy stored in the capacitors. The

capacitors and Josephson junction form an island as shown in Fig. 3.1. The dimensionless charge

(n − ng) on the island is set by the the dimensionless gate voltage ng and the operator n corre-



33

Figure 3.1: The circuit schematic of a Cooper pair box (CPB).
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sponding to the number of Copper pairs on the island. One unit of dimensionless charge (in units

2e corresponding to one Cooper pair) with total capacitance CΣ has a charging energy equal to

4Ec =
(2e)2

2CΣ
. (3.9)

The second term, the energy of the Josephson junction, is written in terms of the macroscopic

phase difference across the junction φ = Φ
Φ0

. Because the number of Cooper pairs on the island

changes when they tunnel across the junction, phase and number operators are dependent. The

phase and number operator have a commutation relation

[φ, n] = i, (3.10)

which allows the CPB Hamiltonian (Eqn. 3.8) to be solved in either number n, or phase φ basis.

Before I go into the phase basis to understand the transmon limit, I briefly look at the

number basis to gain some intuition about the solutions. In the number basis, we think of the

solutions as number eigenstates with a coupling term introduced by the Josephson energy. I can

write the Josephson energy term as, Hj = −EJ
2

∑
n(|n〉 〈n+ 1| + |n+ 1〉 〈n|). In this basis, the

CPB Hamiltonian becomes

HCPB = 4Ec(n− ng)2 − EJ
2

∑
n

(|n〉 〈n+ 1|+ |n+ 1〉 〈n|) (3.11)

[52]. For large Ec/EJ , the left term (Ec) dominates the Hamiltonian. As a consequence, the number

states form parabolas over gate voltage as shown in Fig. 3.2 as dashed lines. These number states

are coupled by EJ causing the charge eigenstates to couple near degeneracies. Thus, the HCPB’s

eigenstates form oscillatory bands shown as the solid color lines.

The transitions are anharmonic and can form an effective two level system or qubit. As

shown in Fig. 3.2, the |g〉 (red) to |e〉 (blue) transition has a different energy than the |e〉 (blue)

to |f〉 (green) transition for nearly every value of ng. By tuning the gate voltage, I can tune

these transitions, therefore tune the frequency of the qubit. However, as a direct consequence of

the qubits tunability with gate voltage, fluctuation in gate voltage or charge will cause the qubit

frequency to fluctuate, thus dephasing the qubit.
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Figure 3.2: The energy levels of the CPB in the large charging energy Ec limit (EJ/Ec = 0.2). The
charging energy states of Cooper pair number state (black dash lines) are coupled by the Josephson
energy EJ , forming the system eigenstates (solid lines).
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3.1.3 CPB dynamics in phase basis

Because the CPB is potentially sensitive to charge noise, I consider the transmon limit where

the eigenstates become insensitive to charge at the expense of decreasing the anharmonicity. To

understand this charge insensitive limit, I closely follow Ref. [57]. I first write the equations that

describe the dynamics of the CPB in the phase basis. Next, I cast the equation of motion in a form

with analytic solutions. Then I write the energy eigenstates in terms of a characteristic equation

for these differential equations using the CPB parameters. Lastly, I look at these solutions in the

charge insensitive limit.

I solve for the eigenstates by solving the Schrodinger equation in the phase basis. Because of

the commutation relation in Eqn. 3.10, I can write the number operator as n = −i ∂∂φ . Then, the

Hamiltonian becomes

HCPB = 4Ec(−i
∂

∂φ
− ng)2 − EJ cosφ. (3.12)

Then, the Schrodinger equation is

[4Ec(−i
∂

∂φ
− ng)2 − EJ cosφ]Ψ(n, φ) = ECPBΨ(n, φ) (3.13)

I cast this equation in the form of a particular differential equation known as the Mathieu equation,

which has the form:

d2y

dx2
+ [a− 2q cos(2x)]y = 0. (3.14)

Because the solutions of the Mathieu equation are known in terms of special functions, then the

eigenstates and energies of the differential equation are also known in terms of these special func-

tions.

I begin by changing variables in the Schrodinger equations (Eqn. 3.13) to suppress its ng

dependence. I write the equation in terms of h(φ) with Ψ(φ) = h(φ)eingφ. So, then

4Ece
ingφ(−i ∂

∂φ
)2h(φ)− EJ cosφeingφh(φ) = ECPBe

ingφh(φ). (3.15)

By canceling eingφ and simplifying I get:

∂2

∂2φ
h(φ) +

(
ECPB

4Ec
+
EJ
4Ec

cosφ

)
h(φ) = 0. (3.16)
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To write the simplified differential equation (Eqn. 3.16) as a Mathieu equation, I start by

substituting 2x = φ, noting that ∂
∂φ = ∂x

∂φ
∂
∂x = 1

2
∂
∂x . Thus,

∂2

∂2x
h(2x) + (

ECPB

Ec
+
EJ
Ec

cos 2x)h(2x) = 0. (3.17)

Lastly, I substitute h(2x) = g(x), so then

∂2

∂2x
g(x) + (

ECPB

Ec
+
EJ
Ec

cos 2x)g(x) = 0. (3.18)

In the standard form, this becomes:

∂2

∂2x
g(x) + (a− 2q cos 2x)g(x) = 0 (3.19)

where,

Ψ(φ) = Ψ(2x) = g(x)ei2ngx = g(φ/2)eingφ, (3.20)

a =
ECPB

Ec
, (3.21)

and

q = − EJ
2Ec

. (3.22)

In Eqn. 3.19, I have written the CPB Hamiltonian and equations of motion in terms of Mathieu

equations [57, 58]. Next, I solve this equation to find the system’s eigenenergies.

3.1.4 CPB solutions in phase basis

By solving the Mathieu equation, I arrive at the solution of the CPB for all values of charging

energy Ec, Josephson energy EJ , and dimensionless gate voltage ng. The Mathieu equation has

eigenvalues a parametrized by q, defined for the CPB in Eqns. 3.21 and 3.22, respectively. Addition-

ally, the eigenvalues are parametrized in terms of a constant ν (not found in the Mathieu equation),

which sets the periodicity or phase gained from a π offset of the corresponding eigenstate. The

constant ν is written formally as g(x + π) = eiνπg(x). These eigenvalues, Mathieu characteristic

value, are conventionally expressed as aν(q). The values of aν(q) are tabulated for ν and q and

built into computational software such as Mathematica.
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Because ECPB
ν (q) = Ecaν(q) and q = − EJ

2Ec
, then the CPB’s energy eigenstates are

ECPB = Ecaν(− EJ
2Ec

)

Because I know EJ and Ec, my task is to find ν. I start by stating that the wavefunction Ψ is

periodic in φ and note the restrictions it places on ν.

Ψ(φ+ 2π) = Ψ(φ) = Ψ(φ)ei(−l2π)

where l is an integer. Changing variables from φ to x (φ = 2x), I find

Ψ(2x+ 2π) = Ψ(2x)ei−(l2π).

Writing Ψ in terms of g(x) from Eqn. 3.20 (Ψ(2z) = g(z)e2ngz), I have

g(x+ π)e2ng(x+π) = g(x)e2ngxei(−l2π).

So then,

g(x+ π) = g(x)e−2π(ng+l).

Comparing with the definition of ν, I find that

ν = −2(ng + l) (3.23)

where l is an integer. For a given ng, the ground state is whichever state corresponds to the value

of l that minimizes the eigenvalue. Please note that ±ν yield identical eigenvalues. Combining

these, I find CPB’s energy eigenvalues

ECPB = Ecaν(q) = Eca−2(ng+l)(−
EJ
2Ec

) (3.24)

in terms of the standard solutions to the Mathieu equation. Here in Eqn. 3.24, I have the energy

levels for a CPB for any Josephson energy EJ , charging energy Ec and gate voltage ng [57, 58].
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Figure 3.3: The energy levels of the CPB where EJ = Ec. Here, the system is largely anharmonic
and the energy transitions depend on the gate charge.

3.1.5 Transmon qubit limit of the CPB

Now that I solved the CPB eigenenergies in terms of EJ , Ec and ng, I investigate the eigenen-

ergy values. Specifically, I look at an eigenenergy’s charge dependence and anharmonicity for a

variety of values of EJ/Ec. I find that as the ratio of EJ/Ec increases, the energy levels become

less anharmonic, and depend less on the value of gate charge ng. In particular, I find that the

charge dependence falls faster than the anharmonicity. The relative reductions allow for a pa-

rameter regime (EJ/Ec ≈ 50) where the charge dispersion is effectively eliminated, while some

anharmonicity remains. A CPB in this regime is call a transmon qubit [57].

From the CPB solution (Eqn. 3.24), I can write out the energy levels as a function of gate

charge for various ratios EJ/Ec. The energy levels are plotted in Fig. 3.3 for a ratio EJ/Ec = 1.

We see that the energy of the transitions are both anharmonic and depend on the gate charge ng.

For comparison, when EJ/Ec = 50 the charge dispersion has completely disappeared as shown in

Fig. 3.4. The anharmonicity has decreased, but is still clearly present. For example, using the

values for EJ/Ec = 50 shown in Fig. 3.4, a charging energy of Ec = 2π × 0.23 GHz gives a qubit

frequency of E01 = 2π × 4.4 GHz and have anharmonicity of E12 − E01 = αK = −2π × 0.25 GHz.
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Figure 3.4: The energy levels of the CPB in the transmon limit (EJ/Ec = 50). Here, the system is
less anharmonic and the energy transitions do not depend on the gate charge.

At this anharmonicity, the system is an effective two level system for dynamics happening slower

than characteristic time τ = 1/(2π|α|) = 0.6 ns. Because this style of qubit is insensitive to charge,

it does not dephase in the presence of charge noise. Considering these advantages, I use a transmon

style qubit in my qubit-cavity system.

For all values of the charging energy Ec and Josephson energy EJ , I can use the Mathieu

characteristic value aν(q) (Eqn. 3.24), to calculate the qubit frequency and anharmonicity. To avoid

calculations using Mathieu characteristic value, I list some approximations from Refs [57, 58]. In

the transmon limit, the anharmonicity is approximated by the charging energy

αK ' −Ec. (3.25)

Also in this limit, the qubit frequency is approximated by the geometric mean of the charging

energy and Josephson energy

E01 '
√

8EcEJ . (3.26)
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3.1.6 Transmon qubit design constraints

Just like the Cooper pair box, the transmon qubit is a nonlinear LC resonator with the

nonlinearity arising from a Josephson junction. Since the transmon’s large EJ/Ec ratio means it

is insensitive to static charge, then the gate is removed to simplify the circuit schematic to just

two elements as shown in Fig. 3.5. Here, the capacitor plays two roles: it provides capacitance for

the nonlinear LC circuit, and it gives this qubit mode a dipole moment, which allows the qubit to

couple to a cavity.

In addition to being a transmon, there are several constraints on the design of the qubit.

First, I want the qubit to be compatible with JPAs and other microwave devices that operate in

the 4 to 8 GHz range, so

2π × 4 GHz < E01 '
√

8EcEJ < 2π × 8 GHz. (3.27)

Second, I want the performance of the system to be robust to fast dynamics on the order of a

nanosecond so,

Ec > 2π × 100 MHz. (3.28)

Third, the values of the charging energy and Josephson energy should be compatible with state of

the art qubit fabrication techniques [59]. Lastly, the qubit should be designed with a significant

dipole moment so it can be strongly coupled to a cavity. As the qubit is located in a cavity that

forms a pristine microwave environment, the dipole only couples to the modes of the cavity and

does not radiate into the continuum of free space.

Satisfying all of these constraints, I use a qubit that has Ec = 2π × 288 MHz or total

capacitance CΣ = 67 fF (from Eqn. 3.9). The qubit has a Josephson energy EJ = 2π × 9.60 GHz

or a critical current I0 = 0.019 µAmps (from Eqn. 3.2). These values EJ and Ec are determined

from the qubit spectroscopy described in Section 4.1.2. This Josephson energy corresponds to a

linear inductance of Lj0 = 17 nH (From Eqn. 3.4). From the Mathieu characteristic value aν(q)

(Eqn. 3.24), these energies give the qubit a frequency of E01 = 4.4 GHz×2π, anharmonicity of

αK = −2π × 350 MHz and a ratio EJ/Ec = 33. Note that |αK | converges to −Ec in the limit of
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Figure 3.5: The circuit schematic of a transmon qubit.
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large EJ/Ec. For the ratio EJ/Ec = 33, the Mathieu characteristic values (Eqn. 3.24) are necessary

to accurately calculate the transmon transitions.

