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This thesis develops theory for and experimentally demonstrates a new way to break Lorentz

reciprocity—the symmetry, in an electrical network, under exchange of source and detector. The

approach is based on the sequential application of frequency conversion and delay; as frequency

and time are Fourier duals, these operations do not generally commute. We apply this method in

the construction of an on-chip superconducting microwave circulator, a critical component for the

unidirectional routing of quantum information in superconducting networks. The device requires

neither permanent magnets nor microwave control tones, allowing on-chip integration with other

superconducting circuits without expensive control hardware. Isolation in the device exceeds 20

dB over a bandwidth of tens of MHz, and its insertion loss is small, reaching as low as 0.9 dB at

select operation frequencies. Furthermore, the device is linear with respect to input power for signal

powers up to many hundreds of fW (≈ 103 circulating photons), and the direction of circulation

can be dynamically reconfigured. We demonstrate its tunability with operation at a selection

of frequencies between 4 and 6 GHz. Given the current status of quantum error-correction and

architectures for quantum information processing with superconducting circuits, such scalable non-

reciprocal devices will almost certainly be necessary for construction of a superconducting quantum

computer intended to be more than a proof-of-principle.
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Chapter 1

Introduction

The idea to use quantum systems for computation was first proposed in the 1980s by notable

scientists such as Feynman [1, 2] and Deutsch [3, 4]. The notion gained major traction in 1994

when Peter Shor showed how such a machine could efficiently factor composite integers [5]. (The

RSA encryption scheme [6]—a widely utilized encryption method for commerce and other forms

of sensitive communication—is founded on the difficulty of this task.) Factoring large composite

integers is but one example from a list of difficult problems that could be solved by these efforts:

others include efficient search algorithms [7], quantum chemistry and catalyst design [8, 9, 10], and

communication whose security is guaranteed by physical laws [11]. For these reasons, efforts to

create analog and digital quantum computers, quantum simulators, and quantum annealers span

many realms of physics.

Across all of the proposed platforms for constructing a quantum computer, one of the key

challenges is engineering a quantum system which is both well isolated from its environment (to

protect it from dissipation and decoherence) and rapidly measurable (and controllable). This

challenge is not unique to problems specific to quantum computing; rather, its roots extend into

the theory of quantum measurements. According to Heisenberg, measurements of a system are

perturbing, as illustrated famously (and controversially) by his microscope thought experiment [12].

The problem is also present in purely classical systems. Heuristically, oscillators that interact

weakly with their environment respond slowly to control fields, and oscillators that respond quickly

to control fields rapidly dissipate energy into their environment. This is no conspiracy: from the
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perspective of the oscillator, the experimentalist is a part of the environment.

To illustrate this issue more quantitatively, consider a system formed by a single electromag-

netic mode in a Fabry-Perot cavity, where the left mirror is perfectly reflective (vanishing trans-

mission) and the right mirror has a transmission Tr (Fig. 1.1). The quantum Langevin equations

a
in

a
out

a

T
r

T
l
=0

Figure 1.1: A single electromagnetic mode in a Fabry-Perot cavity, characterized by the annihilation
operator a. The left mirror is perfectly reflective, and the right mirror has transmission Tr, which
couples the cavity mode to an incoming field ain and an outgoing field aout.

that describe the time-evolution of the cavity field a and the outgoing field aout are [13]

ȧ = iωca−
κ

2
a+
√
κain (1.1)

aout =
√
κa− ain. (1.2)

Here, ωc is the frequency of the cavity mode, and κ is a rate determined by Tr which describes the

coupling between the cavity and the incoming and outgoing fields ain and aout.

In this example, the cavity mode is the system of interest, which an experimentalist may

hope to study via measurements of the outgoing field aout. The prospects for that aspiration can

be understood by examination of two limiting cases, in which the transmission of the right mirror

is small or large.

When Tr approaches 0, the coupling rate κ also vanishes. This is beneficial from the perspec-

tive of isolating the system of interest from its environment: the dynamics of the cavity mode, given

in Eq. (1.1), are now uncoupled from the external field ain. Unfortunately, the experimentalist has

also forfeited the ability to infer the state of the cavity from measurements of the outgoing field

aout (Eq. (1.2)).
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In the opposite limit where Tr is large, κ may become non-negligible with respect to the

cavity frequency ωc. The outgoing field now contains considerable information about the state of

the cavity mode. The cost of this encoding, however, is that the time-evolution of the cavity mode

is now subject to the “slings and arrows” of the environment, in the form of the incoming field ain.

The link between the environment’s effect on the cavity mode (through ain) and the cavity

mode’s radiation into the environment (through aout) is an instance of the fluctuation-dissipation

theorem [14, 15]. The right mirror’s transmission creates dissipation in the cavity mode (which

may be measured and recorded by an experimentalist) but also causes fluctuations in the mode,

driven by the incoming field.

As an aside, we note that in this example, measurement of the cavity state requires that it

decays into a propagating mode. This is not a general requirement for measurement of a quan-

tum system. For example, quantum non-demolition measurements [16, 17] allow measurement

without dissipation [18]. Measurements are not necessarily accompanied by dissipation; they are

accompanied by disturbance.

Returning to the measurement of the cavity mode, the examined limiting cases of large

and small κ suggest that our measurement dilemma cannot be resolved by optimization of the

cavity’s parameters. The solution is external, and involves directing the outgoing field aout to

the measurement apparatus, while ensuring that the incoming field ain is supplied by a very cold

bath. In a classical analysis, this strategy can protect the cavity mode from its environment, while

still allowing an experimentalist to study the state of the mode. Quantum mechanically, vacuum

fluctuations persist even at zero temperature. But the influence of these vacuum fluctuations on the

cavity’s dynamics are small compared to, for example, the black-body radiation of the measurement

apparatus.

In the vacuum of free-space, however, Maxwell’s equations make this kind of directional

signal routing impossible. Practically, an interaction between electromagnetic waves and matter

is required to separate signals based on their direction of propagation. Devices which do so are

called non-reciprocal, in reference to their violation of Lorentz reciprocity [19]. In the context of
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quantum networks, non-reciprocal devices serve a variety of purposes beyond the fundamental one

described above. For example, they enable protocols for the generation of remote entanglement [20,

21, 22] and proposals for the construction of rich quantum many-body systems [23] that rely on

directional signal routing, and allow for the use of quantum-limited reflection amplifiers [24, 25].

Such applications impose a strict set of design constraints: for quantum measurements, the ideal

non-reciprocal device has no loss and no added noise. These requirements make familiar non-

reciprocal devices like diodes and op-amps unsuitable for use with quantum systems.

More broadly, enforcing the unidirectional flow of energy and information is a critical sig-

nal processing primitive in a variety of networks. A common use in telecommunication networks,

for instance, is antennae duplexing, in which the incoming and outgoing signals from an antenna

are separated, allowing for simultaneous transmission and reception. Given their utility, it should

come as no surprise that commercial non-reciprocal devices have been developed across the elec-

tromagnetic spectrum, and are widely used in a variety of experimental contexts. For example,

in experiments on quantum superconducting circuits—one of the most promising platforms for

the development of a quantum computer—non-reciprocal devices are ubiquitous. State-of-the-art

commercial non-reciprocal devices, however, are constructed with large permanent magnets and

gyrotropic media, precluding their miniaturization for on-chip applications, as well as their con-

struction with superconducting materials.

The optimal architecture for a quantum computer built with superconducting circuits is very

much still an open research question. The surface code, though, is one of the leading contenders,

and would require over a hundred million physical qubits to accomplish the task [26].1 As each

of these qubits must be simultaneously shielded from its environment and controlled in hardware,

the need for a scalable non-reciprocal technology is pressing.

To address that need we have developed an alternative method for routing propagating elec-

tromagnetic fields with minimal loss or added noise, which uses no permanent magnets and can be

1 This estimate is for a computer that could execute a practical quantum computation—in this case, Shor’s
algorithm on an integer with 600 digits—in approximately one day.
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integrated on-chip with superconducting circuits in a scalable way. In this thesis we describe the

design, construction, and measurement of a non-reciprocal device which is based on this method.

Design goals for the circuit were set with a superconducting qubit application in mind, and

in the context of modular quantum networks. But the device will also find use in other low-

temperature microwave networks, especially ones which require high measurement efficiency. Ex-

amples include rapid single flux quantum logic [27]; microwave kinetic inductance detectors [28],

transition edge sensors [29] and other astronomical detector arrays; dark-matter searches [30]; and

tests of Lorentz invariance with high-quality microwave resonators [31].

The structure of the thesis is as follows: Ch. 2 gives a brief overview of quantum information

processing, and efforts to process quantum information with superconducting circuits, broadly

referred to as circuit quantum electrodynamics. The assumptions and consequences of the Lorentz

reciprocity theorem are discussed in Ch. 3, along with other proposals and demonstrations for

creating non-reciprocal devices. Ch. 4 describes the theory of operation for our device, and Ch. 5

describes its realization as a superconducting circuit, as well as relevant layout considerations.

Experimental results are summarized in Ch. 6. Finally, conclusions and an outlook for the work

are presented in Ch. 7.



Chapter 2

Quantum information processing

The enormous computational power of a quantum processor has attracted interest from a

variety of subfields within physics and other disciplines. In the atomic domain, work is underway

to store quantum bits of information (qubits) in the electronic states of trapped ions and Ryd-

berg atoms. Notable solid-state platforms include nitrogen (and other) vacancy centers, in which

information is encoded in the composite spin of the vacancy; semiconductor quantum dots, where

the qubit is formed by the singlet state and the projection-less triplet state of two confined elec-

tron spins; and superconducting circuits, where information is stored in the ground or first excited

state of an anharmonic microwave circuit. Many other platforms are also being investigated (op-

tical, NMR, etc); Refs. [32, 33] provide a high-level overview of these approaches. Even within

the experimental systems noted above, there exist a variety of ways to encode a bit of quantum

information. 1 More exotic proposals also exist, in which the braiding of topological excitations

with non-Abelian statistics provides the basis for computation [37]. While the listed platforms and

physical realizations of a qubit are intended to be representative of the field’s breadth, they are far

from exhaustive.

1 For example, some researchers in the field of superconducting circuits use microwave resonators as the memory
elements, and construct the computational basis {|0〉 = |α〉 + |−α〉 , |1〉 = |iα〉 + |−iα〉} with even superpositions of
coherent states |α〉—so-called cat codes [34], named for the cat states [35] that comprise them. Other resonator-based
schemes also exist; Ref. [36] provides an overview and comparison of several prominent codes.



7

2.1 The road to quantum computation

Across all of these platforms, however, the ultimate goal of fault-tolerant quantum computa-

tion is shared. Fig. 2.1, from Ref. [38], illustrates one conception of the path to this goal.

Operations on single physical qubits

Algorithms on multiple physical qubits

QND measurements for error correction and control

Logical memory w/ longer lifetime than physical qubits

Operations on single logical qubits

Algorithms on multiple logical qubits

Fault-tolerant quantum computation

Time

C
om

pl
ex

ity

Figure 2.1: One conception for the path to fault-tolerant quantum computation, divided into seven
steps. The y-axis of the graphic illustrates the relative complexity of each stage—advancing along
the path requires mastery of the previous steps. The x-axis, time, indicates that active efforts to
improve at each stage are ongoing. After [38].

The first step involves operations (also known as gates) on single physical qubits. This is

followed by algorithms (long sequences of gates) on multiple physical qubits. Completing these

initial two steps requires satisfaction of the first five DiVincenzo criteria [39] (a list of five necessary

conditions for constructing a quantum computer, plus two additional conditions for quantum com-

munication). Following this is a more advanced stage, requiring quantum non-demolition (QND)

measurements of qubits and advanced control. This stage enables, for example, QND measurements

of error syndromes like parity, and the stabilization of arbitrary quantum states. Demonstrations

of this third stage have been made with trapped-ions [40], Rydberg atoms [41], Nitrogen vacancy

centers [42], and superconducting qubits [43, 44, 45].

The fourth step is the creation of a logical memory with a lifetime that exceeds the physical

qubits which comprise it. This step, which entails encoding information redundantly among mul-
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tiple physical qubits and actively correcting for errors in that encoding, is critical, as it allows the

preservation of quantum information for timescales long enough to enable meaningful computation.

Two groups have demonstrated this stage with superconducting circuits [46, 47].

The final two stages—operations on single logical qubits and algorithms on multiple logical

qubits—mirror the initial two stages of the progression, but for logical qubits in place of physical

qubits. One caveat for these steps: they must be completed without degrading the lifetime of the

logical qubits. The first demonstrations of operations on single logical qubits [48, 49] were made

this year with superconducting circuits. As of yet, no experimental platforms have demonstrated

the sixth stage.

Naturally, the different experimental platforms have their specific affordances and drawbacks.

The purpose of Fig. 2.1 is not to compare progress among subfields, but rather to emphasize the

commonalities among the different approaches, highlight the progress that the field as a whole

has made, and motivate superconducting circuits as a viable platform for quantum information

processing. Indeed its promise as a subfield has attracted interest outside the academic realm: a

variety of private enterprises (IBM, Google, Rigetti Computing, DWAVE Systems, etc.) are now

actively engaged in the construction of a superconducting quantum computer.

2.2 Quantum error correction and hardware architectures

As efforts in industry and academic settings look forward and plan their ascent to the upper

echelon’s of Fig. (2.1), their hardware requirements will depend strongly on the architectures they

employ, especially in the context of error correction. A detailed review of these proposals is beyond

the scope of this thesis, but a brief overview is helpful in estimating the hardware resources required

for a fault-tolerant quantum computer.

It is now widely accepted that error correction will occupy a majority of the resources of

a fault-tolerant quantum computer [38]. One approach to error-correction involves the use of

stabilizer codes [50, 51, 52], in which a logical qubit is formed by redundantly encoding information

in a register of entangled physical qubits. The Steane code, for example, can be implemented with
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seven physical qubits in its register [51]. Under the assumption that error rates are sufficiently low

such that at most one error occurs during each pass of the code, errors are detected by measuring

collective properties of the register (the eponymous “stabilizer operations”). Additional gates can

then be applied to correct the error, if needed.

The assumption that errors occur singly is, however, quite stringent. For the range of cur-

rently conceivable error rates, its satisfaction requires that the protocol be nested, such that each

element in the error correcting register is itself a logical qubit, stabilized by its own register, which

could itself be composed of logical qubits, and so on. As the stabilizer codes are also fairly op-

eration intensive—that is, they drastically increase the number of gates required to implement

an algorithm—stabilizer codes are recognized as a feasible but challenging way to perform error

correction.

A more recent but related approach is known as the surface code, in which identical physical

qubits are arranged in a rectangular array, which forms a surface [53, 26]. Connecting groups

of four nearby qubits in a particular way allows rapid measurements of their parity to detect

errors. The advantages of this approach are its flat hierarchy, which can be easily scaled once

demonstrations of a unit cell are made, and its relatively relaxed requirements for single-qubit

error rates (with respect to the stabilizer codes, for example). The drawbacks, however, are that

a very large number of qubits (current estimates are on the order of 108 or 109 physical qubits for

a modest quantum computation [26]) are required to reach a fault-tolerant level with the protocol,

and that these benefits do not become substantial in systems with less than hundreds or thousands

of physical qubits [38]. Nonetheless, efforts to demonstrate proofs-of-principle are already underway

at Google [46] and IBM [54]. Ref. [55] gives a good overview and summary of the technical challenges

relevant to this architecture.

A third strategy, which may be called the modular approach, is based on networks of nested

modules, which rely heavily on hierarchy. In this scheme, information is stored in memory qubits

which interact with the greater network via intermediate communication qubits. Computation is

performed via manipulations of the communication qubits, which distributes entanglement across
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the network. In some sense, this strategy represents the antithesis of the surface code approach: its

affordances are the capability to test and iterate individual modules and processes, and possibly a

lower requirement of physical qubits, at the cost of increased architectural and process complexity.

Ultimately, as with the choice of experimental platforms, selection of the optimal architecture

for fault-tolerant quantum computing is an open question. But while the precise structure is yet

to be determined, it seems clear that the necessary hardware resources will be immense.

2.3 Circuit quantum electrodynamics

To provide a more concrete notion of these hardware needs, we specialize now to a discussion

of quantum information processing with superconducting circuits. Detailed reviews on this subject

may be found elsewhere [56, 57]. Here we provide only an informal introduction, intended to give

context for the design of a scalable circulator for superconducting quantum circuits.

The qubits in this platform are usually formed by slightly anharmonic electromagnetic oscil-

lators. At sufficiently low temperatures, kBT < ~ω, the quantized energy levels in these circuits are

resolvable. Here, kB is Boltzmann’s constant, T is the temperature of the environment, ~ is Plank’s

constant over 2π, and ω is a frequency scale for the anharmonic oscillator. Modern dilution refrig-

erators allow for experiments at temperatures in the tens of mK, which makes the energy available

from the thermal bath about ten times less than a photon at 5 GHz. Hence, the oscillators are

designed to have resonant frequencies in the microwave range, typically between 1 and 20 GHz.

Like atoms, superconducting qubits come in a variety of forms. Most, though, can be mod-

elled as a network of capacitors, inductors, and Josephson junctions. The Josephson junction [58]

provides a dissipationless nonlinearity to the circuit, which breaks the harmonic spacing of its en-

ergy levels and allows individual transitions to be addressed with coherent microwave tones. A

qubit can then be created by restricting attention to a pair of energy eigenstates (typically, the two

lowest energy levels).

Readout of such a qubit, in the circuit quantum electrodynamics (cQED) scheme [59], is
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accomplished by dispersively coupling the qubit to a microwave cavity.2 In the dispersive limit,

the cavity’s resonant frequency is dressed by the state of the qubit, and a transmission measurement

of the cavity can therefore indicate the state of the qubit in a QND manner [60, 61].

For a transmon3 in the dispersive limit, the effective Hamiltonian that governs the qubit-

cavity system is given by [62]

H = ~ωqσz + ~ (ωr + χσz) â
†â,

= ~
(
ωq + χâ†â

)
σz + ~ωrâ†â.

(2.1)

Here ωq is the qubit frequency (the difference between the ground and first excited states of the

transmon), ωr is the resonator’s frequency, â is the annihilation operator for the cavity, σz is the

Pauli z operator for the qubit, and χ is the dispersive shift—a parameter that characterizes the

coupling between the qubit and the cavity. In the first line of Eq. (2.1), the Hamiltonian is factored

to make explicit the qubit-state-dependent dressing of the cavity’s resonant frequency.

The same effect, however, also dresses the qubit frequency by an amount proportional to the

photonic occupation in the cavity, as shown in the second line of Eq. (2.1). This allows the qubit

to act as a photon counter/detector [22], and reveals the importance of controlling the photonic

occupation in the cavity: a “hot” cavity, occupied by a high-temperature thermal state, will contain

a broad distribution of Fock states, effectively broadening the qubit transition. This effect is so

pronounced that superconducting qubits have become the most sensitive thermometers in these

experiments. Measurable reductions in qubit coherence are observed with average cavity-photon

occupations of 10−3 [63].4

In this light, one can see that the need to enforce the directional propagation of signals

in cQED measurements arises directly from the Hamiltonian in Eq. (2.1). To probe the state of

the qubit, electromagnetic waves departing the resonant cavity must be directed to a microwave

2 Typically a distributed resonator formed, for example, by a quarter-wave transmission line, or a literal (three-
dimensional) metal cavity.

3 One example, chosen from a selection of different superconducting qubits (see, for example, Sec. 2 in Ref. [57]).
4 As an aside, it may be noted that in some implementations this scheme is inverted, and a microwave resonator

serves as the memory element, while a qubit such as the transmon provides a dispersive nonlinearity that allows
individual transitions in the resonator to be addressed [64]. This is advantageous as coherence times in microwave
cavities currently exceed those in superconducting qubits [65].
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receiver. At the same time, however, electromagnetic waves propagating toward the cavity should

originate from a cold bath—in practice, a 50 Ohm resistor to ground, well-thermalized at the base

of a dilution refrigerator—to avoid dephasing the qubit.

Experimentally, this uni-directional signal flow is enforced by non-reciprocal circuit elements

known as circulators and isolators. Isolators are impedance-matched two port devices which trans-

mit a signal incident on one of their ports, but absorb signals incident on their other port. Cir-

culators are impedance-matched n-port devices with three or more ports (n ≥ 3), which transmit

signals incident on port m ≤ n to port 1 + (m modulo n): they “circulate” an incident signal,

directing it out of one of the two adjacent ports.

Fig. 2.2 depicts this process for an n = 3 port circulator. In Fig. 2.2a, a signal incident on

the circulator’s first port is transmitted to its second port. In Fig. 2.2b, a signal incident on port

2 is routed to port 3. Fig. 2.2c shows a signal incident on port 3 directed to port 1. A circulator

may be configured as an isolator by terminating all but two adjacent ports in 50 Ohms.

port 1 port 2

port 3

..
.

..
.

... ... ... ...

port 1 port 2

port 3

(a) (b)

..
.

... ...

port 1 port 2

port 3

(c)

Figure 2.2: Schematic displaying the way in which an n = 3 port counter-clockwise circulator (circle
with blue counter-clockwise arrow) routes incident fields. (a) A field incident on the circulator’s
first port is transmitted out the second port. (b) A field incident on the second port is routed out
the third port. (c) A field incident on the third port is routed out the first port.

To illustrate how circulators and isolators are utilized in the cQED architecture, Fig. 2.3

shows a simplified experimental schematic for readout of a superconducting qubit coupled to a

resonant cavity. To reduce the thermal population of states in the qubit-cavity system, the devices

are mounted at the base of a dilution refrigerator. In the readout procedure, a signal generator at

room temperature first creates a microwave tone which propagates to the base of the refrigerator
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and impinges on the weakly-coupled port of the resonant cavity (depicted as a Fabry-Perot cavity

in Fig. 2.3). The tone then traverses the cavity, and a portion of its power exits out the second,

strongly-coupled cavity port. Here the tone is transmitted through an isolator and directed by a

circulator to a “quantum” reflection amplifier, where the signal is reflected with gain of approxi-

mately 20 dB. Here, “quantum” is used to mean an amplifier with added noise approximately equal

to half a photon [66]—for example, a Josephson parametric amplifier [24] or a Josephson parametric

converter [25]. Next, the circulator routes the tone through a second isolator, is amplified a second

time by a high-electron mobility transistor (HEMT) amplifier, and finally propagates up the fridge

for further room-temperature amplification and digitization. In various schemes, the phase or am-

plitude of the transmitted tone can be made to encode the state of the qubit, via the interaction

described in Eq. (2.1).

ADC

50 50

HEMT

amplifier

quantum 

reflection 

amplifier

300 K

4 K

10 mK

Figure 2.3: Simplified experimental schematic illustrating readout of a superconducting qubit in a
dilution refrigerator. Signal filtering and attenuation, and control lines of the reflection amplifier,
are omitted for clarity. The superconducting qubit (green cross with capacitive paddles) is situated
inside a microwave resonant cavity (illustrated graphically by the green Fabry-Perot resonator)
with two ports. A measurement of the transmission through the cavity can encode the state of
the qubit. Circulators and isolators are used to direct the signal that exits the cavity out to a
detector, while ensuring that the reverse-propagating signals originate from a cold-bath (and are
not, for example, carrying the Johnson noise of the HEMT amplifier, or the strong pump tones in
the reflection amplifier).
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In this measurement, the signal routing capabilities of circulators are used in several ways,

as evidenced by the multiple circulators employed in the readout of a single qubit. The first

circulator, configured as an isolator, directs reflected signals and the strong pump tones powering

a quantum reflection amplifier into a cold bath (serving as an entropy dump), while supplying the

strongly coupled port of the qubit/cavity system with Johnson noise from this cold bath. The

second circulator separates the incoming and outgoing signals for a quantum reflection amplifier,

transforming that one-port device into a usable amplifier. A third circulator, again configured as

an isolator, directs the Johnson noise emitted by the HEMT amplifier into an entropy dump, and

replaces it with the Johnson noise from a cold bath.

It should be emphasized that the schematic in Fig. 2.3 illustrates the need for three circu-

lators in a relatively simple single-qubit experiment. Experiments with multiple qubits, or ad-

ditional requirements for directional signal routing, will employ more circulators. For example,

a recent demonstration of the generation of remote entanglement between two superconducting

qubit/cavities, using a third qubit/cavity as a detector, employed seven circulators [22]. Even with

multiplexed readout and broadband (several GHz) circulators, a surface code quantum computer

with modest capabilities [26] could still easily require millions of circulators.
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Lorentz reciprocity

First observed in optical systems, where it is referred to as Helmholtz reciprocity, Stokes-

Helmholtz reciprocity, or the principle of reversibility, Lorentz reciprocity can be summarized collo-

quially as “if I can see you, you can see me” [67, 68]. In a more general sense, Lorentz reciprocity is

the electromagnetic version of a symmetry common to a variety of physical systems, which implies

that the response at point a due to an impulse at b is identical to the response at b due to an

impulse at a. The prevalence of reciprocity theorems stems from the invariance of many systems

under time-reversal [69].

As in the electromagnetic case, breaking reciprocity can be of fundamental scientific interest

and great technological use. Efforts to generate non-reciprocity are therefore also underway in, for

example, acoustical and mechanical systems [70, 71]. Connections between non-reciprocity and the

one-way propagation of edge-states in topological systems have also been observed, and are driving

research in topological acoustics [72, 73], metamaterials [74], and non-reciprocal devices based on

the quantum Hall effect [75, 76, 77].

In the electromagnetic context, Lorentz reciprocity is essentially a statement about the time-

reversibility of Maxwell’s equations [19], which occurs under certain assumptions: in a framework

where electromagnetic fields propagate in guided modes into and out of a bounded network at ports,

Lorentz reciprocity implies that the scattering between a pair of ports is invariant upon exchange

of the source port and the detection port [78, 79]. This statement can be proven and expressed

succinctly in a scattering matrix formalism, which we now introduce, following Ref. [80].
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3.1 The scattering matrix

Consider a bounded region of space, enclosed by the surface Ωs, which contains a linear

electrical network with time-independent components (Fig. 3.1). Energy can be exchanged between

the network and the environment (the region outside Ωs) only through lossless and reciprocal

waveguides, which we refer to as ports. (We assume the surface is sufficiently large such that

radiative modes may be neglected, and shaped such that each waveguide is normal to Ωs).