To achieve these qubit parameters, the qubit is laid out according to Fig. 3.5, with a planar

capacitor paddle forming a dipole antenna and a junction in the center. Each half of the paddle is

a 400 µm by 400 µm planar square of conductor forming half of the capacitor. These two halves

are separated by 100 µm. The junction is located along the conductor connecting the two halves

of the capacitor. As seen in Eqn. 3.1 and 3.2, an ideal junction is singularly parametrized by the

critical current I0. In practice, the critical current is determined during fabrication.

3.1.7 Qubit fabrication

The qubit was fabricated and designed by Martin Sandberg in David Pappas’ group at NIST

Boulder labs. The superconducting qubit is a hybrid TiN/Al design fabricated on high resistivity,

intrinsic silicon (ρ >20 kΩ-cm). The qubit’s capacitors are titanium nitride (TiN), which are

fabricated from TiN grown on silicon substrates. The growth process results in a buffer region

of SiN in between the Si substrate and the titanium nitride which is believed to help suppress

undesirable microscopic two level systems at the interface. The only component not made out of

TiN is the Josephson junction which is an aluminum-aluminum oxide junction fabricated using

shadow evaporation techniques [59].

To make the Josephson junction, two regions of aluminum are overlaid over some junction

area with a thin layer of aluminum oxide in between, separating them and forming a tunnel barrier.

The junction is formed by depositing a layer of aluminum in vacuum, then oxidizing the aluminum

surface by letting oxygen in the vacuum chamber. Lastly, a second layer of aluminum is deposited

on top of the first, forming a junction. An image of a 500 by 200 nm Josephson junction fabricated

by the author in the JILA Clean Room is shown in Fig 3.6.
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Figure 3.6: The center shows a 500 by 200 nm Josephson junction where two Aluminum layers
overlap.
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3.2 Cavity

The second element required for the qubit-cavity system is the cavity. In my case, the cavity

is a hollow rectangular box with superconducting (Aluminum 6061) boundaries as shown in Fig. 3.7.

The cavity has many modes, but I am only interested in coupling to the fundamental mode, while

keeping the higher order modes spectrally distant from the qubit, allowing those modes to be

ignored.

The cavity is essential for the experiment as it provides inputs and outputs to the system.

Moreover, the cavity is critical to itinerant photon generation by providing a temporary mode for

the photon and by defining the photon’s coupling to the microwave lines which sets the photon’s

bandwidth. I want to operate the qubit-cavity system in the dispersive regime (Section 2.2.2) so

that the qubit can be indirectly measured and controlled, while at the same time, cavity excitations

do not cause qubit excitation. This indirect coupling via the cavity isolates the qubit from the

continuum of modes in the transmission line. In the dispersive limit, the detuning between the qubit

and the cavity is much larger than their coupling. I would like strong coupling (g ≈ 2π×100 MHz),

therefore the detuning must be |∆| � 100 MHz. Because I know the qubit is at 4.4 GHz, I design

the cavity to have a resonance frequency at roughly 5.8 GHz.

3.2.1 Idealized cavity modes

To understand how to design the cavity with the correct resonance frequency and how its

fields will couple to the qubit, I analytically solve an idealized model of the cavity that ignores the

qubit and the coupling ports. The modes are solutions to the electromagnetic wave equation

(∇2 + µε
∂2

∂t2
)E = 0, (3.29)

where µ is the permeability, ε is the permittivity and E is the electric field. The solutions are

subject to boundary condition of a perfect conductor. In other words, the parallel component of

the electric field is zero E || = 0 at the boundary of the box cavity. The cavity is aligned in Cartesian

coordinates with dimensions lx, ly and lz (for the respective axes) with a corner of the cavity at
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Figure 3.7: An image of the cavity used in the experiment.
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the origin. To solve this case, I align the cavity with lx as the smallest dimension. Because lx is

the smallest dimension, I start by assuming the solutions are separable with the field polarized in

the x̂ direction. I can write the electric field E as

E = Ex(x)Ey(y)Ez(z)Et(t)x̂. (3.30)

I solve for E with perfectly conducting boundaries in planes defined at x = 0, lx, y = 0, ly and

z = 0, lz. Solving Eqn. 3.29 for E , I get the x̂ polarized solutions:

E = Ẽ0 cos

(
mxπ

lx
x

)
sin

(
myπ

ly
y

)
sin

(
mzπ

lz
z

)
e−iωtx̂, (3.31)

where

ω = cπ

√
(
mx

lx
)2 + (

my

ly
)2 + (

mz

lz
)2. (3.32)

Here, c is the speed of light, and mx, my and mz are indices. The indices my and mz are integers

≥ 1, and the index mx is an integer ≥ 0. Using these indices, the modes are labeled Emxmymz . The

fundamental mode is TE011 and has frequency

ω011 = cπ

√
(

1

ly
)2 + (

1

lz
)2. (3.33)

The cavity used in the experiment and shown in Fig. 3.7. has lx = 4.0 mm (0.157”), ly =

48.26 mm (1.90”) and lz = 28.85 mm (1.136”). According to this simplified model that ignores

the qubit, ω011 = 2π × 6.057 GHz. From room temperature measurements of the cavity without

the qubit chip, the cavity resonance is ω011 = 2π × 6.052 GHz. I use this fundamental mode to

couple to the qubit. According to Eqn. 3.31, the fundamental mode is polarized in the narrow (x̂)

dimension and has no variation across that dimension. Because I want to couple the qubit as a

dipole to the cavity’s electric field, I align the qubit’s dipole moment with the electric field (x̂) to

maximize the coupling. In the y and z dimensions (the two larger ones of the cavity), the field is

maximum at the center and vanishes at the edges. Accordingly, I place the qubit in the center of

the cavity in the y-z plane to maximize the qubit-cavity coupling.
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Figure 3.8: The TE011 mode of a cavity. The equipotential contours of the mode are shown.

3.2.2 HFSS calculation of cavity modes

The exact solution of an ideal cavity works well for describing an empty cavity, but a more

sophisticated method is needed to account for qubit and coupler perturbations. A 3D high frequency

field solver called HFSS is used to calculate the modes in this more realistic case. The electric field

contours of fundamental mode TE011 is shown in Fig. 3.8.

3.2.3 Cavity fabrication

The cavity is formed by milling out two pieces of Aluminum 6061 which are shown in Fig. 3.7.

The two halves come together at a seam defined by the plane of the qubit chip. The cavity used

in this experiment was machined by the author in the JILA Staff Shop. The cavity includes a slot

used to hold the qubit chip in its center along with openings to mount couplers.

3.2.4 Cavity input and output coupling

I add two couplers to create an input and an output. The combination of both allows for

transmission spectroscopy of the system and readout of the qubit state. The input coupler allows

an input drive to control the dynamics of the qubit-cavity system. Of critical importance, the
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output coupler facilitates the decay of a cavity photon into the propagating photon I desire. The

cavity’s decay rate κ sets the bandwidth of the propagating photon, whereas the ratio of output

decay rate to total cavity decay rate κout/κ sets the likelihood the cavity photon decays through

the output coupler.

There are several considerations to choosing the output coupling rate. I want the photon

bandwidth to be smaller than the JPA’s bandwidth of around 1 MHz at around 25 dB of gain.

Conversely, I want the coupling to be large enough so that the decay to the output mode is the

dominant decay rate. That is, the output coupling rate is much larger than the internal loss rate

and input coupling rate. However, the input coupling rate cannot be arbitrarily small because I

use this port to control the system. Considering all of these factors, I chose 300 kHz as the target

for the output coupling, dominating over the 30 kHz target for the input.

I couple into the cavity by inserting pins into the cavity aligned with the electrical field

polarization. For each coupler, its center pin is connected to the center conductor of microwave

co-axial cables. The cavity coupling is estimated by HFSS simulations but is set experimentally by

adjusting the length of coupling pins until the desired coupling is measured.

In HFSS, I estimate the coupling rate of a cavity (similar to the cavity used in the experiment)

to pins connected to a coplanar waveguide. Specifically, I calculate the loss rate of the cavity’s

eigenmode when the only source of loss is coupling to the transmission line. In this case, the

calculated loss rate is the coupling rate. I compute the coupling for a variety of pin lengths to

understand how the coupling rate scales. The pins are positioned to match the polarization of the

electric field, and 1/4 up the cavity’s height lz and 1/4 across ly the cavity’s width as indicated

in Figs 3.7. Thus the coupling is lower than if their couplers were at the field maximum in the

center, but should not affect the scaling with pin length. Though the exact value of the coupling

depends on the location of the coupler, the scaling with pin length can be applied to many cavity

geometries.

The results of the calculation are plotted in Fig. 3.9. Here, positive pin length corresponds

to the distance that the pin extends into the cavity. Negative distance corresponds to the distance
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Figure 3.9: Results from an HFSS calculation of the coupling rate for various pin lengths.
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the pin is recessed from the cavity’s wall. Because I want a strongly coupled output that sets the

cavity’s decay rate to be in the hundreds of kHz along with a much weaker input, I am interested

in the coupling from tens to hundreds of kHz. These couplings correspond to a pin recessed from

the cavity wall approximately 0.5 mm to 2.5 mm. In this range of pin length, the coupling scales

exponentially with the coupler length by an order of magnitude with every mm of pin length.

Using my knowledge of the coupling’s scaling gained from the HFSS calculation, I adopt a

procedure where I iteratively measure the coupling rate and adjust the length of the pins. The

coupling is determined by measuring the the frequency response in reflection (S11), and then fitting

the response in terms of the coupling rate κ1 and total decay rate κ. For the fit I use

|S11|2 = 1−
1− (κ−2κ1

κ )2

1 + (2∆
κ )2

, (3.34)

where ∆ is the detuning from resonance.

Adopting this procedure, I set the output coupling to κout = 2π × 301 kHz as shown in

Fig. 3.10. From measurements of the cavity when it superconducts, it has a total linewidth κ =

2π × 410 kHz. Thus, a photon in the cavity decays through the output modes, κout/κ = 73% of

the time. The input coupler is measured to be κin = 2π × 30 kHz and is located as close to the

center of the cavity as possible to maximize the cavity mode coupling to the qubit.

3.3 Coupled system

To complete the qubit-cavity system I couple the qubit to the cavity in the dispersive limit

(Section 2.2.2). In this limit, the qubit cavity coupling sets how much the state of the qubit pulls

the cavity frequency (2χ in Eqn. 2.37), which is used in qubit readout. Additionally, the it sets

the ability to drive the blue sideband which is used to generate photons (Eqn. 2.60). I place the

transmon qubit at the center of the cavity so the dipole moment length of the qubit (set by its

capacitors) lines up with the polarization of the fundamental mode TE011, thus causing strong

dipole coupling. The qubit chip placement is shown in Fig. 3.11.



52

Figure 3.10: The reflection response and fit used in setting the coupling rate κ1 of the cavity.

Figure 3.11: The qubit coupled to the cavity by placing it at the center of the cavity.
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3.3.1 Effective dispersive Hamiltonian

The coupling of a transmon qubit to a cavity is more complicated than the coupling of a true

two level system (as described in Section 2.2) because of the many levels of the transmon. Each of

the many transmon energy levels transitions (not just the |g〉 to |e〉) couple to the cavity and pull

the cavity frequency. Fortunately, it is possible to map the system onto a model based on an ideal

two level system (Eqn. 2.38).

To get the mapping, I take the results from Ref. [57], which treat the transmon as a three

level system, and ignores the |g〉 to |f〉 transition. The mapping to the two level systems model

depends on the qubit’s coupling of the |e〉 to |f〉 transition gef to the cavity modes, in addition to

the coupling of the |g〉 to |e〉 transition gge. The mapping is:

χ = χge − χef/2, (3.35)

for effective dispersive shift χ due to

χij =
g2
ij

ωij − ωc
, (3.36)

qubit transitions ωij , coupling gij and shifted cavity frequency

ωc = ωc0 − χef/2, (3.37)

where ωc0 is the undressed cavity frequency. Therefore, χ depends on the two detunings: (ωge−ωc)

and (ωef − ωc), and the two couplings: gge and gef . Because I know the frequencies of the cavity

and the qubit’s first two transitions, I need to estimate the coupling of the qubit transitions to the

cavity to determine the effective dispersive shift of the system (2χ).

3.3.2 Dipole coupling model

The qubit couples to the cavity as an electric dipole in the cavity’s electric field. I consider

a simplified toy model to calculate a simple analytic expression for the coupling. I start by writing

gtoy = Udipole = −d • Erms (3.38)
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where d is the dipole moment of the qubit and Erms is the root-mean-squared electric field due to the

vacuum state. The dipole moment is specific for each transmon transition leading to distinct cou-

pling energies for each transition. That is gge and gef are calculated from dge and def , respectively.