Ω
s

port M

port 1

port 2

port 3

a
1

b
1

..
.

..
.

b
2

a
2

b
2

a
3

...

...

b
M

a
M

Figure 3.1: Model of an electrical network as a region of space bounded by the surface Ωs. Electro-
magnetic signals can propagate into and out of the network in guided modes, referred to as ports.
After [80].

For each waveguide, we imagine a coordinate system with the z-axis oriented along the

waveguide, and directed into Ωs. These waveguides carry guided modes which are eigensolutions

of Maxwell’s equations, propagating in the +ẑ and −ẑ directions. The components of the electro-

magnetic fields tangential to Ωs have the form

ET,µ(x, y, z) =
(
aµe
−iβµz + bµe

iβµ
)
eT,µ(x, y), (3.1)

HT,µ(x, y, z) =
(
aµe
−iβµz − bµeiβµ

)
hT,µ(x, y).

Here µ is the mode index, aµ and bµ are the complex amplitudes of the waves travelling into and

out of the network, and βµ is the propagation constant. The modes are normalized such that
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∫
Ωs

(eµ × h∗ν) dA = 2δµν , (3.2)

where ∗ indicates complex conjugation and δµν is the Kronecker delta.

Eq. (3.2) has two interesting consequences. First, at the surface Ωs the tangential components

of the fields have the simple form

ET =
∑
µ

(aµ + bµ) eT,µ, (3.3)

HT =
∑
µ

(aµ − bµ)hT,µ,

which is useful in deriving one of the principal consequences of the Lorentz reciprocity theorem for

networks.

Second, the power P carried into the network is just the difference of the wave power entering

the surface and the wave power exiting the surface:

P =
∑
µ

(
|aµ|2 − |bµ|2

)
= a∗ta− b∗tb.

(3.4)

Here in the second line we’ve introduced a vector notation a and b for the complex amplitudes aµ

and bµ, and superscript t indicates vector transposition.

Our assumption that Ωs encloses a passive and linear network ensures that the vector b is

completely determined by a. If this were not the case, the network could scatter an excitation a into

distinct outputs b and b′. The linearity of the network implies that a null excitation (0 = a − a)

could therefore scatter into b − b′. Eq. (3.4) shows that the power carried out of the network in

this event is non-zero, in violation of the assumption that Ωs encloses a passive network.

As the network is assumed to be linear, there is thus a unique matrix S which maps a to b:

Sa = b. (3.5)

The matrix element Sµν is the ratio of the outgoing field at port µ to the incident field at port ν.

The matrix S is known as the scattering matrix, for its description of how the network bounded by

Ωs scatters incident fields.



18

3.2 The Lorentz reciprocity theorem

Consider two scattering processes, with excitation states a′, a′′, output states b′, b′′, and

their corresponding fields E′, E′′ and H′, H′′. With no electromagnetic sources, the time-harmonic

form of Maxwell’s equations for the fields of the first scattering process is

∇×E′ = −iωµ(H′)H′, (3.6)

∇×H′ = iωε(E′)E′. (3.7)

Here µ(H) and ε(E) are the magnetic permeability and electrical permittivity tensors of the media

in Ωs. Taking the inner product [·] of Eq. (3.6) with H′′ and Eq. (3.7) with E′′ and summing them

yields

H′′ ·
(
∇×E′

)
+ E′′ ·

(
∇×H′

)
= iω

[
E′′ · ε(E′)E′ −H′′ · µ(H′)H′

]
. (3.8)

Repeating this procedure with the second scattering process yields the same result, with inter-

changed primes. When the two equations are subtracted, one obtains

∇ ·
(
E′ ×H′′ −E′′ ×H′

)
= iω

[
E′′ · ε(E′)E′ −E′ · ε(E′′)E′′ −H′′ · µ(H′)H′ + H′ · µ(H′′)H′′

]
.

(3.9)

A vector identity for the divergence of the cross-product of two vectors was used to simplify the

left-hand side of this expression. It may be further simplified to have a vanishing right-hand side,

if the two following conditions are met:

(1) ε and µ are symmetric tensors: ε = εt and µ = µt.

(2) ε and µ describe linear media.
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To see this, consider one of the terms on the right-hand side:

E′′ · ε(E′)E′ =E′′ · εE′

=
(
E′′ · εE′

)t
=
(
E′′tεE′

)t
=
(
E′tεtE′′

)
=
(
E′ · εE′′

)
=E′ · ε

(
E′′
)
E′′. (3.10)

Here we’ve used the linearity of ε in the first line and the the fact that scalars are invariant under

transposition in the second line. The second to last line follows from the symmetry of ε. A magnetic

term can be similarly commuted, to obtain the Lorentz reciprocity theorem:

∇ ·
(
E′ ×H′′ −E′′ ×H′

)
= 0. (3.11)

Eq. (3.11) gains a clear physical interpretation when it is expressed in the scattering matrix

formalism. Integrating it over the volume enclosed by Ωs and applying the divergence theorem

yields ∫
Ωs

(
E′ ×H′′ −E′′ ×H′

)
· dA = 0. (3.12)

When the modal expansions in Eq. (3.4) are substituted into Eq. (3.12), the minus sign ensures

that the cross-terms add constructively, while the other terms add destructively:

0 = 2
∑
µ,ν

(
b′νa
′′
µ − a′µb′′ν

) ∫
Ωs

eµ × hνdA, (3.13)

= b′ta′′ − a′tb′′,

= a′t
(
St − S

)
a′′

Here we’ve used the orthogonality condition in Eq. (3.2) and the definition of the scattering matrix

in Eq. (3.5). As a′ and a′′ are arbitrary, the scattering matrix must be symmetric:

S = St. (3.14)
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This symmetry ensures that the scattering between a pair of ports is invariant under exchange of

the source port and the detection port: Sµν = Sνµ.

3.3 Methods for breaking Lorentz reciprocity

Concepts for non-reciprocal devices may be broadly divided into categories, based upon which

assumption of the Lorentz reciprocity theorem they violate.

3.3.1 Magneto-optic devices

Virtually all the circulators and isolators currently used in cQED experiments are constructed

with magneto-optic materials. A common example of this is the Faraday-effect [81], in which left

and right circularly polarized fields propagating in a gyrotropic material (which is biased by a

magnetic field parallel to the propagation direction) have different group velocities. Careful choice

of the propagation length and or magnetic field strength therefore allows the polarization of the

field to be rotated by the desired angle.

Critically, the polarization’s sense of rotation depends only on the orientation of the magnetic

field, and not on the direction of propagation. Fig. 3.2a and Fig. 3.2b illustrate this process. The

effect, from the perspective of an observer receiving the propagating field, is therefore a propagation-

direction-dependent rotation of the polarization. The observer’s perspective is relevant here as this

represents the perspective of a detector receiving the propagating field, and Lorentz reciprocity is

an invariance upon exchange of source and detector.

In optical applications, this phenomenon is combined with a pair of polarizers to create an

isolator. In the microwave domain, it is commonly used to couple signals (non-reciprocally) between

orthogonally-polarized waveguides, realizing a circulator. Ref. [83] provides a detailed description

of ferrite-junction circulators that operate via the Faraday effect.

The Faraday effect may be contrasted with a similar (and reciprocal) phenomenon in optically

active materials [81], in which the chirality of the crystal structure rotates the polarization of the

propagating field. This causes the polarization vector’s sense of rotation to reverse when the
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Figure 3.2: Faraday rotation and a seemingly similar but distinct phenomenon observed in optically
active media. (a) An electromagnetic wave propagating from left to right through a Faraday-active
medium in the presence of an applied on-axis magnetic field B. From the perspective of an observer
(or a detector) receiving the field, the polarization of the wave rotates clockwise by an angle β. (b)
If the signal is reflected and propagates back through the medium (from right to left), the observer
perceives a counter-clockwise rotation of the wave’s polarization by the same angle β. Transmission
is non-reciprocal. (c) A wave propagating left to right through an optically active medium, where a
material chirality (depicted as a helix) determines the sense of rotation. An observer receiving the
wave perceives a clockwise rotation of the polarization. (d) Reflection of the wave and right to left
propagation results in the same clockwise rotation of the polarization, and reciprocal transmission.
After [82].

propagation direction is inverted, in the same way that pushing or pulling on a right-handed screw

will induce clockwise or counter-clockwise rotation. From the perspective of an observer receiving

the propagating field, however, the rotation-direction is independent of the propagation direction,

as depicted in Fig. 3.2c and Fig. 3.2d.

Magneto-optic devices are unconstrained by reciprocity because the permeability tensor µ is

not symmetric in the presence of a static magnetic field. This leads to a non-vanishing right-hand

side of Eq. (3.9), and a breakdown of the reciprocity theorem.

With respect to the design needs of superconducting qubit applications, magneto-optic non-
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reciprocal devices are attractive in that they may have broad operation bandwidths, low (but

not vanishing) insertion loss on the order of several tenths of a dB, and they are passive devices.

Their drawbacks include their roughly 10 cubic cm volumes, and their reliance on large permanent

magnets, which makes them difficult to miniaturize (despite many efforts [84, 85, 86, 87, 88, 89])

and integrate with superconducting circuits, and precludes the elimination of their insertion loss

by replacing their metallic components with superconductors.

3.3.2 Nonlinear devices

Nonlinear devices can break reciprocity because the intensity-dependence of their material

properties prevents the cancellation of terms like

E′′ · ε(E′)E′ −E′ · ε(E′′)E′′. (3.15)

As in the case of magneto-optic devices, this leads to a non-vanishing right-hand side of Eq. (3.9).

In practice, this is leveraged by introducing some kind of spatial asymmetry into the design

of the device. A simple example of this is a finite-length rectangular waveguide which is filled by

distinct dielectrics on its two ends [90]. The device is reciprocal, but careful choice of the dielectrics

and the relative fractions of the waveguide that they fill makes the spatial profile of the electric

field dependent on the propagation direction of an incident signal. By positioning a nonlinear

resonator at a location within the waveguide where the intensity of the electric field is strong when

a signal is incident on one port of the waveguide but weak when a signal is incident on its other

port, a propagation-direction-dependent loss-channel can be introduced to the system—usually

by arranging the frequency-pulling of the nonlinear resonator to move the resonator in or out of

resonance with the incident signal. Different implementations of this general scheme have resulted

in a variety of realizations for optical diodes constructed with silicon [91, 92, 93, 90].

The advantages of this approach include ease of miniaturization, and compatibility with

superconducting circuits and fabrication methods. The disadvantages are an inherent restriction

on linearity (such schemes only work when higher-power incident fields or pump tones activate a
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material nonlinearity), and typically narrow operation bandwidths.

3.3.3 Active devices

Given the intimate connection between reciprocity and time-reversal, it seems intuitive that

active devices—that is, devices with parameters that vary in time—could break reciprocity. This

can be seen explicitly with a simple example of two general cascaded linear systems A and B,

which we describe following Ref. [94], and depict in Fig. 3.3. The impulse responses of A and B

are denoted hA and hB, and u, z, and y describe the input, intermediate, and output states of the

system.

A B
z yu

Figure 3.3: A cascade of two linear systems. The impulse response of the composite system is non-
reciprocal when the impulse responses of the individual systems are time-dependent. After [94].

The output y can be written in terms of the input u and the impulse responses hA and hB:

y(t) =

∫ ∞
−∞

hB(t, η)z(η)dη (3.16)

z(t) =

∫ ∞
−∞

hA(t, ξ)u(ξ)dξ. (3.17)

Eliminating z in Eq. (3.16) yields

y(t) =

∫ ∞
−∞

[∫ ∞
−∞

hB(t, η)hA(η, ξ)dη

]
u(ξ)dξ, (3.18)

and the bracketed term in that expression may be identified as the impulse response hBA of the

composite system BA.

When A and B are time-invariant systems, their impulse responses depend only on the

difference of their arguments,

hBA =

∫ ∞
−∞

hB(t− η)hA(η − ξ)dη. (3.19)
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Changing integration variables to t′ = t− ξ and η′ = η − ξ, Eq. (3.19) becomes

hBA =

∫ ∞
−∞

hB(t′ − η′)hA(η′)dη′. (3.20)

which is a convolution. In this form (or from the convolution theorem), it is clear that the system

is reciprocal: hBA = hAB. For the time-dependent case, though, hBA is not in general equal to

hAB.

The dependence of reciprocity on time-invariance is reflected in the arguments of Sec. 3.1

and Sec. 3.2, which respectively assume passive networks and harmonic fields. Efforts in the 1960s

extended these arguments to time-dependent systems, and showed that reciprocity also places

symmetry and time-invariance constraints on the scattering matrices of time-variable networks [95].

Since then, a variety of schemes have been developed for generating non-reciprocity with actively

modulated circuits. We do not attempt a complete catalogue of them here, and instead limit

discussion to two particular approaches.

3.3.3.1 Parametric coupling of resonant modes in the resolved sideband limit

The first of these involves the parametric coupling of resonant modes in the resolved sideband

limit, which is a widely used strategy in radio frequency [96, 97], superconducting microwave [82, 98,

99, 100, 101], electroacoustic [102], electromechanical [103, 104, 105], and optomechanical [106, 107]

devices. Excepting the circulator discussed in this thesis, most state-of-the-art non-reciprocal

circuits for superconducting circuits are implemented with this approach.

An excellent conceptual description of this strategy is given in Ref. [108], which provides a

graph-theoretical description for the Langevin equations of parametrically coupled resonant sys-

tems. Rather than reproduce that treatment here, we attempt a succinct and general summary of

the concept.

Consider a system of two or more resonant modes (frequencies {ωi} and linewidths {κi}) in

the resolved sideband limit. By this, we mean the frequencies in the set {ωi} are separated by many

times their respective linewidths, and that the linewidths of each resonator are narrower than all
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the resonant frequencies. Now imagine a parametric interaction, which allows variation of a system

parameter to shift the frequencies of the resonant modes {ωi} by approximately their linewidths

∆ωi ≈ κi. Varying this parameter at the difference frequency ωi − ωj between a pair of modes

induces a beam-splitter interaction, allowing excitations to be exchanged between the two resonant

systems:

HI ∝ eiθaia†j + e−iθa†iaj . (3.21)

Here, ai is the annihilation operator of the ith resonant mode, and θ is the phase of the parametric

interaction. In practice, this phase can be adjusted by tuning the phase of the electrical signal

which is controlling the parametric interaction.

Examination of Eq. (3.21) shows that the phase of the beamsplitter interaction depends on

the direction in which excitations are exchanged. For example, if the phase θ = π/2, excitations

which originate in mode i and are transferred to mode j will be π out of phase with excitations

which originate in mode j and are transferred to mode i. If desired, a frequency diplexer can then

be used to route the different resonant modes out separate physical ports of the device.

There is a complication, though, in generating non-reciprocity in this way: the phase reference

of the parametric interaction is arbitrary. Said another way, a gauge may always be chosen in which

the phase θ is zero, making the beamsplitter interaction reciprocal. This difficulty may be resolved

with the introduction of another parametric interaction between modes i and j (or to a third mode

k). Experimentally, this can be accomplished by cascading a duplicate of the original device in series

with the original [101]. The second parametric interaction also has a phase, and while its phase

reference is also arbitrary, the difference between the phases of the two parametric interactions is

a gauge-invariant.

A description of this approach can also be couched in the language of geometric phases created

by synthetic magnetic fields [109, 110, 111, 102, 99, 107]. In that framework, the coupled resonant

modes are viewed as nodes of a lattice, with a hopping interaction determined by the system’s

parametric modulation. The phase of the parametric modulation sets a Peierls’s phase [112], and
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a Berry curvature (synthetic vector potential) is quantified by the total Peierls’s phase acquired in

the circumnavigation of one plaquette of the lattice.

The affordances of using parametrically coupled modes to generate non-reciprocity are the

relative simplicity of the circuit designs, and a wide versatility in function: in addition to realizing

elementary non-reciprocal devices such as isolators [103] and circulators [99, 100], the parametric

interaction can also be used to drive parametric down-conversion, enabling processes like directional

amplification [98, 99, 100, 113]. This flexibility, and the ability to dynamically switch between the

various modes of operation, has led some groups to refer to these devices as “field-programmable,”

in reference to multi-function field-programmable gate arrays [100]. The major drawback inherent

to this method is its reliance on resonant modes in the resolved sideband limit, which constrain

the device’s bandwidth. A second drawback, in some situations, is the frequency-conversion which

accompanies some implementations of this approach [99, 100].

3.3.3.2 Frequency conversion and delay

A second approach for the generation of non-reciprocity with active devices is enabled via

successive translations in frequency and time, or in other words, a combination of frequency conver-

sion and delay. As frequency and time are Fourier duals, successive translations in these quantities

do not, in general, commute. Signals traversing a network in which a series of these translations

are made may encounter them in a different time-ordering, depending on the port of the network

at which they are arrive. Such a dependence on propagation direction violates Lorentz reciprocity.

The promise of generating non-reciprocity in this way was first observed in the 1960s, in

cascades of symmetric lattices with dual arms of time-varying inductors and capacitors [114]. In

these networks, a tank circuit resonance provides the delay, and the active modulation of the

circuit elements create frequency sidebands on the input signal. In more recent years, the idea

has been leveraged in a general-purpose circulator proposal which is amenable for implementation

in superconducting circuits [115]. The realization of that proposal is the subject of this thesis.

Related proposals in the microwave [116], millimeter [?], and optical [117, 118, 119, 120] domains
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have utilized the same concept with non-resonant delays.

The affordances of the frequency-conversion and delay approach are a general absence of

bandwidth constraints, stemming from the potential to implement the approach without any res-

onant physics. Related to this, resonant-based implementations are in general not subject to the

constraints of the resolved sideband-limit, allowing low-frequency modulation of the active compo-

nents. This is an especially attractive feature for superconducting circuits, where high-bandwidth

dilution-refrigerator lines are a precious resource.

Its drawbacks are the care required in coherently erasing (or otherwise suppressing) sidebands

created by the frequency converting elements, and the general circuit complexity which is some-

times needed for this task. An additional drawback, which is also common to circuits based on the

parametric coupling of resonant modes, or in general any active device, is the power consumption

of the control signals. This is not a problem for some applications, but in a cryogenic setting addi-

tional heat loads on the mixing chamber of a dilution refrigerator are an important consideration,

especially in light of the large number of circulators which may be required in a superconducting

fault-tolerant quantum computer.

3.3.4 Connection with time-reversal symmetry

As reciprocity arises in physical systems which are invariant under time-reversal, another way

to classify non-reciprocal systems is via the mechanism by which they break this invariance. This

perspective is utilized in recent demonstrations [107] and proposals [121, 122, 123], which break

Lorentz reciprocity with judicious use of dissipation, referred to as reservoir engineering.

Generating non-reciprocity, however, does not in general require dissipation, or a complete

absence of time-reversal symmetry. For example, many approaches break Lorentz reciprocity by

coupling electromagnetic fields to matter with an interaction that is odd under time-reversal. Ex-

amples of this are magnetic fields, as in circulators built with gyrotropic media and quantum Hall

effect circulators [75, 76, 77]; linear momentum [124, 125, 126, 127], for example through disper-

sion engineering [125, 126, 127] or radiation pressure in an optomechanical interaction [124]; and
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angular momentum [96, 70, 115], for example, by coupling electromagnetic fields to non-degenerate

clockwise and counter-clockwise propagating modes in a ring resonator. The degeneracy of these

modes can then be lifted with physical rotation, as in a Sagnac interferometer [128] (or in acoustic

demonstrations, with the motion of the acoustic medium [70]). It may also be lifted in other ways,

such as active modulation of circuit parameters, which can simulate a sense of rotation [115] or a

synthetic gauge field [96].

3.4 Common non-reciprocal devices

As both Lorentz reciprocity and scattering matrices have now been discussed, we introduce

in this section the scattering matrix description of several common non-reciprocal devices. Tab. 3.1

shows the microwave circuit symbols and scattering matrices for a gyrator, an isolator, and a

circulator.

gyrator isolator circulator

microwave circuit symbol
1 2

�

50

1 2 1 2

3

ideal scattering matrix

[
0 1
−1 0

] [
0 0
1 0

] 0 0 1
1 0 0
0 1 0


Table 3.1: Symbols and scattering matrices for three common non-reciprocal devices

3.4.1 Gyrators

Gyrators are impedance-matched two-port devices that transmit signals in the forward direc-

tion without changing their phase, but impart a π phase shift to signals transmitted in the reverse

direction [78]. This action is visible in their scattering matrix: for a gyrator, S21 and S12 are π out

of phase. Gyrators were first proposed in 1948 by Tellegen as a hypothetical fifth element of basic

circuit theory, supplementing the resistor, inductor, capacitor, and transformer [129]. Addition of
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the gyrator to this set allows for the realization of passive non-reciprocal networks, and also reduces

the number of basic circuit elements to three: the gyrator can replace the transformer and either

the capacitor or the inductor.

In practice, gyrators are used frequently in the design of active filters, and in the construction

of other non-reciprocal circuits, such as isolators and circulators. This can be done directly, by tieing

together the grounds of the gyrator’s two ports and defining a third port as the differential voltage

between them, resulting in a three-port circulator. Alternatively, the gyrator can be inserted

between two beamsplitters (or microwave hybrids) to create a four-port circulator. This procedure

is known as the Hogan construction of a circulator [130].

3.4.2 Isolators

Isolators are impedance-matched two-port devices that act as one-way valves for classical

electromagnetic signals. Signals propagating in the forward direction through an isolator are trans-

mitted unchanged, while signals propagating in the reverse direction are completely absorbed. This

action is visible in the off-diagonal elements of the scattering matrix: S21 = 1, while S12 = 0.

Isolators are used in a variety of ways across the electromagnetic spectrum: in optical exper-

iments, they are commonly employed as a way to prevent reflections in an optical network from

disturbing the source laser. In telecommunication networks, where signals are frequently amplified

and attenuated by many orders of magnitude, isolators serve as a way of protecting sensitive (and

lower signal-amplitude) components in the network from amplifier reflections. More generally, as

discussed in Ch. 1, isolators are of fundamental use in precision measurement.

3.4.3 Circulators

Circulators are impedance matched devices with three or more ports, that provide the direc-

tional signal routing needed for a variety of electromagnetic networks. As the scattering matrix in

Tab. 3.1 shows, signals incident on one of the circulator’s ports will be routed counter-clockwise

around the device and transmitted out the subsequent port.
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Circulators can be used to make isolators (by depositing the signal at all but two of the

circulator ports into an entropy dump) or gyrators (by combining them with 180-degree microwave

hybrids/beamsplitters). The need for a high-quality and scalable circulator which could supplant

the ferrite-based commercial circulators currently used in superconducting qubit experiments is the

motivation for this thesis.



Chapter 4

Theory of operation

The circulator presented in this thesis may be understood in terms of “synthetic rotation”

created by the active modulation of the circuit, and analyzed rigorously with a lumped-element

circuit theory or an input-output formalism [115]. Before performing a formal analysis we provide

a complementary explanation for its operation based upon the frequency-domain dynamics of an

analogous model system.

4.1 Model system

The model is a lumped-element network of multipliers and delays (Fig. 4.1a) which creates

a gyrator (see Sec. 3.4.1). Gyration in the model system arises from the non-commutation of

successive translations in frequency and time [116]: the multiplying circuits operate as frequency

converters, translating an input signal up and down in frequency, and the delays translate fields

forward in time. As frequency and time are Fourier duals, the time-ordering of these translations

matters (the two operations do not generally commute). Transmission through the network thus

depends on the propagation direction of the incident signal, breaking Lorentz reciprocity.

To see that non-reciprocity explicitly, frequency-phase diagrams are used to calculate the

model’s scattering parameters. The diagrams follow an incident signal at frequency ωp as it prop-

agates through the device, tracking its amplitude, frequency, and phase in a frame rotating at

ωp.

The insets in Fig. 4.1a depict the way that the model system’s two constituent elements—
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Figure 4.1: Conceptual diagram of non-reciprocity generated with frequency conversion and delay.
(a) Lumped-element network that forms a gyrator. The insets show how fields are transformed by
the network’s two components: multiplying elements and delays. In the upper inset, an input field
at frequency ωp (top panel) is multiplied by cos(Ωt) to create a field with spectral components at
ωp ±Ω (bottom panel). The real and imaginary axes of the plot shows the phase of these spectral
components in a frame rotating at ωp. In the lower inset, a delay of length τ = π/ (2Ω) advances
(retards) the phase of spectral components at ωp + Ω (ωp − Ω) by π/2. (b) Calculation of the
forward-scattering parameter for the network in (a), by following an incident field at frequency
ωp as it propagates through the device. Purple (green) arrows indicate fields propagating in the
left (right) arm of the network. Fields are forward transmitted with amplitude and frequency
unchanged, but phase shifted by π. (c) Backward transmission through the network in (a). Fields
are transmitted with amplitude, frequency, and phase unchanged.

multipliers and delays—transform input fields to output fields. In the multiplying elements, that

transformation occurs via multiplication by a bias signal—in this case, cos(Ωt). The trigonometric

product-to-sum identity states

cos(ωpt) cos(Ωt+ θ) =
1

2

(
cos ([ωp + Ω] t+ θ) + cos ([ωp − Ω] t− θ)

)
, (4.1)

which has a simple interpretation in the frequency domain: multiplication creates two sidebands,

each detuned from ωp by the bias frequency Ω. Importantly, the phases of these sidebands depend

on the phase θ of the multiplier’s bias signal. We choose a phase reference such that multiplication

by cos(Ωt) creates two sidebands with the same phase.