I approximate the dipole moment’s magnitude by treating the length of the transmon’s capacitor

paddles l (Section 3.1.6) as the effective length of the dipole. This treatment overestimates the

dipole moment because it is only valid for charges at the end of the capacitor, separated by l. In

reality there is a distribution of charge along the capacitor, which decreases the dipole coupling.

The charge used in the dipole is computed from the transmon’s change in charge (which is 2e× n

for n Cooper pairs) due to making the transition. Thus, the dipole moment for the i to j transition

is

dtoy
ij = l 〈i| 2en̂ |j〉 . (3.39)

The dipole moment can be solved by taking results from Ref [57],

| 〈j + 1| n̂ |j〉 | ≈
√
j + 1

2

(
EJ
8Ec

)1/4

(3.40)

for a transmon qubit. I calculate the electric field by setting the time averaged energy stored in

the fields equal to the energy of the vacuum state. That is,

1

2
~ωc =

1

2

∫
V
εE2dV (3.41)

where E is given by Eqn. 3.31 for the TE011 mode, and V is the volume of the cavity. Solving this

equation, I get the rms value for the electric field at the center of the cavity

Erms =

√
2~ωc
εV

. (3.42)

I calculate the dipole coupling (Eqn. 3.38) of the transmon transitions by combining Eqns. 3.39,

3.40 and 3.42. I express the coupling in units of angular frequency by dividing by ~. For the qubit

transition I get

gtoy
ge ≈ el

√
ω

~εV

(
2EJ
Ec

)1/4

. (3.43)

For the next transition I get

gtoy
ef ≈

√
2gtoy
ge . (3.44)
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With my system’s values (d = 0.9 mm, V = 4.0 mm × 48.26 mm × 28.85 mm, EJ/Ec = 34

and ω = 2π×5.8 GHz) the calculated couplings are gtoy
ge = 2π×138 MHz and gtoy

ef = 2π×195 MHz.

I determine the observed coupling rate from qubit spectroscopy (Section 4.1) getting gge = 2π ×

82 MHz and gef = 2π × 141 MHz. As expected, the toy model overestimates the coupling.



Chapter 4

Qubit and cavity’s characterization and dynamics

Before I can use the qubit-cavity system to produce photons, I need to characterize it to

determine if it is suitable for photon generation. Additionally, I need to demonstrate and calibrate

operations, which control the dynamics of the system in order to implement a photon generation

protocol. Both fully characterizing the system and calibrating control operations depend on reading

out the state of the qubit. To begin, I perform a power dependent spectroscopy on the cavity. This

spectroscopy lets me calculate some of the system parameter, and form the basis of qubit readout.

With the qubit readout, I can further characterize the system and calibrate control pulses.

4.1 Cavity spectroscopy and qubit readout

As the starting point for understanding the system, I look at the cavity’s power dependent

spectrum. From this spectrum, I can confirm that I have an effective two level system dispersively

coupled to the cavity. Additionally, I can determine the terms in the system’s effective dispersive

Hamiltonian (Eqn. 2.38), which forms the basis for measuring and projecting the state of qubit.

As shown in Fig. 4.1, I inject a probe tone into the cavity and measure the transmitted

probe’s amplitude with the amplifier chain. Because the cavity acts as a filter, I see a peak in

transmission at the cavity’s resonance. By adjusting the power and frequency of the probe tone, we

see the cavity resonance corresponding to the |g〉, |e〉 and |f〉 states of the transmon and the power

dependence of the cavity frequency (Fig. 4.2). The spectrum is plotted as the scattering parameter

S21 = Vout/Vin in terms of the injected Vin and measured voltages Vout. If we ignore the faint |f〉
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Figure 4.1: Transmission spectroscopy schematic. The cavity has two ports. I inject a coherent
tone in one port and measure the transmitted tone with the second port.

state, at low power the system is well described by the dispersive Hamiltonian (Eqn. 2.38), which

describes a cavity frequency that depends on the state of a two level system. From rearranging the

terms in Eqn. 2.38, I get the effective cavity frequency in terms of the qubit state as

ω′c = ωc + 2χ
σz
2
. (4.1)

From the figure, the system has a dispersive shift of χ = −2π× 1.0 MHz and ωc = 2π× 5.866 GHz.

The dispersive Hamiltonian considers a two level system coupled to a cavity. In reality, I have

at least a three level system where I treat the |g〉 and |e〉 states as forming a two level system. The

presence of the three levels shifts the cavity frequency from the undressed cavity f0 = 5.8655 GHz

at high power to the dressed cavity fc = 5.8705 GHz at lower power. Moreover, the effective

dispersive shift 2χ, is set by the parameters of the three level system coupled to the cavity as I

described in Section 3.3.1 in Eqns. 3.35, 3.36 and 3.37. I can account for the cavity dressing and

effective dispersive shift by writing out

χ =
g2
ge

ωge − ωc
−

g2
ef

2(ωef − ωc)
= −2π × 1.0MHz, (4.2)

and

∆ωc = −
g2
ef

2(ωef − ωc)
= 2π × 5.5MHz (4.3)

in terms of the three level system (transmon) parameters. In order to solve for all of the dispersive

three level system parameter described in Eqns. 4.2 and 4.3, I need to implement a more sophisti-

cated spectroscopy to determine the qubit frequency and anharmonicity. Once I have these values,

I can use these relation to determine the qubit-cavity couplings (gge and gef ).
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Figure 4.2: The power dependent cavity spectra. The cavity transmission is measured adjusting
a CW probe tone’s frequency and powers. The probe tone’s power is listed as the approximately
power at the cavity’s input. Low power shows the dispersive shift of the cavity frequency depending
on the state of the transom. Because the transmon is not well thermalized, the |f〉 states resonate
frequency is visible in addition to the |g〉 and |e〉 states. At high power, undressed cavity resonance
f0 = 5.8655 GHz is visible.
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4.1.1 Qubit readout

There are two types of qubit readouts I can implement based on the power dependent cavity

spectrum. One is based on the cavity’s dispersive shift [60]. The second is based on the transmon’s

three levels altering the cavity frequency. From the dispersive Hamiltonian, the cavity has one of

two frequencies depending on the state of the qubit (Eqn. 4.1). Because the resonance frequency of

the cavity is determined by the state of the qubit, measuring the resonance frequency of the cavity,

in effect, measures the state of the qubit. I can use a single tone to measure the cavity’s resonance

frequency either as a transmission amplitude measurement or phase measurement, depending on

the frequency of the readout signal [21, 61].

In transmission dispersive measurement, I place a readout tone at one of the cavity’s resonance

states. Then, the readout tone will be on resonance (and thus transmit) depending on the state

of the qubit. For example, if a readout tone is injected at the cavities excited state resonance

frequency, then it will transmit only if the qubit is in the excited state. If the qubit is in the

ground state or any other higher level transmon state, then the tone will not transmit. Thus, I

realize a qubit readout by measuring the transmission of the injected tone. Likewise, by injecting

the readout tone at the ground state, I can make a measurement that is dependent on the the

population of the ground state.

Alternatively, I can measure the phase shift of the probe tone in order to measure the cavity’s

resonance frequency, and thus infer the state of the qubit. By placing a tone in between the two

resonant states of the cavity, the phase of the tone is determined by whether the tone is above or

below the cavity’s of resonate state determined by the qubit. Therefore, by measuring the phase of

the probe tone, I measure the state of the qubit [62, 31, 32, 63]. In this case (where the dispersive

shift is much greater than the cavity decay rate |2χ| � κ and χ < 0 ) if the qubit is in the |g〉

state, then the tone is below resonance and there is approximately no phase shift. When the qubit

is in the |e〉 state, the tone is above resonance and there is approximately a π phase shift. By

constructing the measurement so that I am sensitive to this π phase shift in the probe tone, I can
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realize a qubit readout.

As an alternative to the dispersive readout, I can form a measurement based on whether the

qubit dresses (shift) the bare frequency of the cavity. As seen from the spectroscopy (Fig. 4.2)

the bare frequency of the cavity emerges at 5.8655 GHz when the probe tone is greater than

−97 dBm at the cavity’s input. Whereas, at lower power the cavity has a frequency fc ± χ/2π =

5.8705± 0.001 GHz. It turns out that the presences of the undressed cavity state depends on both

the readout tone’s power and qubit state. When the qubit is in the |e〉 state, the undressed cavity

emerges at a higher power than when the qubit is in the |g〉 state. I realize an undressed cavity

readout by first setting the readout tone at the undressed cavity state frequency. Second, I set the

power so that the cavity will not transmit if the qubit is in the ground state, and will transmit if

the qubit is in the excited state, or bright state. Thus, I have realized an additional readout called

the bright state readout [64].

The readout can either measure an instantaneous realization of the state of the qubit or

average over multiple realizations depending on the duration of the measurement compared to the

qubit’s lifetime. When performing a measurement much longer than the lifetime of the qubit, the

measurement reflects the average state of the qubit over the duration of the measurement rather

than at any single instance. This type of measurement is called continuous wave (CW) measure-

ment. When the measurement is shorter than the lifetime of the qubit and each measurement

distinguishes the qubit (or cavity) state, then measurement reflects the instantaneous state of the

qubit and is called single shot readout.

4.1.2 Two-tone spectroscopy of the qubit

To detect the qubit transitions, I perform a type of spectroscopy where I use one tone to

excite the qubit and the second to detect the change in the qubit state (Fig. 4.3). The readout

tone is tuned to the undressed cavity resonance frequency (bright state), which transmits power

when the qubit is excited (Section 4.1.1). I sweep the frequency and power of the other tone, drive

tone, to detect the qubit transition. I perform this two-tone spectroscopy in CW mode. Because
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Figure 4.3: Two-tone spectroscopy schematic. Like the transmission spectroscopy, I inject power
in one port and measure the transmission with the second port. In addition to the readout tone, I
inject a drive tone to excite the qubit.
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I am performing a CW measurement, transmission increases according to the probability that the

qubit is in the excited state. When the drive tone is at the qubit transition, then the qubit will

oscillate the excited and ground state. If the rate of oscillations, or Rabi rate, is much larger than

the qubit decay rate, then the qubit will be excited half of the time and I will see a larger signal.

If I decrease the Rabi rate (amplitude of the drive tone) to be comparable to or less than the qubit

decay rate, then the excited state probability deceases with the Rabi rate (Section 2.2.3.1), and I

see a decrease of signal with drive amplitude.

The results of the two-tone spectroscopy are shown in Fig. 4.4. I use a poorly thermalized

cavity different from the one used in photon generation. I see an increased transmission of the

readout tone when the drive is at 4.37 GHz. Thus, the qubit frequency is fge = 4.37 GHz. Because

the qubit is poorly thermalized, we can see the |e〉 to |f〉 transition. The poorly thermalized

transmon has a non-negligible probability of being in the |e〉 state Pe ≈ 15%. If the transmon is

in the |e〉, then driving the the |e〉 to |f〉 transition populates the |f〉 state, and thereby increase

the time it takes to decay down to the |g〉 state. As a consequence, driving the |e〉 to |f〉 transition

decreases the probability of being in the |g〉 state and therefore increases the signal transmission.

From this spectroscopy, we see that the |e〉 to |f〉 transition is at fef = 4.04 GHz. Using the

spectroscopy with the cavity used in the experiment, the qubit frequency is determined to be

fge = 4.398 GHz and the |e〉 to |f〉 transmission is fef = 4.052 GHz. These frequencies give a

measurement of anharmonicity αk = ωge − ωef = −2π × 346 MHz.

I can use the results of the two-tone spectroscopy to finish solving for the dispersive transmon

parameters and the solve for the Ec and EJ in the CPB Hamiltonian. Combining the results of the

qubit, two-tone spectroscopy with power dependent cavity spectra earlier in this section, I can solve

for the cavity coupling to the |g〉 to |e〉 transition gge and the coupling to the |e〉 to |f〉 transition

gef . From Eqns. 4.2 and 4.3, I find gge = 2π × 82 MHz and gef = 2π × 141 MHz.