In the delay elements, inputs are transformed to outputs by way of a phase shift. In the
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rotating frame, a delay of length τ = π/(2Ω) leaves the phase of spectral components at ωp un-

changed, while advancing the phase of spectral components in the upper sideband ωp + Ω by π/2,

and retarding the phase of components in the lower sideband ωp − Ω by π/2.

With the action of the multiplying and delay elements defined, calculation of the scatter-

ing parameters is straightforward. Forward transmission through the model system is shown in

Fig. 4.1b. A signal incident on port 1 with frequency ωp (Fig. 4.1b, i.) is first divided equally

into the network’s two arms. Fields in both arms encounter a first multiplying element, a delay, a

second multiplying element, and are then recombined.

Critically, the modulation sidebands at ωp±2Ω created in the network’s two arms are π out of

phase and interfere destructively at the device’s output (Fig. 4.1b, iv). Conversely, the components

at the frequency ωp interfere constructively. Comparison of Fig. 4.1b, iv. with Fig. 4.1b, i. shows

that the incident signal has been transmitted through the device with its frequency and amplitude

unchanged, but its phase shifted by π. The scattering parameter S21 for the network is therefore

−1.

The reverse path is traced out in Fig. 4.1c, for a signal incident on the network’s second port.

As with forward transmission, destructive interference occurs at ωp ± 2Ω (Fig. 4.1c, iv.). Likewise,

this is accompanied by constructive interference at the frequency ωp. Now, however, comparison of

Fig. 4.1c, iv. with Fig. 4.1c, i. shows that the frequency, amplitude, and phase of the incident signal

were unchanged by the network. Therefore, in contrast to the forward transmission, the backwards

transmission is characterized by a scattering parameter S12 = 1. The network in Fig. 4.1a is thus

described by the gyrator scattering matrix in Tab. 3.1, and forms an ideal gyrator.

In the model system, the convert-delay-convert process happens simultaneously in both arms

of the network. Consequently, each arm is individually non-reciprocal. Alone, though, a single arm

creates unwanted modulation sidebands. To create an ideal gyrator, two arms, with the bias signals

of their multiplying elements separated in phase by π/2, are connected in parallel. This balanced

architecture engineers destructive interference of the spectral components at ωp ± 2Ω.

Such a strategy for suppressing the creation of spurious sidebands, which we refer to as “co-
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herent cancellation,” may be contrasted with that used in non-reciprocal devices that operate with

the parametric coupling of resonant modes in the resolved-sideband limit, discussed in Sec. 3.3.3.1.

In that scheme, parametric modulation of a resonant system creates sidebands at the parametric

drive frequency, and a second resonant mode is used to enhance the density of states at the de-

sired frequency, while simultaneously diminishing it at the undesired frequency. To work in the

resolved sideband limit, however, the parametric modulation must be many times the resonant sys-

tem’s linewidth. In microwave frequency implementations, this typically requires GHz modulation

tones. In contrast, the coherent cancellation approach lifts the resolved-sideband constraint, and

can therefore be used with lower-frequency control tones.

4.2 Superconducting implementation

We make use of the unique properties of superconducting circuitry to realize compact on-

chip multiplier and delay elements. Specifically, Josephson junctions form widely tunable inductors,

while vanishing conductor loss permits high-quality on-chip microwave resonators. Fig. 4.2 shows

how a single arm of the model system (Fig. 4.2a) is made with a network of capacitors and dynam-

ically tunable inductors (Fig. 4.2b).

4.2.1 Multiplying elements

The multiplying elements in the circuit representation are created with reactive bridge circuits

(also known as symmetrical lattices [114]), built with two tunable pairs of nominally identical

inductors l+ and l− arranged opposite one-another (gray box in Fig. 4.2b). Two differential ports

are defined by the left-and-right and top-and-bottom bridge nodes. Importantly, the inductors

tune in a coordinated fashion: when one pair of inductors increases, the other pair decreases. We

parametrize this tuning with a base inductance l0 and an imbalance variable δ, by writing

l± = l0/(1± δ). (4.2)
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Figure 4.2: Multiplying elements and delays realized in a superconducting lumped-element circuit.
(a) The model system (Fig. 4.1a) is constructed from two parallel instances of this network. (b)
A lumped-element version of the network in (a), created with capacitors and tunable inductors
arranged in a bridge geometry. (c) To create an inductive bridge circuit in a superconducting
microwave environment, four series-arrays of SQUIDs are arranged in a figure-eight geometry, and
tuned with an off-chip magnetic coil producing a uniform flux Φu and an on-chip bias line creating a
gradiometric flux ±Φg. (d) Simulated group delay for the circuit in (b) when its ports are connected
to 50 Ohm transmission lines. The bridge inductors are parametrized according to Eq. (4.2), with
c = 1 pF, l0 = 1 nH, and δ = 0.2.

When a bridge is coupled to transmission lines of characteristic impedance Z0, its forward scattering

parameter at angular frequency ω is

S21 =
2iδωl0Z0

−Z2
0 (1− δ2)− 2iωl0Z0 + ω2l20

=− δ 2iωl0Z0

(Z0 + iωl0)2 +O(δ)2. (4.3)

As the imbalance in the bridge determines its transmission, changing δ allows the circuit to act as

a switch or a multiplying element [131, 132].

The bridge circuit’s tunable inductors are realized with series-arrays of superconducting quan-
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tum interference devices (SQUIDs), formed by the parallel arrangement of two Josephson junctions.

Arrays are used in place of individual SQUIDs to increase the linearity of the inductors [115]. The

inductance l of an N SQUID array depends on the magnetic flux Φ that threads through each

SQUID [58]:

l = N
ϕ0

2I0

∣∣∣∣sec

(
Φ

2ϕ0

)∣∣∣∣+O(I/I0)2. (4.4)

Here ϕ0 = ~/2e is the reduced flux quantum, and the Josephson junctions in each SQUID are

assumed to be identical with critical current I0 and negligible geometric inductance. The SQUIDs

are also assumed to be identical.

To realize the coordinated tuning of inductors described in Eq. (4.2), we arrange the SQUID

arrays in a figure-eight geometry (Fig. 4.2c). Two flux controls determine the imbalance in the

bridge. First, an off-chip coil threads a uniform magnetic flux Φu through all the SQUIDs. Second,

an on-chip bias line, which bisects the figure-eight, threads a gradiometric flux Φg through the

SQUIDs. SQUIDs on the left side of the bias line therefore experience an overall magnetic flux

which is the sum of the uniform and gradiometric contributions, whereas SQUIDs to the right of

the line are threaded by the difference of the uniform and gradiometric fluxes.

When the gradiometric bias line is driven with a sinusoidal current source at frequency Ω, the

flux through the SQUIDs varies in time as Φ = Φu ±Φg cos(Ωt+ φ). This process creates a bridge

of inductors which tune according to Eq. (4.2), with a simple sinusoidal variation in the imbalance

δ = δ0 cos(Ωt+ φ) and a rescaling of the base inductance l0. Such a periodic variation in δ makes

SQUID bridges biased in this way into dissipationless multiplying elements. The precise mapping

between the flux controls Φu & Φg and the circuit parameters l0 & δ0 is [133]

δ0 = −2 tan(α)
J1(β)

J0(β)
+O(β2),

l0 = N
ϕ0

2I0

1

cos(α)J0(β)
+O(β2), (4.5)
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with

α ≡ π
Φu

Φ0
,

β ≡ π
Φg

Φ0
, (4.6)

and Jn the nth Bessel function of the first kind.

4.2.2 Delays

The second primitive needed for the model system is a delay, realized in our circuit with

a resonant mode. Conveniently, the SQUIDs in the bridge circuits are inductive, so the addition

of a single capacitor is enough to create a resonance. This resonance delays fields near its center

frequency by a timescale τ characterized by the inverse of its linewidth. More quantitatively, when

a harmonic field incident on port ν of a resonant network is scattered to port µ, it acquires a

group delay τ = d∠Sµν/dω [78]. Here ω is the frequency of the harmonic field, and ∠Sµν is the

phase of Sµν . Fig. 4.2d shows delay as a function of frequency, simulated for the resonant circuit in

Fig. 4.2b. Fields near the circuit’s resonant frequency experience a delay of several nanoseconds.

As a confirmation of these simulations, an analytical study of the same circuit was also made, using

a graph theoretical approach [134, 135] to solve for the circuit’s eigenfrequencies with Kirchoff’s

current and voltage laws. This is described in App. A.

Delays realized with resonant modes allow for a deeply sub-wavelength implementation, which

is critical for the “coherent cancellation” approach. While these lumped-element delays are neces-

sarily narrower in bandwidth than those created with, for example, a length of transmission line,

their finite bandwidth is mitigated by the tunable inductance of the bridge circuits, which allows

the frequency ω0 of the resonant delay to be tuned (over several GHz) with the uniform magnetic

flux Φu. As the multiplying elements are broadband [132], this tunability of the delay is inherited

by the full circulator. Likewise, the duration τ of the delay depends on the imbalance in the bridges,

and may be tuned with the gradiometric flux Φg, facilitating satisfaction of the requirement that

τ = π/ (2Ω).
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Tuning of the resonant delay takes a simple form when expressed in terms of the circuit

parameters l0 and δ0. When two of the arms in Fig. 4.2b are combined in parallel to create the

fully assembled circuit, the resonant delay occurs at the frequency [115]

ω0 =

√
4− δ2

0

2l0c
, (4.7)

and its duration τ is approximately the inverse of the resonant mode’s linewidth,

τ ≈ 8Z0c

δ2
0

. (4.8)

Here Z0 is the characteristic impedance of the surrounding transmission lines.

4.2.3 Assembly of the full circulator

Construction of a superconducting version of the model system requires the parallel com-

bination of two of the circuits shown in Fig. 4.2. This process is depicted Fig. 4.3, which shows

the model system (Fig. 4.3a) alongside a lumped-element schematic of an equivalent network made

with variable inductors and capacitors (Fig. 4.3b).

In principle, a circulator could be created from the gyrator shown in Fig. 4.3b using any

of the methods detailed in Sec. 3.4.1. Alternatively, the same circuit could be designed without

differential ports, where instead each of the four nodes define their own port via comparison to

a common ground, as shown in Fig. 4.3c. Such a design allows direct realization of a four-port

circulator, without any additional embedding network. The ideal scattering matrix for this four-

port clockwise circulator is

S =



0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0


, (4.9)

and reversing the direction of gyration also allows the same network to act as a counterclockwise

circulator with scattering matrix ST. This device is the four-port version of the circulator described

in Tab. 3.1.
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Figure 4.3: (a) The model system of Sec. 4.1 forms a gyrator, which breaks Lorentz reciprocity
with a combination of frequency conversion and delay. (b) A realization of the network shown in
(a), made with tunable, reactive circuit elements. (c) When four ports are formed by comparing
the nodes of the circuit in (b) to a common ground, the network forms a four port circulator.
Circulation is accomplished through the interference of the common and differential modes of the
“left” (ports 1 & 3) and “right” (ports 2 & 4) circuit ports. This is analogous to the circulation
generated by a Hogan circulator (d), which comes from the interference between two arms of an
interferometer, one of which contains a gyrator, and the other of which is a direct short between
ports.

The transformation between gyrator and circulator can be understood in the following way:

driving any one of the four ports in Fig. 4.3c involves simultaneously exciting the common and

differential modes of the circuit. The gyrating differential mode is non-reciprocal, whereas the

prompt scattering of the non-resonant common mode is reciprocal. The interference of these two

scattering processes results in circulation [115].
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In a sense, this method for realizing a four-port circulator is a virtual form of the Hogan

construction [130] depicted in Fig. 4.3d. In (a physical implementation of) the Hogan construction,

an incident signal is routed through a 180◦ hybrid and directed out its differential (∆) and common

(Σ) ports. The differential port leads to a gyrator and then to the differential port of a second

hybrid, whereas the common port is directly connected to the second hybrid’s common port. The

result is an interferometer with two arms: the ∆ arm contains a gyrator (and is therefore non-

reciprocal), and the Σ arm is a direct connection between the two microwave beamsplitters, which

is reciprocal. The circulator in Fig. 4.3c relies on the same interference effect, but in this case

the two “arms” of the interferometer are not spatially separated. Instead, they are encoded in

the even and odd excitations of ports 1 & 3 and 2 & 4. In both cases, however, the circulation is

accomplished through the interference of a non-reciprocal (gyrating) signal pathway and a reciprocal

signal pathway.

4.3 Circuit analysis

We have attempted in the preceding sections to establish intuition for how the circuit in

Fig. 4.3c realizes a four-port circulator. To support that argument we now directly calculate the

elements of its scattering matrix using circuit theory, following Ref. [115].

Consider the bridge circuit shown in Fig. 4.4a. The constitutive relations for this circuit are

1

l

 1 δ(t)

δ(t) 1


 φ1(t)

φq(t)

 =

 I1(t)

Iq(t)

 . (4.10)

The matrix on the left-hand side of Eq. (4.10) is the reluctance of the circuit. The reluctance matrix

gives the current response Ii to an applied flux φi, defined as the time integral of the voltage at

port i: φi ≡
∫ t
−∞ Vi(τ)dτ . It is a sort of inverse inductance, what was historically called “magnetic

resistance” before the term “reluctance” was coined by Heaviside [136].