Using the solution for the transmon qubit in terms of the Mathieu characteristic function

(Eqn. 3.24) I solve for the values of EJ and Ec. From fq = 4.398 GHz and fef = 4.052 GHz and
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Figure 4.4: Two-tone spectroscopy on the state of the qubit. The transmission of the readout tone
is measured while adjusting the frequency and power of a drive tone. The drive power is specified
at the microwave source. From the spectrum, I see fq = 4.37 GHz and fef = 4.052 GHz.
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assuming negligible charge dispersion, I numerically solve for EJ and Ec by minimizing

J =

[
Eca−3

(
− EJ

2Ec

)
− Eca−1

(
− EJ

2Ec

)
− ωge

]2

+

[
Eca−5

(
− EJ

2Ec

)
− Eca−3

(
− EJ

2Ec

)
− ωef

]2

(4.4)

from Eqn. 3.24. Because the transmon is insensitive to ng, an arbitrarily chosen ng = 0.5 is used.

I get EJ = 2π × 9.60 GHz and Ec = 2π × 288 MHz. These values give us a ratio EJ/Ec = 33.2,

which is below the ideal transmon ratio of 50. As we see later in this Chapter, these values still

give us a lifetime and dephasing rate suitable for photon generation.

4.1.3 Single shot readout

For two reasons the photon generation protocol benefits greatly from single-shot QND read-

out. First, single shot readout has the greatest possible readout contrast facilitating the calibration

qubit control pulses with high accuracy. Second, a QND measurement projects the system into

the measured state, allowing the system to prepared in the ground state by measurement and

post-selection [65, 66, 67].

Single shot readout can be achieved when the readout’s duration is less than the lifetime

of the qubit, and has the contrast to resolve the two states of the qubit. Given a certain cavity

response depending on the state of the qubit, these requirements place joint constraints on the

qubit lifetime, probe power and measurement efficiency. I can demonstrate the conditions used to

achieve single shot readout by measuring a qubit that has a steady state excited state probability.

The measurement is an excited state transmission measurement. The qubit measurement is pulsed

for 1 µs, and a JPA is used as a homodyne detector that measures a single quadrature value.

As shown in Fig. 4.5, I adjust the readout power and plot histograms along the y-axis of single

quadrature measurements of the readout tone. At the lowest power, it is impossible to resolve

instances that cavity transmits because the qubit is excited from those instances when the qubit is

in the ground state. We see a single Gaussian distribution of measured readout tone values along

the y-axis. As the readout tone’s power is increased to −125 dBm at the cavity, we can start to

resolve a two Gaussian peaks. One corresponds to instances the cavity transmits because the qubit
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Figure 4.5: Histograms of the measured readout tone’s voltage (y-axis) at various readout tone
powers (x-axis). At low power these single shot voltages for a Gaussian distribution set by the
noise floor of the measurement. Above -125 dBm of readout power at the cavity, we can resolve
the transmitted distribution associated with the |e〉 state apart from the |g〉 state. By thresholding
at a voltage between the two distribution, I can realize single shot readout.
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is in the excited state. The other corresponds to instances when the qubit is in the ground state.

In the ground state, the cavity does not transmit and we see a Gaussian peak corresponding to the

noise floor of the measurement. I can set up a single shot readout of the qubit state by choosing a

readout tone power where there are two resolvable distributions and then set a threshold quadrature

measurement between the two. If a measurement of the readout tone above the threshold, then I

assign that measurement to the |e〉 state. If below, then the |g〉 state. The success of the single

shot readout is demonstrated in the next section when Rabi oscillationons and control pulses are

discussed.

4.2 Control pulses

Now that I can perform single shot readout on the state of the qubit, I can observe coherent

control of the qubit-cavity system. I demonstrate driving Rabi oscillations, and I calibrate pulses

that drive the qubit transition (Section 2.2.3.1), which are used for characterizing the system. Then,

I demonstrate driving coherent oscillations on the blue sideband transition (Section 2.2.3.2), which

creates photons. Like two-tone spectroscopy (Section 4.1.2), I use both a drive and a readout tone

(Fig. 4.3). Rather than operating both the readout and drive tones in CW mode, as for two-

tone spectroscopy, I sequentially pulse the two tones. First, I pulse the drive tone at a particular

frequency and amplitude for a set amount of time. Then, I pulse the readout tone to perform the

single shot on the qubit.

4.2.1 Qubit pulse

Driving the qubit transition creates oscillations between the ground and excited state (Rabi

oscillations). This is a direct demonstration that our system is a controllable effective two level

system. Moreover, the drive on the qubit allows preparation of the qubit into arbitrary states and

can facilitate measurements of the qubit’s lifetime T1 and dephasing time T2. When I drive the

qubit transition, the qubit state will oscillate between ground state |g〉 and excited state |e〉 [62].

Starting in the ground state, the excited state probability after being driven for a time td oscillates
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according to

Pe(td) =
V 2
d

∆2 + V 2
d

sin2

 td
√

∆2 + V 2
d

2

 (4.5)

from Eqn. 2.46, where ∆ is the drive’s detuning from the qubit transition and Vd is the amplitude

of the drive.

I demonstrate these Rabi oscillations by repeating a protocol where I first drive the qubit for

a certain amount of time with a certain power and then, perform a single shot readout. After the

measurement, I wait for the qubit to relax before starting the protocol again. I repeat this protocol

640 times at each power and time to measure the probability of the qubit being in the excited

state (Fig. 4.6). I see Pe oscillate according to Eqn. 4.5. Observing Rabi oscillations confirms the

frequency of the qubit transition and is a clear demonstration that I am controlling an effective

two level system.

4.2.1.1 Calibrating pulses

By measuring these oscillations I can calibrate pulses. A pulse which lasts for half the period

of a Rabi oscillation swaps the qubit state from |g〉 to |e〉, or |e〉 to |g〉. This pulse is called a π pulse

because it constitutes π radians worth of Rabi oscillations. A control pulse lasting for π/2 radians

worth of Rabi oscillations is call a π/2 pulse and pulse will turn a |g〉 into a (|g〉+ eiφ |e〉)/
√

2 state

with the phase φ set by the phase of the pulse.

From a plot of Rabi oscillations similar to Fig. 4.6, I can calibrate a π-pulse by choosing the

duration and amplitude that maximizes the swap of the first oscillation. Similarly, I can calibrate a

π/2-pulse, by keeping that same frequency and choosing the duration such that half the population

has swapped. These pulses are important tools because both π and π/2-pulses on the qubit are

used to characterize the qubit’s lifetime and dephasing. Furthermore, π-pulses on both the qubit

and blue sideband transition are used to in the photon creation protocol.
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Figure 4.6: The results from the Rabi measurement adjusting pulse amplitude and frequency. The
pulse amplitude is specified at the microwave source. Rabi oscillations can be seen at the qubit
transition.
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4.2.2 Blue sideband pulse

Pulses on the blue sideband are used to create photons in the cavity, and are therefore critical

to the photon generation experiment. As we saw in section 2.2.3.2, when I drive the qubit cavity

system at (fq + fc)/2 I get the effective Hamiltonian for the blue sideband drive that a couples

the |N, g〉 state and the |N + 1, e〉 state. (The notation convention is |cavity photon number, qubit

state〉). Because of this coupling, a drive on the blue sideband will cause oscillations between the

|N, g〉 and |N + 1, e〉 state. These oscillations are analogous to Rabi oscillations between the |g〉

and |e〉 states for the qubit drive.

I demonstrate these oscillations by using an identical protocol to the Rabi oscillations in the

previous subsection (4.2.1). Starting in the ground state with no photons in the cavity, the system

oscillates between the |0, g〉 and |1, e〉 states. I can therefore perform a single shot readout on the

state of the qubit to see the blue sideband oscillations. I adjust the drive frequency and amplitude

to see Rabi like oscillation in Fig. 4.7. Additionally, I see a drive amplitude dependent shift in

the blue sideband frequency. It arises because I populate the cavity with photons and Stark shift

the qubit frequency as seen in the dispersive Hamiltonian (Eqn. 2.38). Because the blue sideband

frequency depends on the frequency of the qubit [fbs = (fq + fc)/2], the blue sideband transition

Stark shifts along with the qubit.

The oscillations become more clearly similar to Rabi oscillation by fixing the amplitude of

the drive and adjusting both the frequency and duration of the drive (Fig 4.8). In a similar manner

to the previous section, I can define and calibrate a π pulse on the blue sideband. Starting in

the ground state of the system |0, g〉, this blue sideband π pulse will create a photon, putting the

system in the |1, e〉 state. Thus, the blue sideband π pulse creates a single photon while exciting

the qubit.
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Figure 4.7: The results of the blue sideband measurement, as a function of pulse amplitude and
frequency. The pulse amplitude is specified at the microwave source. Rabi-like oscillations can
been seen at the blue sideband transition frequency. These oscillations are distorted by the power
dependence of the blue sideband transition, or Stark shift.
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Figure 4.8: The results from the blue sideband measurement with fixed pulse amplitude. I adjust
pulse duration and frequency seeing Rabi-like oscillations at the blue sideband transition frequency.
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4.3 Qubit characterization

Combining the calibrated drive pules with the single shot readout, I can implement protocols

that determine the lifetime T1 and dephasing time T2 of the qubit. The lifetime is the characteristic

time for the qubit to decay from the |e〉 state to the |g〉 state. The dephasing rate Γ = 1/T2

describes how fast the phase φ in |g〉 + eiφ |e〉 is lost. These parameters must be sufficiently large

for a successful implementation of the photon generation protocol.

The photon creation protocol places constraints on the lifetime of the qubit T1 because it

relies on a blue sideband π pulse. When I create a photon in the cavity with a blue sideband,

I also excite the qubit. Changing the state of the qubit changes the frequency of the cavity and

its excitations due to the dispersive Hamiltonian. Because I do not want the photon frequency to

change, I want the qubit to stay in the |e〉 state until the photon has decayed out of the cavity.

As a result, I want the qubit to have a lifetime that is much longer than the cavity decay time

T1 � 1/κ. For the system κ = 2π × 410 kHz, therefore I desire T1 � 0.39 µs.

The dephasing time is another important characteristic of the qubit. The dephasing time T2

must be much longer than the duration of any control operation on the qubit for that operation to

have high fidelity. For the 150 ns pulse length I implement in the photon generation experiment,

T2 � 0.15 µs is necessary for the qubit’s phase to be well defined over the duration of the qubit

pulse. Additionally, determining T2 is important in the photon generation experiment, because I

use the change in the dephasing time to quantify measurement backaction.

4.3.1 Qubit lifetime

I can measure the lifetime T1 of the qubit by implementing a three-step protocol. Starting in

the |g〉 state, the protocol begins by first exciting the qubit with a π pulse. Then, I wait some time

tw before I perform single shot readout on the state of the qubit. By repeating this protocol several

times at each tw, I extract the probability that the qubit is in the excited state. By measuring

this probability over a range of wait times, we can see the probability that the qubit is in the
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Figure 4.9: Measurement of the qubit |e〉 state lifetime. I excite the qubit and observe it decay.
From the fit, the qubit lifetime is T1 = 10.2± 0.3 µs.
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excited state Pe decays over time. By fitting the decaying excited state probability to a decaying

exponential

Pe(tw) = Pe(0)e−tw/T1 , (4.6)

I can extract the lifetime T1 for the qubit [68]. I implement this T1 measurement (Fig. 4.9). From

fitting the excited state probability to Eqn. 4.6, I get a qubit lifetime T1 = 10.2 ± 0.3 µs. Indeed,

T1 � 0.39 µs as I desire for the photon generation protocol.

4.3.2 Qubit dephasing

I can measure the characteristic time T2 for the phase φ of a coherent superposition |g〉+eiφ |e〉

to drift or dephase by implementing a four-step Ramsey spectroscopy protocol. When the dephase

time T2 is measured this way it is denoted as the T ∗2 time. In this protocol, I prepare the |g〉+eiφ |e〉

state and observe the stability of its phase φ. In the first step of the protocol, a π/2 qubit pulse

rotates the |g〉 state to the Ψ(0) = |g〉+eiφ0 |e〉 state, where the phase φ0 is set by the π/2 pulse. In

the second step, I wait some amount of time tw during which the phase may undergo some random

walk or dephase. The last two steps amount to measuring the overlap between this state at t = tw

and the state at t = 0, or measuring |〈Ψ(0) |Ψ(tw)〉 |. The third step rotates Ψ(0) the to |e〉 state

by applying a second π/2 pulse with the same phase as the first. Lastly, a readout is performed on

the qubit state [68, 62].

When there is no dephasing during the wait time, the two π/2 pulses have the effect of a

single π pulse. In this case, I expect the qubit to be in the |e〉 state. In the other extreme the

qubit completely dephases. In this case, the second π/2 pulse is just as likely to rotate the qubit

to the |e〉 state as the |g〉 state. I expect the excited state probability to be Pe = 50%. Thus, as I

increase waiting time, I expect Pe to decrease from 100% to 50% as the qubit dephases. Or written

explicitly, Pe = P0 + P1e
−tw/T ∗2 with constants P0 = P1 = 0.5 for the ideal case.

Now, I consider an off resonant drive. When there is no qubit dephasing during the wait

step, the phase of the drive rotates relative to the phase of the qubit at a frequency set by the

difference between the drive frequency and qubit ∆t2. In this generalized T ∗2 sequence, the rotating
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Figure 4.10: Ramsey measurement of the qubit dephasing as I adjust the pulse frequency. As the
qubit dephases at large time, the excited state probability saturates and the contrast in the fringes
is lost.
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Figure 4.11: Ramsey measurement of the qubit dephasing with the drive detuned 1 MHz. As the
qubit dephases the coherent oscillations washout.
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phase causes Pe to oscillate at that difference frequency. As a result, I expect the excited state

probability to both be decaying and oscillating. Written explicitly, the excited state probability is

Pe(tw) = P0 + cos(∆t2tw)P1e
−tw/T ∗2 , (4.7)

where the constant P0 is the steady state excited state probability and P0 +P1 is the initial excited

state probability. For the ideal case, the constant P0 = P1 = 0.5.

I implement this T ∗2 measurement by adjusting the wait time tw and the π/2 pulse’s frequency

(and therefore ∆t2) in order to measure the qubit dephasing time T ∗2 (Fig. 4.10). Most of my Ramsey

measurement are conducted at only a few values of ∆t2. To demonstration the Ramsey fringes,

the measurement shown in Fig. 4.10 is conducted at 51 values of ∆t2. However, this particular

measurement was performed before implementing the high contrast single shot readout. Here, I do

not threshold the single shot measurement voltages to assign the each instance in either the ground

or excited state. Instead, I average the raw single shot measurements to plot the average voltage

at each tw and frequency. I fit a subset of data with ∆t2 =1 MHz to Eq. 4.7 where constants P0

and P1 take on values of voltages (Fig. 4.11). I extract the dephasing time T ∗2 = 6.2 µs. Thus,

T2 � 0.15 µs. Therefore, the qubit is coherent enough for the photon generation protocol.



Chapter 5

Photon generation and detection

I now reach the heart of the experiment. In this Chapter, I discuss single photon generation

and detection using a superconducting transmon qubit coupled to a cavity. I use the blue sideband

transition of the qubit cavity system to create photons. To analyze the photons, I operate the

JPA in heterodyne (two quadrature) and homodyne (single quadrature) modes. For both detection

methods, I quantify the single photon generation and detection by performing state tomography,

which estimates the density matrix ρ.

To initially verify photon generation, I implement a measurement apparatus designed to

protect and isolate the qubit-cavity system from the amplifiers at the cost of measurement efficiency.

In these measurement, I see several signatures of photon generation and perform tomography on

the propagating photon state using heterodyne detection. Limited by both detection inefficiency

and generation fidelity, I infer a mixed state that corresponds to a single photon 12% of the time

(ρ11 = 0.12) of the propagating mode, correcting for heterodyne detection’s 1/2 quanta of added

noise.

Working to optimize photon detection, I implement a homodyne detection scheme that min-

imizes the loss between the photon source and the JPA. In this case, I reconstruct a mixed state

that is a single photon 36% of the time (ρ11 = 0.36). In this scheme, I quantify a JPA’s backaction

on the qubit-cavity system. I independently estimate the density matrix of the propagating photon

state and the efficiency of my amplifier chain. I find that my photon measurements agree with my

expectations within uncertainty using state fidelity as a metric.
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5.1 Photon generation

I generate single propagating photons by first generating them in the cavity, and then letting

them decay into a strong coupling output mode. I create the photons in the cavity by performing

a calibrated π pulse on the blue sideband transition of the qubit cavity system, which excites the

qubit and creates a photon in the cavity (Fig. 5.1). Once the photon is created in the cavity,

it is strongly coupled to an output mode and decays, creating a propagating photon. I start by

investigating the blue sideband pulse because it is the key step in the generation protocol.

5.1.1 Blue sideband measurements

I use the dynamics of the qubit-cavity system to confirm that I am addressing the blue

sideband transition. The simplest check I can perform is to look at the Rabi-like oscillation of the

blue sideband transition. During a blue sideband drive, the system oscillates between the |0, g〉 and

|1, e〉 state (Fig. 5.1). Consider the situation when photons decay much faster than the qubit. If

the photon decays when the system is in the |1, e〉 state, then the system will be in the |0, e〉. Until

the qubit decays, the system no longer oscillates because the system does not have a photon to lose

when the qubit flips to the |g〉 state, and the qubit will be stuck in the |e〉 state.

In my system, cavity photons decay much faster than the qubit. Photons decay in 1/(2π ×

410 kHz) = 0.39 µs, whereas the qubit decays in T1 = 10.2 µs (Section 4.3). Under a continuous blue

sideband drive, the qubit cavity system decays to the |0, e〉 at a rate set by the cavity decay rate κ =

2π×410 kHz. At larger times, the qubit can decay causing the system to saturate into a mixed state

with the qubit excited half of the time [23]. I measure the excited state probability as a function

of blue sideband pulse length (Fig. 5.2). This measurement protocol is nearly identical to Rabi

oscillation (Section 4.2.1), where I drive the blue sideband transition for a certain time then perform

single shot readout. From fitting these results to an exponentially decaying sinusoid, the oscillations

between ground and excited state decay to the excited state at rate κBS = 2π × (370 ± 10) kHz.

This behavior is consistent with creating decaying single photons. However, I would like a more
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Figure 5.1: Energy level schematic for photon generation with the blue sideband.
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rigorous confirmation that the blue sideband π-pulses are creating single photons.

5.1.2 Cavity photon detection with qubit

Now that I have seen indirect evidence that I am creating photons with the blue sideband

drive, I use the system to directly detect cavity photons [69, 70]. Just like the dispersive Hamiltonian

allows the cavity to be used for qubit readout, it also allows the qubit to be used to perform cavity

photon number readout. I use the fact that the qubit frequency depends on the number of cavity

photons to observe photons decaying out of the cavity following a blue sideband π-pulse. From the

dispersive Hamiltonian (Eqn. 2.37), I can write the qubit frequency in terms of photon number

ω′q = ωq + 2χn. (5.1)

as in Eqn. 2.39. Because the qubit frequency depends on photon number, I can calibrate π-pulses

that are contingent on photon number. For example, a π-pulse whose frequency is ωq,1 = ωq +2χ is

only a π-pulse when there is one photon in the cavity. To make qubit π-pulses contingent on cavity

photon number, these pulses must be spectrally narrow compared with the qubit photon number

splitting (2χ). A complete description of this approach can be found in Ref. [71].

To achieve photon number detection, I must do three things: first, I must know the qubit

initial qubit state, then, I apply a photon number dependent π-pulse, lastly, I perform a single shot

readout on the state of the qubit. If the qubit changed state, then a photon number corresponding

to the qubit π-pulse is detected. For example, starting with the qubit in the |e〉 state, I apply a

qubit π-pulse at the single photon qubit frequency (ωq+2χ). If I measure the qubit in the |g〉 state,

then the π-pulse was successful and there was one photon in the cavity. Otherwise, if the qubit is

measured in the |e〉 state, then the cavity does not have one photon.

To detect the decay of photons created by the blue sideband transition out of the cavity, I

implement the following sequence. First, I apply a blue sideband π-pulse to create a photon in

the cavity. Then, I wait for some delay time. Next, I apply a spectrally narrow qubit drive pulse

at some frequency. If this pulse is at the correct frequency, then it will be a π-pulse contingent
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Figure 5.2: Excited state probability during a blue sideband drive (marks) fit to a offset exponen-
tially decaying sinusoid (solid line). During a blue sideband drive, the qubit oscillates between the
|g〉 and |e〉 state. As a photon decays from the cavity, the systems saturates to the |e〉 state.
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Figure 5.3: Detecting cavity photons created by a blue sideband π-pulse using photon number
dependent qubit π-pulses. The |g〉 state probability is plotted following a second pulse (a qubit
pulse) adjusting the qubit pulse’s frequency and delay after the blue sideband pulse. When the
pulse is at 4.3948 GHz or 4.3929 GHz, the pulse is π-pulse contingent on zero or one photon in
the cavity, respectively. Because these pulses rotate the qubit to the |g〉, measuring the |g〉 state
measures the respective photon number state (when the π-pulse is at 4.3948 GHz for n = 0 and
4.3929 GHz for n = 1). As the delay time increases the photon created by the blue sideband pulse
decays to the n = 0 state.
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on cavity photon number. Lastly, I perform a single shot readout on the qubit. I repeat this

procedure roughly 103 times for each combination of delay time and drive frequency to build up

statistics (Fig. 5.3). I adjust the drive frequency across the zero photon and single photon qubit

frequency to detect the |1〉 state decay to the |0〉 state. I measure over a range of delay times

to observe the photon decay out of the cavity. At drive frequencies 4.3948 GHz and 4.3929 GHz,

I can resolve the |0〉 and |1〉 π-pulses, respectively. With increased delay time, the single cavity

photon probability decreases and the probability of there being zero photon increases. From this

measurement, I directly observe that the blue sideband π-pulse creates a photon in the cavity, and

I see these photons decay.

5.2 Heterodyne detection

To detect the propagating photon, I connect the strongly coupled output to the JPA. The

JPA is operated as a two quadrature, or heterodyne, detector by centering the JPA’s gain ∆ =

−2π × 1 MHz detuned from the photon’s frequency. The photon’s frequency is set by the cavity’s

frequency when the qubit is in the excited state (ωc + χ). The center of the JPA’s gain is set by

the frequency of the strong pump tone. As a result of operating the JPA as heterodyne detector

the strong pump tone is 1 MHz detuned from the cavity’s resonance. Because the cavity has a

linewidth of κ = 2π × 410 kHz, the the pump is filtered by the cavity.

This measurement strategy minimizes undesirable interaction between the qubit-cavity sys-

tem and the JPA, but at the cost of reduced measurement efficiency. As a result, the JPA operates

with modest measurement efficiency. In between the cavity and the JPA, there are reactive and

attenuation lower pass filters designed to suppress photons whose frequency are above the cavity’s

resonance leaking into the cavity. Additionally, there are 3 non-reciprocal elements called circula-

tors or isolators, which prevents the JPA’s output from leaking back into the cavity. Because of

all these elements, there is 4.6 dB of loss between the cavity and the JPA as measured at room

temperature. As a result, a photon should be absorbed in transit approximately 65% of the time.

In other words, the loss in between the cavity and JPA limits the measurement efficacy to roughly
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ηm ≤ 0.35. Additionally, intrinsic measurement inefficiency and cavity loss further reduces ηm.

5.2.1 Two quadrature filter and photon variance

As a photon decays out of the cavity, the JPA’s measurement yields a time trace Vm(t). As

discussed in Section 2.3.1, a quadrature in a frame rotating at ωJPA (the center of the JPA’s band)

is amplified and demodulated to yield the time trace Vm(t). If the input signal were at ωJPA, then

Vm(t) would contain a sequence of single quadrature measurements of the signal. In my case, the

signal is at ωJPA + ∆. The quadratures in the frame of the signal oscillate at a rate ∆ with respect

to the quadrature that the JPA measures. Consequently, an input Vin = V0 sin ((ωJPA + ∆)t) going

into the JPA becomes a measured time trace Vm(t) = GV0 sin(∆t+φ0), where G is the heterodyne

gain at ωJPA + ∆, and φ0 is a static phase shift in amplification and demodulation process.

In the photon measurements, this time trace Vm(t) must be processed to achieve the two-

quadrature measurement. I extract the values of X1 and X2 using two orthogonal filter function

oscillating at ∆. For measurements of a steady oscillating field using the JPA as a heterodyne

detector, the choice of the two filter functions is straightforward. Consider that signal Vin. Its

output Vm(t) oscillates at ∆. For this case, I can construct the two quadrature filters fx1 =

N1 cos(∆t) and fx2 = N2 sin(∆t) corresponding to the X1 and X2 quadratures, respectively. The

normalization constants Ni are set so that filter function is normalized over the measurement time

interval from t0 to t1. Or, ∫ t1

t0

f2
i (t)dt = 1. (5.2)

Just like the corresponding quadratures, for long measurement intervals the two filter function are

orthogonal, or ∫ ∞
0

f1(t)f2(t)dt = 0. (5.3)

As long as the measurement interval is long compared to the period of oscillations, then the fi-

nite measurements are approximately orthogonal. Using these filter functions, the values of the
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measured quadratures then become

Xi =

∫ t1

t0

fi(t)Vm(t)dt. (5.4)

Capturing the pulsed photon signal with a heterodyne measurement adds additional require-

ments. In addition to having two orthogonal filter function with a phase π/2 radians apart, the

filter function must match the temporal envelope of the photon decaying from the cavity. Specif-

ically, for a pulse which has some temporal power profile P(t), I want f2
1 (t) + f2

2 (t) = P(t) for

efficient measurement. The temporal profiles is similar the output mode Aout defined in Eqns. 2.6

and 2.7 with one major exception. It is distorted by the JPA’s finite bandwidth.