When four of these circuits are connected together, in the manner shown in Fig. 4.4b, the
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constitutive equation for the network is

δ0

l



2/δ0 0 cos(Ωt) sin(Ωt) − cos(Ωt) − sin(Ωt)

0 2/δ0 sin(Ωt) − cos(Ωt) − sin(Ωt) cos(Ωt)

cos(Ωt) sin(Ωt) 3/δ0 −1/δ0 −1/δ0 −1/δ0

sin(Ωt) − cos(Ωt) −1/δ0 3/δ0 −1/δ0 −1/δ0

− cos(Ωt) − sin(Ωt) −1/δ0 −1/δ0 3/δ0 −1/δ0

− sin(Ωt) cos(Ωt) −1/δ0 −1/δ0 −1/δ0 3/δ0





φp(t)

φq(t)

φ1(t)

φ2(t)

φ3(t)

φ4(t)


=



Ip(t)

Iq(t)

I1(t)

I2(t)

I3(t)

I4(t)


.

(4.11)

Analysis is simplified by changing to a left-right, even-odd basis for ports 1-4, and a rotating,

circular basis for ports p and q:

Il,e(t)

Ir,e(t)

Il,o(t)

Ir,o(t)


=

1√
2



1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1





I1(t)

I2(t)

I3(t)

I4(t)


, (4.12)

 I+(t)

I−(t)

 =
1√
2

 eiΩt −ieiΩt

e−iΩt ie−iΩt


 Iq(t)

Ip(t)

 , (4.13)

and similarly for the branch fluxes. In these new bases, Eq. (4.11) separates into two uncoupled

systems of equations:
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2

l

 1 −1

−1 1


 φl,e(t)

φr,e(t)

 =

 Il,e(t)

Ir,e(t)

 , (4.14)

1

l



2 0 δ0 iδ0

0 2 δ0 −iδ0

δ0 δ0 4 0

−iδ0 iδ0 0 4





φ+(t)

φ−(t)

φl,o(t)

φr,o(t)


=



I+(t)

I−(t)

Il,o(t)

Ir,o(t)


. (4.15)

To complete the circulator, we shunt ports p and q with capacitances c. This fixes the relation

between the currents and the branch fluxes at these ports:

− c d
2

dt2
φq,p = Iq,p, (4.16)

or equivalently in the circular, rotating basis,

− c( d
dt
∓ iΩ)2φ± = I±. (4.17)

With this constraint, Eq. (4.15) has a simple representation in the frequency domain, which we

indicate with square brackets [·]:

1

l



2− lc(ω − Ω)2 0 δ0 iδ0

0 2− lc(ω + Ω)2 δ0 −iδ0

δ0 δ0 4 0

−iδ0 iδ0 0 4





φ+[ω]

φ−[ω]

φl,o[ω]

φr,o[ω]


=



0

0

Il,o[ω]

Ir,o[ω]


. (4.18)

At this point we pause and comment on the constitutive relations for the even and odd

excitations of the left and right ports of the circuit, given in Eq. (4.14) and Eq. (4.18), respectively.

Even excitations of the left and right ports are uncoupled from nodes p and q, and are therefore

non-resonant. Contrastingly, odd excitations of the left and right ports depend on the branch fluxes

across nodes p and q, and on the value of the capacitors c. These dynamics are resonant. To show

that they are also non-reciprocal, we write Eq. (4.18) as a 2×2 system of block matrices

1

l

 A B

C D


 φ±

φl,r

 =

 0

Il,r

 , (4.19)



43

where each matrix element in the reluctance matrix is itself a 2×2 matrix (bold variables denote

matrices), and the internal degrees of freedom (φ+ and φ−) and the external degrees of freedom

(φl,o and φr,o) are contained in the 2×1 vectors φ± and φl,r.

Written in this way, it is clear that the internal degrees of freedom φ± can be eliminated,

yielding a 2×2 matrix equation (
D−CA−1B

)
φl,r = Il,r. (4.20)

Expanding this to first order in Ω/ω, and evaluating the output on resonance when ω equals

ω0 ≡
√

4− δ2
0

2lc
, (4.21)

we obtain the reluctance relation

iω0
16cΩ

δ2
0

 0 1

−1 0


 φl,o[ω]

φr,o[ω]

 =

 Il,o[ω]

Ir,o[ω]

 . (4.22)

This is the reluctance relation of a gyrator, with gyration conductance 16cΩ/δ2
0 [129]. For harmonic

fields, the reluctance matrix is iωY, where Y is the system’s admittance matrix.

If ports 1 through 4 are now connected to transmission lines of characteristic impedance Z0,

the network’s scattering matrix S can be calculated:

S = (1 + Z0Y)−1 (1− Z0Y) . (4.23)

Here, 1 is the 2×2 identity matrix. Using this expression, the scattering matrix So (here the

subscript indicates the odd or differential two-port network) for the reluctance relation in Eq. (4.22)

is

So =

 0 −1

1 0

 (4.24)

provided that the gyration conductance is set to Z−1
0 . Repeating this process for the even dynamics

in Eq. (4.14), the even scattering matrix is

Se =

 ωl
ωl−4iZ0

4Z0
4Z0+iωl

4Z0
4Z0+iωl

ωl
ωl−4iZ0

 , (4.25)
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which to zeroth order in ωl/Z0 is the scattering matrix of a direct (matched) connection between

the left and right ports:

Se =

 0 1

1 0

+O
(
ωl

Z0

)
. (4.26)

Finally, the full 4×4 scattering matrix in the numbered port basis can be recovered by reversing

the change-of-basis procedure:

S = U−1Se,oU, (4.27)

where U is the unitary matrix in Eq. (4.12) that transforms between the even-odd and numbered

port bases, and Se,o is a 4×4 block-diagonal scattering matrix formed from the 2×2 scattering

matrices of the even and odd dynamics:

Se,o =

 Se 0

0 So

 . (4.28)

When Se and So are given by Eq. (4.26) and Eq. (4.24), Eq. (4.27) reduces to the scattering matrix

for an ideal four port counterclockwise circulator, the transpose of the expression in Eq. (4.9). The

same result can be obtained via a time-domain analysis in an input-output formalism [115], but we

do not reproduce that treatment here.



Chapter 5

Circulator Layout

In this chapter we discuss the layout of the superconducting microwave circulator described

in Ch. 4. Many of the design considerations are common to a variety of other monolithic microwave

integrated circuits. Others are rooted in the device’s use of superconducting materials, and super-

conducting tunnel junctions. Before we enumerate these considerations, and the design measures

undertaken to address them, we give a brief summary of the overarching design philosophy adopted

in this project, and the trilayer process used to fabricate the devices. We then describe the design’s

evolution over the course of four design and measurement cycles.

5.1 Design philosophy

The construction of a superconducting circulator is part of a broader effort within our group to

improve the measurement of superconducting qubits with a hierarchical, network-based approach.

In the past three years, this has led to proposals for superconducting [115] and broadband [116]

circulator designs; and an autonomous feedback scheme for qubit state preparation and preser-

vation [137]; as well as superconducting demonstrations of single-pull, single-throw switches for

in-fridge signal processing [131]; cross-over switches for code-domain multiplexing of qubit read-

out [131]; single-sideband modulators for frequency-domain multiplexing of qubit readout [132];

and cryogenic circulators [138].

These experimental efforts are greatly enhanced by a collaboration with the Quantum Devices

group at the National Institute of Standards (NIST) in Boulder. The superconducting circuits
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for the above demonstrations were fabricated at NIST in a standard niobium trilayer process (see

Sec. 5.2). The design rules for this process (listed in App. B) impose some constraints on our layouts,

but the process is wafer-scale, high-yield, and allows for multiple wiring layers and thousands of

Josephson junctions on a single chip [139].

The complexity that the process affords is therefore quite powerful. But undisciplined ap-

plication of that complexity makes it difficult to maintain microwave hygiene and retain physical

intuition about a circuit. To leverage the advantages of the trilayer process while avoiding these

pitfalls, we construct integrated circuits from repeated instances of the same basic circuits, with

hierarchy utilized whenever possible. For example, the bridge-circuit multiplying element discussed

in Sec. 4.2.1 functions as a single microwave switch [131], but two instances of the bridge circuit

can be embedded between a pair of microwave hybrids to create a single-sideband modulator [132],

and four instances can be used to create a tunable [115, 138] or broadband [116] circulator. Other

primitives developed in the lab, such as the nonlinear resonator formed from an array of Joseph-

son junctions in series with a capacitance (dubbed a tunable Kerr circuit), have similarly been

instanced in the construction of parametric amplifiers [140, 24], tunable couplers for mechanical

oscillators [141], and autonomous feedback controllers [137]. The bridge circuits and tunable Kerr

circuits are themselves composed of repeated instances of SQUIDs, made up two Josephson junc-

tions in parallel.

5.2 The Nb/AlOx/Nb trilayer process

The circuits and structures discussed in this thesis were designed with open source layout

software (KLayout), and fabricated by Leila Vale at the NIST Boulder cleanroom using optical

lithography and a standard Nb/AlOx/Nb trilayer process [142, 143]. Circuit boards for the chips

were also designed in KLayout, and printed by Sierra Circuits on a Rogers 3010 substrate.1

Tab. 5.1 overviews the design layers available within the trilayer process.

1 KLayout produces gds2 files which can be converted to the gerber format preferred by boardhouses with standard
software PCB software, such as LinkCad.
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Table 5.1: Names, abbreviations, materials, and functions of the layers used in the NIST niobium
trilayer process. Layers are in process-order. a-Si stands for amorphous silicon.

layer name abbrev. material function

counter electrode CE Nb The counter (upper) elec-
trode for Josephson junctions.

counter electrode overflash CEO Nb Overflash mask for the
counter electrode.

aluminum AL Al Aluminum layer that sup-
ports a surface oxide, which
forms the insulating barrier
for the Josephson junctions.

aluminum overflash ALO Al Overflash mask for alu-
minum.

base electrode BE Nb The base (bottom) electrode
for Josephson junctions. Also
serves as the primary wiring
layer.

normal metal R1 Au, Cu, or AuPd Normal metal layer helpful
for breaking supercurrent
loops or engineering dissipa-
tion.

insulator 1 I1 SiO2, Si3N4,
or a-Si

Etch of first PECVD dielec-
tric layer for creation of vias
between BE and W1.

wiring 1 W1 Nb Secondary niobium wiring
layer.

insulator 1 excess I1X SiO2, Si3N4,
or a-Si

Additional etch to remove
excess dielectric in the first
PECVD layer.

insulator 2 I2 SiO2, Si3N4,
or a-Si

Dielectric etch for creation of
vias between W1 and W2.

wiring 2 W2 Nb Tertiary niobium wiring
layer.

insulator 2 excess I2X SiO2, Si3N4,
or a-Si

Additional etch to remove
excess dielectric in the second
PECVD layer.
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5.2.1 Josephson junctions in the trilayer process

As the name suggests, the process allows for the creation of superconducting circuits with

superconducting-insulating-superconducting Josephson tunnel junctions [58], formed by sandwich-

ing niobium layers around an insulating aluminum oxide. Fig. 5.1 shows the layer stack-up for this

process, which begins with thermal growth of an oxide layer on a circular silicon chip (diameter

3”, relative electric permittivity εr = 11.45).2 The trilayers are then deposited in a load-locked

vacuum system, with an oxidation step after the aluminum deposition to create the aluminum oxide

layer. The result is a “vertically” oriented Josephson junction which spans the entire wafer, ori-

ented such that at sufficiently cold temperatures, cooper pairs may tunnel back and forth between

the stacked layers of niobium. The lower niobium layer, known as the base electrode, also serves as

the primary wiring layer for the circuit. The upper niobium layer is called the counter electrode.

(a)

Si
SiO

2

Nb (BE)
Al
AlO

2

Nb (CE)

380 �m
20 nm

200 nm
7 nm

120 nm (b)

(c) (d)

Figure 5.1: Josephson junctions in the Niobium trilayer process. (a) Layer stack-up of the trilayer.
(b) The counter-electrode etch. (c) The aluminum/aluminum oxide etch. (d) The base electrode
etch. The junction, indicated by the black ‘x’, is formed at the aluminum oxide interface. Graphics
courtesy of Maxime Malnou.

The circuit is then defined via a subtractive process. First, a stepper flashes the counter

electrode mask. To reduce the amount of counter electrode which unintentionally survives the

subsequent etch, a second mask (the counter electrode overflash) is also flashed. This step is less

2 This oxide growth is sometimes performed at NIST, and sometimes done by an external vendor—recently, Rogue
Valley Microdevices.



49

about overcoming inconsistencies in the photoresist’s reaction with light, and more about making

the process robust to imperfections in the masks. It helps ensure that no “extra” unwanted junctions

remain on the wafer.