Shown in Fig. 5.4, are the two quadrature filters matching the X1 and X2 quadratures that

I use in my heterodyne measurements. Taken together, these two filter functions match the power

profile of a state leaking out of the cavity and measured by the JPA. [For comparison to the measured

temporal profile of the power leaking out of the cavity due to photon creation, see Fig. 5.11(c).] The

two filter functions are formed by starting with two decaying sinusoids f ′1(t) = e−κ/2t cos(∆t + φ)

and f ′2(t) = e−κ/2t sin(∆t+φ) for t ≥ 0, both similar to Aout (Eqn. 2.6) oscillating at ∆. The decay

κ is set to the cavity’s decay rate and the detuning ∆ = −1 MHz. The phase φ sets the phase of

the quadrature filters. To account for the bandwidth of the JPA, the two sinusoids are low pass

filtered with the cutoff frequency set by the JPA bandwidth (1 MHz for the filter functions shown).

A low pass filter h is used rather than a bandpass because the signal is demodulated at ωJPA. The

results are the filter functions shown in Fig. 5.4 and listed below:

f1(t) = h(ωLPF, t) ∗Θ(t)e−κt cos(∆t+ φ) (5.5)

f2(t) = h(ωLPF, t) ∗Θ(t)e−κt sin(∆t+ φ). (5.6)

Here, Θ(t) is the Heaviside step function and h(ωLPF, t) is a low pass filter’s impulse response with

cutoff frequency equal to half the bandwidth of the JPA ωLPF = 2π × 0.5 MHz. The symbol (∗)

denotes convolution.

Well defined quadrature filter functions should be orthogonal over their range as defined

in Eqn. 5.3. A sine and a cosine functions are approximately orthogonal over a span of many



87

f1

f2

t (μs)

0 2

1

-1

0

1 3

Figure 5.4: The two heterodyne filter functions f1(t) (red) and f2(t) (blue) along with their temporal
profile

√
f2

1 (t) + f2
2 (t) (black dotted line)



88

oscillations (without being constrained to an integer number of periods). Unfortunately for filter

functions listed in Eqn. 5.5 and 5.6 and shown in Fig. 5.4, there are only few oscillations before

the filter decays. Viewed in the frequency domain, this occurs because, the detuning |∆| is not

much larger than the cavity decay rate κ. As a consequence the two functions are not orthogonal

for an arbitrary phase φ. Fortunately, there is a particular phase φ which makes an orthogonal

pair of filter functions. Because the convolutions in the filter function are performed numerically, I

numerically solve for the orthogonal φ. I use this orthogonal pair of filter functions f1(t) and f2(t)

(Fig. 5.4) for my heterodyne photon detection with the JPA.

For well behaved arbitrary two-quadrature filter functions, |∆| � κ. Because |∆| is limited

by the JPA bandwidth BWJPA to be amplified, I can cast this condition in terms of the JPA

Bandwidth as:

BWJPA ≥ ∆� κ (5.7)

for well behaved arbitrary two-quadrature filter functions. In part because Eqn. 5.7 is not true

for my heterodyne measurements, I optimized the photon generation and when performing the

homodyne measurement in the next section (Section 5.3). However, I continue with heterodyne

measurements to demonstrate the direct detection of the single photons, before moving on to

homodyne detection and characterizing the entire experiment.

5.2.2 Comparison to qubit state

I use the JPA backed heterodyne measurements with temporal filters to directly observe

photon power exiting the cavity as a result of the blue sideband pulse. As I saw in Section 2.1.3,

creating the single photon state does not shift the average quadrature measurement, but does triple

the noise power, or quadrature variance. Therefore, I expect to see the photon signal in var(Xi).

Because driving the blue sideband transition causes oscillations between the |0, g〉 and the |1, e〉

states, I expect creating a photon and exciting the qubit to be correlated. Indeed, I demonstrate that

there is an increase in quadrature variance correlated with excited state probability by observing

Rabi-like oscillations in var(Xi) and Pe in response to a blue sideband drive.
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I implement a protocol similar to the one used to measure Rabi-like oscillation on to blue

sideband. I modify this protocol by alternating between reading out the qubit and directly mea-

suring photons exciting the cavity with the JPA (Fig. 5.5). In this measurement, I apply a fixed

amplitude drive pulse for some duration, at some frequency. Then, I either perform a single shot

readout on the state of the qubit, or I measure Vm(t) with the JPA. From the quadrature measure-

ments, I apply the quadrature filters (Fig. 5.4) to Vm(t) in order to extract both quadrature values

according to Eqn. 5.4. I repeat the protocol 30,720 times at each drive pulse frequency and length,

computing the variance var(X1) + var(X2). For the qubit measurements, I repeat the protocol 3840

times, calculating the probability of being in the excited state.

In both Pe and var(X1) + var(X2), I see Rabi-like oscillations of the blue side band that are

correlated. These measurement show I can generate and detect photons using the qubit-cavity

system. The fact that the photon power oscillates correlated with Pe indicates that the measured

increase in var(X1) + var(X2) is due to single photons as the system oscillates between |0, g〉 and

|1, e〉 state. That is, I directly measure single, propagating photons. Moreover, the measurements

demonstrate I can simultaneously control the generation of single photons with the blue sideband

while detecting the propagating mode with the JPA.

5.2.3 Density matrix reconstruction

The density matrix ρ is the most complete description of the state of a system, including

both statistical and quantum uncertainty. It describes any statistical combinations of pure quan-

tum states. To fully characterize my photon source, I want to determine the density matrix of the

propagating state that the photon source creates. By analyzing the statistics of many two quadra-

ture measurements of identically prepared photon states, I can infer the density matrix of the

propagating photon state. Using this reconstructed density matrix, I can learn about the quality

of my photon generation and detection.

I begin by repeatedly generating single photons. I implement a protocol where I apply

a calibrated π-pulse on the blue sideband. Then, I perform a heterodyne measurement on the
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state exiting the cavity with the JPA. I apply the two-quadrature filter functions (Fig. 5.4) to

the measurements to get a pair of measured quadrature values (X1, X2). I repeat this protocol

5,484,800 times to build up statistics on measured quadrature pairs. In Fig. 5.6, I plot the two

quadrature histogram cast as a probability distribution. To act as a calibration or reference, I

make two-quadrature measurements of the vacuum state. I repeat the two quadrature-heterodyne

measurement 5,484,800 times without the blue sideband pulse. These non-pulsed measurements

are also plotted as a histogram in Fig. 5.6. For comparison, the probability distribution for ideal

measurement of a pure photon state is shown in Fig. 2.3.

As discussed in Section 2.3.4, the probability distribution of a two quadrature measurement

of a state is that state’s Q-function:

P (X1, X2) = Q(α) =
1

π
〈α| ρ |α〉 . (5.8)

Here, α is the complex coherent state amplitude (α = X1+iX2). The Q-function is a representation

of the density matrix. By using Eqn. 5.8, I can use the measurements of vacuum to calibrate the x

and y-axes in Fig. 5.6. With the calibrated axes, I can use Eqn. 5.8 to extract the density matrix

elements for the measured photon state.

To facilitate these application of the Q-function, I can rewrite it terms of density matrix ele-

ments in a photon basis. Writing the coherent state in a photon basis |α〉 = e−|α
2|/2∑

n(αn/
√
n!) |n〉,

I substitute into Eqn. 5.8 getting

Q(α) =
1

π
e−|α

2|/2
∑
n,n′

α∗n√
n!
〈n| ρ |n′〉 e−|α2|/2 α

n′

√
n′!
. (5.9)

Writing the density matrix as a sum over density matrix elements in the photon basis ρ =∑
ij |i〉 ρij 〈j|, I write the Q-function as a linear superposition of density matrix elements. The
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Q-function now becomes

P (X1, X2) = Q(α) = ρ00
1
πe
−|α2| (5.10)

+ ρ01
1
πe
−|α2|α

+ ρ10
1
πe
−|α2|α∗

+ ρ11
1
πe
−|α2||α2|

+ ... (5.11)

This form of the Q-function shows that the Q-function is linear in density matrix elements ρij .

Moreover, it shows a clear mapping from density matrix elements to phase space (two-quadrature)

probability density.

To calibrate the quadratures, I fit the vacuum probability distribution to the probability

distribution of the vacuum state using the measurement chain’s gain as the only free parameter.

The vacuum state probability distribution is given by Eqn. 5.10 when ρ00 = 1 and all other elements

equal zero. Specifically, the measured vacuum probability distribution is fit according to Q00(Gα)

where G is gain and Q00 is the vacuum state probability distribution. Dividing the measured

quadratures in both the vacuum and photon measurement by G calibrates the quadratures in units

of quanta.

Once I have the photon probability distribution calibrated in units of quanta, I can fit the

distribution to according to Eqn. 5.10 to extract the desired density matrix elements. The fitting

is a linear fitting to the density matrix elements ρij using a two photon basis (all combinations

of i = 0, 1, or 2 and j = 0,1 or 2). That is, I fit to both diagonal and off-diagonal elements.

A two photon basis is deemed sufficient, because the two component ρ22 is negligible. I apply

the constraint that the trace of the density matrix tr(ρ) = 1. A line cut through the center of

the photon data and the fit are shown in Fig 5.7. The magnitude of the photon density matrix

elements extracted from the fit are shown in Fig 5.8.

From measured density matrix (Fig 5.8), I can see that I have generated a state whose single

photon element is |ρ11| = 0.12. I generate and detect a mixed state which is 12% single photon
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Figure 5.8: Reconstructed density matrix elements |ρij | of the measured photon state using het-
erodyne detection.
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and reminder is vacuum. This density matrix is consistent with ideal photon generation (ρ11 = 1)

that is measured with 12% efficiency (Section 2.3.5). This efficiency is relative to ideal heterodyne

detection. In other words, it does not include the added vacuum noise all heterodyne detectors

must add. In reality, I likely generated a propagating mixed state ρ = (1−p) |0〉 〈0|+p |1〉 〈1| whose

single photon component is some p. This mixed state is measured with some efficiency ηm (relative

to ideal two quadrature detection) such that the product pηm = 0.12.

This density matrix confirms that I have successfully generated single photons with the blue

sideband of a qubit-cavity system and detected these photons with the JPA. I have measured a

modest signal photon component ρ11 = 0.12. As a consequence, I want to optimize my generation

and detection when I move on to homodyne detection.

5.3 Optimized photon generation and homodyne detection

I optimize my detection and operate the JPA in a homodyne detection scheme for two main

reasons. One, homodyne detection adds less noise than heterodyne. Two, using one filter function in

homodyne detection side steps questions of making arbitrary two-quadrature filter function present

in my heterodyne detection. Similar to my heterodyne measurements, I reconstruct the density

matrix ρm of the state I detect to characterize the photon source and detection. In addition, I

independently characterize the system, compare my measurements to my expectation, and find

agreement within uncertainty.

I make several changes to optimize the generation and detection. To allow for an independent

characterization of the measurement efficiency, a switch can connect the amplifier chain to a thermal

noise source (Fig. 5.9). I cable the experiment to minimize the loss between cavity and JPA. I move

the filters, remove one circulator, and minimize microwave cable length and number of connectors

to reduce the loss between the cavity and JPA to 1.6 dB as measured at room temperature. (See

Appendix A for a detailed description of the photon generation and detection apparati.) However,

removing the circulator makes the qubit-cavity system less isolated from the JPA, and therefore

more susceptible to amplifier backaction. Additionally, I optimize the quadrature filter function
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Figure 5.9: Simplified schematic for photon generation. The drive and measurement microwave
generators couple to the input of the qubit cavity system where the measurement tone excites the
cavity in order to infer the qubit state, and the drive tone manipulates the state of the qubit-
cavity system. A switch can connect the amplifier chain to a thermal noise source allowing for an
independent characterization of the measurement efficiency.

and operate the JPA as a homodyne detector. All of which should improve measurement efficiency.

Lastly, I implement a more sophisticated generation protocol to improve the purity the propagating

photon state.

5.3.1 Protocol

To implement efficient photon generation, I still adopt a protocol based on a blue sideband

π-pulse, but with the addition of qubit measurements. The measurements allow me to select only

the instances when a photon is created, thereby improving the fidelity of photon generation [72].

One measurement occurs before the blue sideband drive pulse and a second occurs after the photon

has decayed [Fig. 5.11(a)]. I select on the initial measurement that project in the |g〉 state, to

insure that the qubit starts in the |g〉 state as required for photon generation. This selection

removes approximately 6% of the trials, which are primarily due to the steady-state excited state

population of the qubit. Secondly, I select on instances when the second measurement projects the

qubit into the |e〉 state. Combining both these selections ensures that the blue sideband π-pulse

successfully flips the qubit from |g〉 to |e〉 and thereby creates a photon. Additionally, the second

selection ensures that the photon decays at the excited state cavity frequency. The second selection

removes approximately 26% of the instances, primarily due to the qubit decaying between the drive

pulse and the selection. A smaller contribution is due to blue sideband pulse infidelity.
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Figure 5.10: Energy level diagram for photon generation and calibration.
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Figure 5.11: Timing diagram for the experiment. (a) A timing diagram for the photon creation
and measurement sequence. The drive tone (black) either creates a photon or excites the qubit
for the vacuum calibration. Qubit readout tones (red) are used before and after the drive. (b)
The mean voltage 〈Vm〉(t) measured from 7000 individual time traces with the drive at the blue
sideband frequency (solid blue) or at the qubit’s frequency (dashed green). (c) The variance of the
individual measurements var(Vm)(t) with the drive at the blue sideband frequency (solid blue) and
at the qubit frequency (dashed green). In blue, the photon power can be seen following the blue
sideband pulse at t = 0 µs. For the control in green, no such signal is seen. (d) The mode matching
function f(t) to extract the quadrature measurement of the propagating mode.
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Because the qubit measurement must preserve the qubit in its ground state for photon cre-

ation, the measurement must be quantum non-demolition (QND). Furthermore, because qubit

readout occurs both before and after photon detection is to take place, the qubit readout must be

compatible with photon measurement. To satisfy these two requirements, I use a dispersive trans-

mission readout with the JPA [31, 32, 63] (Section 4.1.1). I operate the JPA with its narrow-band

gain centered on the qubit-excited cavity resonance frequency. This arrangement allows the JPA

to be used both for qubit readout and photon homodyne measurement.

To provide an accurate calibration for the experiment, I modify the photon generation pro-

tocol the minimal amount that ensures no photons are generated. I replace the π-pulse on the

blue sideband transition with a π-pulse on the qubit transition (Fig. 5.10 in green). This control

sequence prepares the qubit cavity system in the |e, 0〉 state rather than the |e, 1〉 state; thus, the

cavity does not emit a photon. All other aspects of the protocol, including the qubit state and the

data processing procedure are common to both protocols.

5.3.2 Homodyne detection and tomography

To characterize the propagating state, I perform tomography on the output mode of the cavity

to determine its density matrix ρm. In my tomography procedure, I measure a single quadrature of

the cavity output field during the photon generation protocol. I can reconstruct the density matrix

by repeating the generation and measurement protocol many times and at several different values

of JPA carrier phase. Because I choose to create a single photon, which has a phase independent

density matrix, I unlock the phase between the generation pulse and the JPA carrier thus sampling

all phases uniformly. From a histogram made from many quadrature measurements I extract the

diagonal elements of the density matrix written in the photon number basis. If there were any

off-diagonal elements, these would vanish due to the phase averaging.

I operate the JPA as a homodyne detector with its gain centered on the frequency of the

photon. Like the heterodyne detection, the output of the JPA is mixed down to yield a time trace

Vm(t). Because the JPA’s gain is not detuned from the signal, then its measurement Vm(t) contain
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information about a single quadrature, where the phase of the quadrature is set by the JPA’s pump.

I form one measurement set by repeating the pulse sequence shown in Fig. 5.11(a) 7000 times (with

the π-pulse applied to the blue sideband). The temporal envelope of the photon can be seen in the

variance of the set var(Vm)(t) at time t = 0 µs [Fig. 5.11(c)]. As expected for a single photon, no

feature is present in 〈Vm〉(t) at t = 0.

5.3.2.1 Quadrature measurement

To complete the reconstruction, each Vm(t) must be processed to yield a single quadrature

value of the propagating mode. From this raw data, I make an estimate of one quadrature of the

mode emitted by the cavity when the drive pulse is applied. I desire a mode matching function f(t),

that weights the time average of Vm(t) to produce an optimum estimate of the quadrature value.

For infinite measurement bandwidth, I expect the optimum f(t) to be a decaying exponential pulse

with decay constant κ/2 as defined for output mode Aout (Eqn. 2.7) [73] and a rise time equal to

the duration of the drive pulse (150 ns). Due to the finite JPA bandwidth, I anticipate that f(t)

is found by convolving the infinite bandwidth optimum by the effective filter’s impulse response

h(ωLPF, t) [74]. In practice, I write

f(t) = h(ωLPF, t) ∗


0 t < 0

cos(2πt/Tr) 0 ≤ t ≤ Tr

e−(t−Tr)κ/2 Tr < t

as a function of three parameters (rise time Tr, decay constant κ, and low pass filter cutoff

ωLPF = BWJPA/2) and adjust these to minimize the zero-photon contribution of the density ma-

trix extracted from the data set. I perform this determination of f(t) once, using photon creation

and calibration data sets that are not used in subsequent analysis. As seen in Fig. 5.11(d), f2(t)

looks like the photon creation variance [Fig. 5.11(c)], indicating that my optimization of f(t) has

produced a sensible result.

Extracting the quadrature value is complicated by the presence of a dc offset in the Vm(t)

which drifts during the acquisition of a full data set. To remove drifts in the dc offset from the
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quadrature measurement, I perform a linear least-squares fit using a measurement of the back-

ground voltage in addition to the mode matching function. For each trace I assign an uncalibrated

quadrature value Vq by minimizing

J =

∫ [
Vm(t)− (Vqf(t) + Vdcb̃(t))

]2
dt (5.12)

over Vq where Vdc is the dc voltage and b̃(t) is the windowing function that defines when the

dc offset is measured. The windowing function is a piecewise constant function that is nonzero

during most of a 56 µs interval that includes the photon generation protocol. But during the qubit

measurements, b̃(t) = 0. The result of the cost function minimization is an analytic expression for

an individual quadrature measurement

Vq =

∫
Vm(t)f(t)dt−

∫
Vm(t)b̃(t)dt

∫
b̃(t)f(t)dt. (5.13)

This expression is applied to each Vm(t) resulting in a set of uncalibrated quadrature measurements

of the propagating mode.

A histogram of this set of measurements is shown as the narrow blue bars in Fig. 5.12. I gen-

erate a calibration data set following the same procedure as was used to generate the measurement

set, but using the control protocol (π-pulse on the qubit transition). Indeed, when no photon is

created, no extra variance is visible in var(Vm)(t) at t = 0 [Fig. 5.11(c)]. Reducing each trace to

quadrature values, I find the histogram shown in Fig. 5.12.

To calibrate the quadrature values, I fit the histograms of the calibration data sets to Gaussian

distributions using the gain of the full measurement apparatus as the only fit parameter. But due

to the fact that a small fraction of the JPA output is injected back into the cavity through the

finite isolation of the circulators (determined in Section 5.3.2.2), I do not assume that the cavity is

in its vacuum state. Rather, I expect to prepare the cavity in a mixed, squeezed state with n̄� 1.

Although the large isolation of the circulators ensures that the cavity’s squeezed quadrature has

almost exactly vacuum variance, the amplified quadrature can have variance measurably larger

than vacuum, particularly at larger values of JPA gain. Because there is a fixed, but unknown
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Figure 5.12: Histogram of a quadrature measurement set of single photons (narrow blue bars) and
the no-photon control (wide green bars) with the JPA gain at 29 dB. The histograms are plotted as
a probability density (bars) and are fit by the expected distribution for a diagonal density matrix
with a 3 photon Fock basis (solid lines).
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phase relationship between the quadrature I measure and the squeezed quadrature of the cavity,

I calibrate assuming I measure the squeezed quadrature and assuming I measure the amplified

quadrature. I use these two cases to bound the systematic uncertainty in the calibration of the

vacuum variance, where I use the convention that one quadrature of a vacuum state has variance

var(X) = 1/4.

5.3.2.2 JPA backaction

To quantify the cavity photon variance due to JPA backaction, I study the qubit dephas-

ing [75]. As seen in the dispersive Hamiltonian for the qubit cavity system in Eqn. 2.39, the

frequency of the qubit depends on the number of photons in the cavity. Therefore, a varying num-

ber of cavity photons (var(n) > 0) dephases the qubit. Because the qubit resonance frequency is

far-detuned from the cavity, I treat the squeezed cavity field as dephasing the qubit with a thermal

distribution. From Ref. [76], in the strong dispersive regime the dephasing rate when there are N

photons in the cavity is

ΓN = κ [(n̄+ 1)N + n̄(N + 1)] , (5.14)

where κ is the coupling rate to a thermal bath with average number of cavity photons n̄. Summing

over a thermal distribution of N defined by n̄ (Eqn. 2.23), I calculate a photon dephasing rate

Γ = Γ0 + κ[2n̄+ 2n̄2 +O(n̄4)] (5.15)

in terms the intrinsic dephasing rate Γ0, n̄ and κ. Note that the additional dephasing rate is indeed

proportional to the photon variance Γ− Γ0 = 2κ× var(n) in this case (Eqn. 2.25). Measurements

of the qubit dephasing rate (Γ = 1/T ∗2 ) over the range of JPA gains are shown in Fig. 5.13(a).

For the resulting photon distribution in the cavity, I assume that n̄ follows a model character-

ized by a single isolation parameter L, which characterizes the fraction of JPA output misdirected

into the cavity as

n̄ = (1/4)L(GJPA − 1), (5.16)
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Figure 5.13: Quantifying backaction. (a) The qubit dephasing rate (Γ = 1/T ∗2 ) is shown (points)
over a range of JPA gains along with a fit (line) to Eqn. 5.15 over the range of JPA gains (main
text). (b) The solid line shows the best estimate of the average photon number in the cavity n̄
(uncertainty in dashed lines) due to the JPA at each gain used in the experiment.
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where GJPA is the JPA gain. I fit this model substituted into Eqn. 5.15 to measurements of Γ,

extracting L = (2.1±0.1)×10−4 (-37 dB) and Γ0/2π = 40±2 kHz . The isolation is consistent with

the specifications for the two commercial circulators between the cavity and the JPA (Fig. A.1).

From this model, I find the average intercavity photon number due to JPA gain shown in Fig. 5.13(b)

plotter over a range of JPA gains.

5.3.2.3 Reconstructing density matrix

Finally, I complete the tomography by fitting the histograms to probability distributions for

diagonal elements of the density matrix in a 3 photon basis yielding one measurement of the density

matrix. A 3 photon basis is sufficient because the three photon component ρ33 is indistinguishable

from 0. Because I am restricting myself to a density matrix where the only the nonzero elements are

diagonal elements ρii, I can treat this state as a probabilistic combination of pure photon states.

As a results, I can write the quadrature probability distribution as a linear combination of the

probability distribution of pure photon states

Pρii(X) = ρ00P0(X) + ρ11P1(X) + ρ22P2(X) + ρ33P3(X). (5.17)

I can compute the probability distribution of the pure photon states Pn(X) either from the Wigner

function (Sections 2.3.2 and 2.3.3), or from the wave functions of the Fock states

Pn(X) = Ψ∗n(X)Ψn(X). (5.18)

Written explicitly, I get

P0(X) =
√

2
πe
−2X2

(5.19)

P1(X) = 4
√

2
πe
−2X2

X2 (5.20)

P2(X) = 1
2

√
2
πe
−2X2

(16X4 − 8X2 + 1) (5.21)

P3(X) = 2
3

√
2
πe
−2X2

(16X6 − 24X4 + 9X2). (5.22)

Thus, I fit the probability distributions from each data set to Eqn. 5.17 to extract the diagonal

density matrix elements.
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Each density matrix element is determined as the average value of multiple realizations of

each measurement set. To optimize the photon measurement I find the density matrix elements

over a range of JPA gains from 17 to 33 dB (Fig. 5.14). These density matrix elements are sensitive

to all imperfection in the photon generation and detection. For ideal generation and detection, the

ρ11 component would be 1 and all others 0. Instead, the single photon component has a peak value

of ρ11 = 0.361 with ± 0.005 statistical and ± 0.005 systematic uncertainties at a JPA gain of 29 dB.