The same process is then repeated with the aluminum layer, including an additional mask

for an aluminum overflash. Finally, the base electrode mask is also flashed, and the niobium is

etched, leaving the desired pattern of Josephson junctions, as well as any circuit wiring done on the

base electrode layer. If the circuit includes any normal metal (the R1 layer), this is now deposited,

masked, and etched, leaving only the pattern defined by the R1 mask.

5.2.2 SQUID arrays in the trilayer process

To forms SQUIDs from these Josephson junctions, four junctions are arranged at the corners

of a rectangle, as illustrated in Fig. 5.2a. A dielectric is then deposited via an electron cyclotron

resonance plasma enhanced chemical vapor deposition (PECVD) process (Fig. 5.2b). Vias to

the junction counter electrodes are etched through this layer (defined with the I1 mask), and a

secondary niobium layer, called W1, is deposited on top of the dielectric and etched according to

the W1 mask (Fig. 5.2c). This niobium layer galvanically connects the four counter electrodes.

Finally, an additional etch removes the excess dielectric in portions of the circuit that contain

neither SQUIDs nor the W1 layer, reducing dielectric loss.

The result of this process is a series-array of two SQUIDs, each formed from a pair of Joseph-

son junctions (Fig. 5.2e). Current in the first SQUID flows from the base electrode up to the first

wiring layer, and then flows back to the base electrode through the second SQUID. Longer arrays

of SQUIDs may be created with multiple instances of this pattern. Secondary wiring can also be

accomplished on the W1 layer. Fig. 5.3 shows a layout view for a cell containing a series-array of

two SQUIDs, as depicted schematically in Fig. 5.2.

This cell was used to create the SQUID arrays in the fourth-generation circulator. The

Josephson junctions are 2 by 2 microns with nominal critical current density 0.48 µA/µm2, yielding

1.92 µA junctions and SQUIDs with maximum critical current of 3.84 µA.
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Figure 5.2: SQUIDs in the Niobium trilayer process are fabricated in pairs. (a) Four Josephson
junctions are arranged on the corners of a rectangle. (b) A 300 nm-thick layer of dielectric (silicon
oxide, in this case) is deposited on the wafer. This is the layer of insulation etched by I1 and I1X. (c)
Vias (defined by I1) are etched through the dielectric layer to the junction counter electrodes. These
vias are obscured in the figure by the W1 layer, and are not visible. A third layer of niobium—the
W1 layer—is then deposited on top of the silicon oxide, and etched with the mask defined by W1.
(d) A second etch on the silicon dioxide (defined by I1X) removes excess dielectric. (e) The result
of this process is a series-array of two SQUIDs. Current in the first SQUID flows from the base
electrode up to the first wiring layer, and then flows back to the base electrode through the second
SQUID. Trilayer graphics courtesy of Maxime Malnou.
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Figure 5.3: Layout of the SQUID cell used in the fourth-generation circulator, depicted schemati-
cally in Fig. 5.2. The CEO and ALO layers are directly on top of one-another, and demarcated by
the largest rectangle.

Typical variation in junction critical currents with the NIST trilayer process is below 5% for

junctions less than 1 mm apart. Furthermore, the frequency of high critical current outliers is also

low: less than 1% of junctions have critical currents that exceed the target value by more than

30%. As the tunable inductors needed to realize the bridge circuit multipliers are formed by arrays

of SQUIDs, the variation in array inductance is further reduced by averaging: if variations in the

junction critical current are assumed to be uncorrelated across the array, an array of N SQUIDs will

have a fractional uncertainty in its total inductance which is 1/
√

2N times the fractional uncertainty

of the inductance of a single junction.

5.2.3 Additional wiring layers

If a tertiary wiring layer is desired, a second PECVD dielectric layer is then deposited. Vias

(defined by the I2 mask) are etched through this layer, and a fourth niobium layer, W2, is then

deposited and etched, leaving only the wiring pattern defined by the W2 mask. A final dielectric

etch (defined by I2X) removes the excess dielectric everywhere except below W2.
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5.2.4 Best practices for trilayer process layout

We conclude discussion of the trilayer process with a list of “best-practices” for trilayer layout.

Many of these are specific to the equipment and practices at NIST Boulder, but some are more

broadly applicable to general layout of superconducting circuits.

• Although BE, W1, and W2 are all composed of niobium, they are deposited on different

substrates, and this gives the BE layer qualitatively different material properties from W1

and W2. (BE is deposited on thermally grown silicon oxide, whereas W1 and W2 reside

on dielectrics deposited with a plasma-enhanced, chemical vapor deposition technique.) In

particular, BE has lower dielectric losses than W1 and W2. For this reason,

∗ Circuit connectivity should be done whenever possible on BE.

∗ If a crossover is needed between the bias lines and microwave lines, make sure that it

is the bias lines that make the cross over, since loss is typically more tolerable in that

channel.

∗ Crossovers should be as short as possible. A good rule of thumb is to place vias 2 µm

away from the line which is being crossed.

• When making resistors with normal metal, one must consider the superconducting-normal

metal-superconducting junction physics caused by the induced superconductivity of the

proximity effect. A detailed discussion of this is deferred to Sec. 5.3.2. But the induced

quasiparticle transport in the superconductors must also be considered. When possible,

widen niobium traces that have normal metal overlap to mitigate this effect.

• Different layers should not share edges.

• The wafer dicing saw has a width of 40 µm. When designing chips, move the edge of the

design 20 µm in from the die edge. This facilitates dicing and prevents problems such as

ground plane peeling, and can be accomplished by including alignment marks of width 20

µm on the corners of the chip design.
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• In general, geometric splits (e.g. variations in number of SQUIDs or capacitor dimensions)

are easy to fabricate, whereas splits with different materials, oxidation time, or numbers of

layers are more time consuming. When possible, design splits with geometric variations.

For example, to design a spread of resonance frequencies in a wafer of our circulators, vary

the capacitor dimension, not the critical current density of the Josephson junctions. Limit

geometric splits to 6 or less, when possible. Splits should be labelled with names that are

explanatory, but also easily distinguishable for collaborators not familiar with the work.

For example, in a wafer with four splits, the labels

A Cap95Res10, B Cap95Res15, C Cap115Res10, and D Cap115Res15

are preferable to the labels

Cap95Res10, Cap95Res15, Cap115Res10, and Cap115Res15.

• To avoid lift-off problems, do not layout W1 or W2 layers above the R1 layer. This can be

done by removing the normal metal directly beneath the wiring layer.

• Normal metal should be more than 4 µm away from vias.

• Vias from W2 to BE should be done in two steps, and not a single tall via.

• Avoid designs with different chip sizes on a single wafer.

• Utilize hierarchy; design with cells.

• Consider the effect of trapped flux upon cooling through the superconductor’s critical

temperature Tc. This can be done rapidly by comparing the equipartition energy kBTc/2

to the energy stored in the magnetic degree of freedom for one loop in the circuit, Φ2
0/2L,

with L the inductance of the loop. If kBTc/2 > Φ2
0/2L the available thermal energy will

excite higher energy flux states as the circuit cools through Tc, and each time the device

cools down it will be initialized in a different state.

• Consider the effect of vortex formation as superconducting films are cooled through their

transition temperature Tc. Ref. [144] provides a rule of thumb for this process in designs
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with niobium: in a magnetic fieldB0, vortex formation is suppressed in a niobium microstrip

of width w when B0w
2 < Φ0 = h/(2e).

5.3 Design considerations

Broadly speaking, the three major challenges in the layout of a superconducting circulator

based on the approach discussed in Ch. 4 are

(1) retaining circuit symmetry,

(2) maintaining the stability of the flux environment, and

(3) suppressing the coupling between the microwave signal lines and the radio-frequency bias

lines.

In this section, we detail the design measures undertaken to overcome these difficulties.

5.3.1 Capacitor design

To realize capacitors of capacitance c for the circulator’s lumped element representation

(Fig. 4.3c), we layout parallel-plate capacitors in a metal-insulator-metal geometry with niobium

plates sandwiched around the dielectric SiO2 (Fig. 5.4a). In the frequency range of 4 to 8 GHz,

roughly pF capacitances are required to create capacitor-impedances near 50 Ohms. Making a pF

capacitor with SiO2 in the Nb trilayer process requires capacitor plates that are roughly 100 µm on

a side—large enough to trap magnetic flux vortices when cooled through niobium’s superconducting

transition temperature Tc in earth’s magnetic field [144].

To avoid trapping flux vortices, we pattern slots in the capacitor electrodes, such that the

Nb strips that form the electrodes never exceed a width w � 100 µm. This ability to suppress

vortices in non-zero magnetic fields is important for our layout, as the circulator is actuated with

flux controls which can be spoiled by a static and unremovable flux gradient. Choosing w = 5 µm

ensures that the capacitor electrodes trap no magnetic flux vortices when the capacitor is cooled

through Tc in our experiment’s modestly shielded magnetic environment.
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Figure 5.4: Capacitor design. (a) Schematic illustrating the symmetrization of the parallel plate
capacitors used in the device. To create a capacitor c, two capacitors with half the desired capaci-
tance are connected in parallel, such that the upper (lower) plate of the first capacitor is galvanically
connected to the lower (upper) plate of the second. This procedure gives each side of the capacitor
the same parasitic capacitance to the ground plane. (b) False-color scanning electron microscope
image showing one of the c/2 capacitors used in the fourth-generation device (blue), and the joint
connecting it to another c/2 capacitor (green), as described in (a). The plates in both capacitors
are formed from narrow niobium strips of width w = 5 µm to prevent trapping flux vortices [144].

To further symmetrize the circuit, each parallel-plate capacitor is then divided into two

capacitors of capacitance c/2, and connected in parallel, such that the upper plate of the first

(second) capacitor is galvanically linked to the lower plate of the second (first) capacitor (Fig. 5.4b).

This procedure gives each side of the composite capacitor the same parasitic capacitance to ground,

and is essential for preserving the symmetry on which the concept of the device relies.

A scanning electron microscope image of a capacitor is shown in Fig. 5.4b, which shows the

Nb strips that form the top plate of one of the c/2 parallel plate capacitors. In the right side of

the image, the capacitor is connected to a second parallel plate capacitor (mostly out of view) in

the manner described above.
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5.3.2 Use of normal metal

Superconducting loops in the circulator can trap magnetic flux and lead to an unstable

flux environment, interfering with the flux biasing used to control the device. To avoid trapping

unwanted flux, we layout the circulator using small amounts of a normal metal—in earlier version

of the circulator, gold-palladium, and in later versions, gold. Fig. 5.5 illustrates the effect of

using normal metal in this way: it shows measurements of the phase of forward transmission as

a function of a static gradiometric flux Φg, in two circulators which are identical except for the

absence (Fig. 5.5a) or presence (Fig. 5.5b) of normal metal. The phase wrap of the resonant delay

is visible in both devices, but in Fig. 5.5a, the circuit’s resonant frequency shifts from scan to scan,

resulting in jagged edges visible in the transmission’s phase. In contrast, the phase in Fig. 5.5b is

stable from scan to scan, which we interpret as evidence of a a stable flux-environment.

The thickness (height) of the gold layer is d = 225 nm, giving it a sheet resistance of 60

mOhms/square. To reduce resistive losses in this layer, 11 Au squares are placed in parallel,

yielding a total film resistance of about 10 mOhms. Four of these resistors are placed in each

Wheatstone bridge (resistor symbols in Fig. 5.6b) to break supercurrent loops and maintain the

symmetry required by the circuit. Estimates with time-domain numerical simulations (Simulink)

indicate that the addition of these resistors causes the dissipation in the circuit to increase by 0.1

dB, limiting the internal Q of the circuit to be less than 2000.

To design the normal metal resistors in a way that prevents proximitization by the nearby

niobium, the resistor lengths l—defined as its dimension parallel to the flow of current—is con-

strained to be l � ξd. Here ξd is the coherence length of Au calculated in a dirty limit, where the

metal film’s mean free path ln is less than the clean-limit coherence length [145]

ξc =
~vF

2πkBT
. (5.1)

In the above, vF is the Fermi-velocity of the metal, kB is Boltzmann’s constant, and T is the metal’s

temperature. We justify this treatment with the observation that the Au film’s mean free path

ln ≈ 600 nm � 6 µm ≈ ξc. This estimate for ξc is made with the assumption that vF = 1.4× 106
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Figure 5.5: The effect of normal metal on the stability of a circulator’s resonant modes. (a) The
phase of forward transmission ∠S21 as a function of probe frequency and a static gradiometric flux
Φg, with Φu fixed at 0.2Φ0. The device under test is a fourth-generation circulator design, identical
to that discussed in Ch. 6, with the exception that it contains no normal metal. (b) The same
measurement as (a) on a fourth-generation circulator with normal metal inserted into the bridge
circuits, as described in the text.

m/s in Au [146], and the temperature T set to 300 mK. The mean free path is calculated with the

Drude model [146] and the film’s resistivity.

In the dirty-limit, the coherence length ξd is essentially a geometric mean of the clean-limit

coherence length and the metal’s mean free path [145]:

ξd =

√
lnξc

3
, (5.2)

which comes out to ξd ≈ 1 µm for the above values of ξc and ln. This value is comparable with
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measurements of the dirty-limit coherence length in thin films of a similar elemental metal, copper,

when one corrects for sample thickness [147, 148].