However, at this gain there is a two photon component of ρ22 = 0.027 with ± 0.005 statistical and

± 0.015 systematic uncertainties. Considering the two photon generation relative to single photon

generation, I have 2ρ22/ρ11 ≈ g2(0) = 0.32± 0.07 with a 0.15 to 0.41 systematic uncertainty bound

(Fig. 5.15). [For comparison, g2(0) = 1 for any coherent state.] By decreasing the JPA gain to

17 dB, the two photon component becomes ρ22 = 0.005 ± 0.003 with a single photon component

dropping to ρ11 =0.247 ± 0.004, giving g2(0) = 0.15 ± 0.08. These results show that an increase

in the JPA gain improves the measurement efficiency.

However, as I saw in Section 5.3.2.2, increasing the JPA gain also increases the measurement

backaction. At my peak ρ11 (29 dB of JPA gain), there is an average photon n̄ = 0.041± 0.003 in

the cavity due to JPA backaction, likely accounting for most of the two photon component in the

measured density matrix. The deleterious effects of this backaction can be seen in both the larger

systematic uncertainty at larger JPA gain and the increased probability of creating two photons

instead of just one.

5.3.3 Characterizing photon generation and efficient homodyne detection

To understand the limitations of single photon generation and detection, I characterize the

experimental imperfections over a range of JPA gains. In particular, I characterize the internal loss

of the cavity and measurement efficiency. This characterization gives a prediction for the state that

I create and an expectation for how efficiently I can measure it. I compare my expectation with

my measurements to validate my understanding of the photon generation process.

I make a prediction of the state I expect to measure if the photon generation protocol created
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Figure 5.15: The values of g2(0) computed from the density matrix elements. Both the single
standard deviation statistic uncertainty (error bars) and the systematic error bounds (dashed lines)
are calculated from the uncertainties the in density matrix elements. The values of g2(0) represent
likelihood of detecting two photons compared to one. For a pure photon state g2(0) = 0 and for a
coherent g2(0) = 1.
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a pure single photon state in the cavity. First, I form an expression for the density matrix of the

output mode ρout by accounting for the coupling of the cavity field to unmeasured ports. Due

to the relative coupling rates, a cavity photon has a κout/κ probability of decaying to the output

port, where the coupling rate to the output port is κout/2π = 300 kHz and the total decay rate is

κ/2π = 410 kHz. I would therefore expect to generate a propagating state ρout characterized by

ρout =
κ− κout

κ
|0〉〈0|+ κout

κ
|1〉〈1| (5.23)

from Section 2.3.5 with the ratio κout/κ cast as η.

5.3.3.1 Independent measurement characterization

Next, I form an expectation for how well I can measure ρout by independently characterizing

the measurement inefficiency. In order to independently determine the measurement efficiency, I

inject states of known variance into the measurement chain. As I adjust the input variance into

the measurement chain, I determine the additional variance Nadd introduced by the measurement.

The source of known variance is a 50 Ω resistor on a variable temperature stage connected by a

switch to the JPA input (Fig. A.1). I perform the determination of Nadd at three different JPA

gains– 20, 25, and 30 dB (Fig. 5.16). The data are plotted as output-noise power-spectral-density

Sout against input power spectral density Sin (set by Eqns. 2.24 and 2.27). I extract Nadd by fitting

data in Fig. 5.16 to

Sout = G(Sin +Nadd), (5.24)

where G is the gain of the measurement chain [26]. These fits yield three values of Nadd plotted as

measurement efficiency

ηm = (2Nadd + 1)−1 (5.25)

[77] in Fig. 5.17 (circles).

To find Nadd at other values of the JPA gain, I use a model that decomposes Nadd into

contributions from the JPA itself NJPA and from the remaining measurement NHEMT. Adopting

this added noise model, I interpolate ηm over the range of JPA gains used in this experiment. In
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Figure 5.16: Thermal sweep data for the JPA operated at 20 (green squares), 25 (blue circles) and
30 dB (red crosses) gains. The data are fit to Eq. 5.24 (solid lines). The input noise source used in
the thermal sweep is a 50 Ω resister whose temperature is adjusted from 79 mK to 900 mK. This
thermal noise power is expressed in units of quanta at 5.8 GHz on the x-axis.
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Figure 5.17: The measurement efficiency ηm is determined from a thermal sweep at three JPA gains
(circles). This quantity is interpolated over the range of JPA gains by fitting the data points to
Eqn. 5.27 with the uncertainty in dashed lines.
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this model I assume that NJPA and NHEMT are both constant when referenced to their respective

amplifier inputs. The output power spectral density is then

Sout = G(Sin +NJPA +
NHEMT

GJPA
), (5.26)

where GJPA is the gain of the JPA. From Eqn. 5.26 the added noise can be written as

Nadd = NJPA +
NHEMT

GJPA
, (5.27)

forming the model I use for interpolation [17]. The three added noises are fit according to Eqn. 5.27.

I find NJPA = 0.39 ± 0.03 and NHEMT = 18 ± 5. Using these added noises, ηm is plotted over the

range of JPA gains in Fig. 5.17 (solid line) according to Eqns. 5.25 and 5.27.

5.3.3.2 Measurement comparison

I form an expected density matrix ρexp by considering measurement efficiency and cavity loss.

Following Section 2.3.5, my expectation for the density matrix I should measure for pure cavity

photon generation is

ρexp = (1− κout
κ
ηm)|0〉〈0|+ κout

κ
ηm|1〉〈1|. (5.28)

Finally, I compare my measurement to expectation by computing the fidelity1 of ρm with respect

to ρexp. I find that they are identical (unit fidelity) within uncertainty (Fig. 5.18). This agreement

shows that I am able to accurately and independently characterize the measurement inefficiency

and undesired cavity loss. (The measured two-photon component contributes negligibly to the

infidelity.) For comparison, I compute the fidelity of the measured density matrix ρm with respect

to the density matrix of a single photon (Fig. 5.18), which quantifies my combined ability to generate

and detect single photons. This fidelity has a peak value of F = 0.600± 0.008 also at 29 dB JPA

gain [78].

1 The fidelity of a state A (ρA) with a state B (ρA) is F = tr
(√√

ρBρA
√
ρB
)
.
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Figure 5.18: The fidelity of the measured density matrix with respect to: an ideal single photon
(blue squares), and the density matrix I expect to measure given pure photon generation in the
cavity (black points). Here, the statistical one-standard-deviation uncertainties are plotted as
errors bars. The systematic error plotted in dashed lines is calculated from both the systematic
uncertainty in ηm and in the density matrix elements.



Chapter 6

Conclusions and outlook

The protocol I have demonstrated for generating single microwave photons on demand is

well suited for transferring quantum states to narrow bandwidth signal processing modules, such

as certain types of electro-optic convertors that are under development [20]. In particular, the

compatibility of the protocol with fixed-frequency, highly coherent qubit-cavity systems ensures

that the photons can be emitted into narrow frequency windows. I have characterized the photon

source and its homodyne detection, and understand their imperfections. Because an ideal single

photon source generates one single photon every time, and never generates two or more, the quality

of the photon generation and detection can be quantified by the probability of measuring a single

photon ρ11 (Fig. 5.14), and the probability of measuring two photons ρ22, or by g2(0) (Fig. 5.15). I

have independently characterized the system’s measurement efficiency ηm and cavity loss 1−κout/κ

and find that they account for the measured photon state within uncertainty using state fidelity

as the metric (Fig. 5.18). The non-unity measurement efficiency and non-zero cavity loss yield

practical, but not fundamental limitations on ρ11, and may be improved in future implementations

of the single photon source.

These measurements highlight the compromise between backaction and measurement effi-

ciency. My detailed characterization of the protocol reveals an undesirable backaction of the mea-

surement apparatus onto both the qubit and the cavity. It is possible to reduce the backaction

through the use of more commercial isolators (Fig. A.1), however, doing so increases the loss be-

tween the cavity and JPA. With advances in low loss isolator elements [79, 80], it may be possible
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to mitigate this backaction through the use of more isolation while at the same time reducing losses

in detection. Otherwise, a more complicated protocol that pulses on the JPA pumps only when

the measurement is desired may minimize the backaction. Overall, the measurements presented

here highlight the importance of isolator elements in quantum information processing, and provide

a method to transfer information between qubit-cavity systems and itinerant microwave fields.

6.1 Outlook

There are two simple extensions of this single photon generation and detection experiment.

First, one could use the qubit-cavity system to generate flying qubits or arbitrary combinations of

|0〉 and |1〉. To form a flying qubit, the qubit state A |g〉 + B |e〉 is mapped onto the propagating

photon state A |0〉 + B |1〉. Second, one could send the propagating photon state to mechanical

module.

To generate a flying qubit from the system, one must employ a more complex protocol than

just a single blue sideband pulse. For example, if one performed a π/2-pulse with blue sideband,

then the system would prepared in the Ψ = 1/
√

2
(
|g, 0〉+ eiφ |e, 1〉

)
. The photon is entangled with

the qubit. As the photon decays to the output modes, this state could transmit entanglement, but

does not behave like a flying qubit. If only the output mode were measured, then its reduced density

matrix would be found by tracing over the qubit part of the full density matrix. (Section 2.3.5).

The density matrix of the output would then be ρout = 1/2 (|0〉 〈0|+ |1〉 〈1|), a maximally mixed

state without any phase information.

One could implement a two step protocol to avoid this entanglement and generate a flying

qubit. In the first step, the qubit state is defined. A qubit pulse prepares the qubit in the Ψ1 =

A |g, 0〉 + B |e, 0〉 state. In the next step, a π-pulse on the blue sideband swaps the |g, 0〉 term

to |e, 1〉, but leaves the |e, 0〉 unaffected. After the blue sideband π-pulse, the system is in the

Ψ2 = A |e, 1〉+B |e, 0〉 state. The photon then decays out as an unentangled, pure state. Because

the qubit is in the |e〉 state in both terms, |e〉 can be factored out. The output state then looks like

Ψout = B |0〉+A |1〉, a flying qubit with coefficients A and B swapped compared to the qubit state
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in the first step. With this protocol, one could create a source of flying qubits to send to other

qubit modules or measure directly with the JPA. However, care must be taken using a common

phase reference for all pulses and any measurements.

After demonstrating the photon source (or potentially a flying qubit source), it could be

used to prepare other modules, such as mechanical circuits, in nonclassical states. Through the

use of coherent control tones, the state of a propagating, incident modes can be mapped onto the

photon state of the a mechanical mode of the oscillator [16]. By sending a single photon into the

mechanical module and using coherent control tones, a mode of the mechanics could be prepared in

an n = 1 phonon state. Such a demonstration would be landmark achievement of quantum physics

as it would prepare a macroscopic mechanical object in a profoundly nonclassical state.
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Appendix A

Description of photon generation and homodyne detection apparati

The experimental details for the optimized photon generation and homodyne detection (Sec-

tion 5.3) are summarized by the microwave schematic (Fig. A.1). The experiment is conducted in

an Oxford Triton 200 dilution refrigerator with the qubit-cavity system anchored to the (T < 25

mK) base temperature region. The qubit-cavity system is controlled and measured via injecting

tones shown on the left. The strongly coupled output on the right leads to a switch, which either

connects the qubit-cavity system or the thermal load to the measurement chain.

After the switch, circulators route signals into the JPA. The JPA is a nonlinear lumped

element LC resonator pumped by rf power injected using a 20 dB directional coupler. It is operated

with a signal gain from 17 to 33 dB and with an approximate gain bandwidth product of 43 MHz.

The JPA is pumped with two tones in the so called double pump method by modulating a 5.806 GHz

carrier by 240 MHz using an IQ mixer. The carrier is suppressed by the modulation and is further

reduced by a notch cavity filter. The output of the JPA is routed into a HEMT amplifier and room

temperature amplifiers before being mixed down by a second IQ mixer. A copy of the JPA carrier

is used as this mixer’s local oscillator and phase shifted so that the JPA’s amplified quadrature

exits the I-port of the mixer. This output is then further amplified and then digitized. An arbitrary

waveform generator determines the protocol timing by triggering the drive tone, the measurement’s

tone, and the digitizer.
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Figure A.1: The microwave schematic for the experiment.