The condition l � ξd can be made quantitative with consideration of the superconducting-

normal-superconducting (SNS) junction physics which govern the Nb-Au-Nb interface. Unlike a

superconducting-insulator-superconducting junction, which is governed by an energy scale set by

the superconducting gap, the natural energy scale for the proximity effect in an SNS junction is

the Thouless energy [148]. For junctions of reasonable size (l > ξd), the critical current of the SNS

junction is

In =
2πkbT

Rnq

(
ξd
l

)2

e−l/ξde−l/lφ . (5.3)

Here q is the electron charge, Rn is the room temperature resistance of the junction, lφ ≈ 2 µm

is the inelastic scattering length of gold at 300 mK [149], and the Thouless energy is expressed

in terms of the coherence length ξd and the junction length l. The critical current In sets the

Josephson energy EJ = ϕ0In of the SNS junction, and the resistance R of the junction scales in

relation to the Josephson energy and the energy in the thermal environment:

R = Rne
−EJ/kBT . (5.4)

Along with the Josephson inductance of a SQUID array (Eq. (4.4)), the resistance in Eq. (5.4)

sets an L/R time which characterizes the time required for trapped-flux to dissipate out of the

circuit. Choosing l > 5.5ξd ensures that L/R time is less than 1 second. In preliminary designs,

we therefore set l = 10 µm. In later designs we found experimentally that l = 5 µm also prevents

flux-trapping, likely due to a dirty-limit coherence length which is less than our 1 µm estimate.

The device presented in the following chapter has l = 5 µm.

5.3.3 Bias line design

The circulator’s active components are actuated with flux controls created by a pair of on-chip

bias lines. Design of these bias lines involves two important layout considerations: namely, isolating
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the microwave fields from the bias lines, and preventing the RF bias signals from interfering with

the operation of the microwave circuit.

Isolating the circulator’s microwave fields from the bias lines is important because from the

perspective of the microwave circuit, coupling to the bias lines acts as an additional loss channel.

To reduce losses of this kind low-pass filters (20 nH spiral inductors) are inserted into the bias lines

as they enter and exit the chip (pink inductor symbols in Fig. 5.6a). These simple filters present

an impedance of approximately 15 Ohms to the bias signals at Ω = 2π × 120 MHz, whereas at

microwave frequencies in the 4 to 8 GHz band their impedance exceeds 500 Ohms. Simulations

using commercial planar method-of-moments solvers (AWR Microwave Office) indicate that these

filters limit microwave transmission out the bias lines to less than −20 dB.

. . ....
... . . .(a)

5 µm

(b) (c)

bias line

Ma

MA

aA

Figure 5.6: (a) Schematic showing the position of normal metal resistors in the inductive bridges,
and the routing of a quadrupole-source bias line which couples strongly to the SQUIDs it encloses
and weakly to surrounding loops of the circuit. (b) False color scanning electron microscope image
showing two adjacent SQUID arrays (green) and the microstrip lines (pink) that flux-bias them.
(c) Schematic illustrating the challenge of coupling a bias line strongly to a small SQUID loop while
coupling it weakly to a larger circuit loop.

The challenge of the second consideration—preventing bias signals from interfering with the

circuit’s microwave operation—is illustrated in Fig. 5.6c. The lumped-element representation of the



60

circulator (Fig. 4.3c) contains tunable inductors, realized with flux-modulated SQUIDs, as well as

larger circuit loops which are (partly) comprised of SQUIDs. For simplicity, we consider the effect

of a bias line on one such loop of area A which includes a SQUID with area a inside it (Fig. 5.6c).

To operate the circulator, the bias line must dynamically thread a flux through the SQUID,

on the order of a tenth of a flux quantum Φg ≈ Φ0/10, at a rate Ω. If the mutual inductance

between the bias line and the SQUID loop is denoted as Ma, this requires an AC bias current with

amplitude Ig ≈ Φ0/ (10Ma).

The time-dependent gradiometric flux, however, also threads through the larger circuit loop

of area A. Faraday’s law describes the electromotive force induced around this loop, which for

a cosinusoidal bias current is E = ΩMAIg sin(Ωt). We assume the impedance of the loop ZA is

entirely inductive in origin. The loop inductance LA is the sum of its geometric Lg and Josephson

inductance LJ , which we write in terms of the participation ratio p ≡ LA/LJ as LA = pLJ , yielding

ZA = iΩpLJ . Ohm’s law then allows a calculation of the AC current induced around the loop of

area A, which with the appropriate substitutions has an amplitude of

Iind ≈
2π

10p

MA

Ma
Is, (5.5)

with Is the critical current of the SQUID.

When the induced currents approach the SQUID critical currents in magnitude, the higher

order corrections in Eq. (4.4) become significant, and when it exceeds the critical currents, the

SQUIDs become dissipative elements. From Eq. (5.5) one can see that the bias signals will couple

to the microwave circuit and interfere with the circulator’s operation unless the prefactor on the

equation’s right-hand side is much less than one. The circulator’s performance (in particular, the

ability to impedance match the device) requires that the participation ratio p not be much greater

than one. The only way to satisfy the requirement, then, is to engineer the mutual inductances

such that MA
Ma
� 1. This is challenging, as the size of the parallel plate capacitors and the SQUID

arrays mandates that A/a ≈ 103.

To overcome the disparity in loop areas and satisfy the coupling condition MA/Ma � 1, we
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layout the bias lines in a symmetric way, such that their currents create magnetic quadrupoles.

The layout of the shielded bias lines is shown schematically in Fig. 5.6a, and is also visible in the

SEM image in Fig. 5.6b. The central bias line, bisecting the bridge, carries the full bias current Ig

across the chip, and then splits into two parallel arms, each carrying a current Ig/2 on the outside

edges of the bridge. As the currents in these lines flow in opposite directions, the magnetic field

Bg from this shielded configuration scales as

Bg =
µ0Ig
2πr

( ε
r

)2
+O

( ε
r

)4
, (5.6)

where ε is the separation between the inner and outer bias lines, and µ0 is the vacuum permeability.

We make ε as small as possible in our layouts, given the requirement that the SQUID arrays must

reside between the inner and outer bias lines. These constraints result in the choice ε = 17.5 µm.

5.4 Design iterations

In the following sections we catalogue the previous design iterations. The intent is to provide

some record of the design process chronology, and the insights which led to the design considerations

discussed in the preceding section. In the interest of brevity, extensive details about measurements

of past devices are not provided. Likewise, details about the experimental set-up are deferred to

Ch. 6.

5.4.1 Generation I.

Fig. 5.7 shows a false-color optical micrograph of the first-generation circulator. The micro-

graph is taken after a protective photoresist is removed from the chip, via a standard sequence of

solvent rinses (30 seconds in acetone, 30 seconds in acetone, 30 seconds in isopropanol, dry with

nitrogen gas). The main design features and observed performance are summarized in Tab. 5.2.

When the resonant delay was tuned with a static gradiometric flux, its frequency dependence

agreed qualitatively with a circuit model. These measurements, however, exhibited a clear hysteresis

with respect to the sweep-direction of the bias current, as illustrated in Fig. 5.8.
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Figure 5.7: False-color optical micrograph of the first-generation circulator layout. The pop-out
displays how the cosine bias line couples to a sinusoidally modulated bridge circuit in an undesirable
way.

When the device was configured as a gyrator and biased near the operation point expected

from theoretical considerations (e.g. with φ = π/2, Ωτ = π/2, as described in Ch. 4), the resonant

delays were visible. Fig. 5.9a shows the phase of transmission (color), as a function of frequency and

the magnitude of the AC gradiometric flux Φg. At gradiometric fluxes above 0.08 Φ0, two resonant

modes separated by 2Ω/(2π) are visible in the plot. At lower gradiometric fluxes, though, the flux

environment of the resonator appears to be unstable. The largest non-reciprocity is observed in

this unstable region, as shown in Fig. 5.9b, which plots |S21 − S12| [dB] over the same region of
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Table 5.2: Design features and performance of the first-generation circulator.

Design features Observed performance

• Capacitors symmetrized to
balance parasitic capacitance
to ground, as described in
Sec. 5.3.1

• Normal metal (AuPd) inserted
to break all supercurrent loops
except those inside the bridge
circuits, which are suppressed
by gradiometry of figure-eight
layout (see Sec. 4.2.1)

• Resonant modes tune with
static flux, in qualitative agree-
ment with circuit model, but
exhibit hysteresis

• Transmission strongly attenu-
ated by dynamical flux modu-
lation
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Figure 5.8: Hysteresis in the first-generation circulator with respect to sweep-direction of bias
currents. (a) Phase of transmission (color) through the device, as a function of frequency and an
upwardly swept static gradiometric flux Φg. (b) The same measurement, for a downwardly swept
static gradiometric flux Φg.
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parameter space. Even there, though, its magnitude is still far from the maximum theoretical value

of 3 dB. This is not due to an equality in the phases of forward and reverse transmission, as can

be seen in Fig. 5.9c, where ∠S21 − ∠S12 is displayed for the same measurement.

Hysteresis in the DC flux sweeps and instability and weak transmission in the AC flux sweeps

likely resulted from a flux-stability issue. Inspecting the layout in Fig. 5.7, one can see that the

cosine (sine) bias line couples strongly to the sinusoidally (cosinusoidally) modulated bridges. This

is illustrated in the pop-out below the micrograph. There, the sinusoidal bias line modulates the

flux through the SQUIDs in the desired fashion, but does not thread flux through the figure-

eight because of the circuit’s gradiometric design (the twist at the center of the figure-eight). The

cosinusoidal bias line, however, threads a large flux through the bridge-circuit’s figure eight. As

these bridges have no internal normal metal to break super-current loops, and as that coupling

threads many flux-quantum through those loops,3 the result is an unstable (and dynamically

evolving) flux-environment.

5.4.2 Generation II.

To address this issue, the second generation device was a large-scale redesign. The figure

eight-geometry of the bridge circuits was retained, as was the symmetrization of the capacitors,

but otherwise the circuit layout was completely rearranged. Fig. 5.10 shows a false-color optical

micrograph of the second-generation circulator. The main design features and observed performance

are summarized in Tab. 5.3.

In this device, again configured as a gyrator, the observed performance improved dramati-

cally. Transmission was still strongly attenuated (-26 dB of insertion loss), but the resonant delays

were visible during AC modulation of the bias currents, and the device exhibited the desired π

difference between forward and backward transmission, characteristic of gyrators. Despite these

improvements, we still observed instabilities in the flux environment, evident in sub-linewidth-scale

3 To see this, recall that the bias lines are designed to thread a sizable fraction of a flux-quantum through the
SQUIDs that they address, and these SQUIDs are orders of magnitude smaller in area than the bridge circuit.
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Table 5.3: Design features and performance of the second-generation circulator.

(New) design features Observed performance

• Smaller footprint (tens of nH
of geometric inductance elimi-
nated)

• New layout allows bias lines
to run in straight, parallel
lines and drastically reduces
mutual inductance between co-
sine (sine) bias line and sinu-
soidally (cosinusoidally) modu-
lated bridges

• Straight bias lines enabled by
inversion of one pair of bridge
circuit electrodes, which intro-
duces an effective π phase shift
into the modulation (realizing
the − sin(Ωt) modulation with
a sinusoidal bias current)

• Slotted parallel-plate capaci-
tors, to suppress the creation
of flux vortices, as described in
Sec. 5.3.1

• Resonant modes tune with
static flux, in quantitative
agreement with circuit model

• Resonant modes tune with dy-
namic flux modulation, but
shift in frequency from scan to
scan by fractions of a linewidth.

• Gyration (π phase shift be-
tween forward and backward
transmission) with -26 dB in-
sertion loss
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Figure 5.9: AC modulation of the first-generation circulator. (a) Phase of transmission (color)
through the device, as a function of frequency and AC gradiometric flux of amplitude Φg. (b)
Non-reciprocity |S21 − S12| [dB] as a function of frequency and AC gradiometric flux of amplitude
Φg. (c) Angular non-reciprocity ∠S21 − ∠S12 over the same parameter space.

shifts in the resonant frequency of the circuit between scans.
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Figure 5.10: False-color optical micrograph of the second-generation circulator layout.

In the first and second generation designs, normal metal had been inserted to break all of the

superconducting loops in the circuit, except those within the bridges themselves. The idea behind

this had been that as these structures were folded into a symmetrical figure-eight, their gradiometry

would prevent the flow of screening currents.

Motivated by the observed flux-instabilities, we reconsidered this conclusion. As the uniform

background magnetic field must be strong enough to thread a sizable fraction of a flux quantum

through each SQUID, and as the SQUIDs are more than three orders of magnitude smaller in

area than the bridge circuits, a gradiometric approach requires gradiometry better than one part

in 103. For bridge circuits which are hundreds of microns long and tens of microns wide, that

entails fabrication with sub-micron resolution, unachievable with the optical lithography used in

the trilayer process. We therefore resolved to move the normal metal into the bridge circuits, and

break all of the device’s supercurrent loops in the subsequent design cycle.

When considering what limited the insertion loss of the device, we observed that the measured

operation point was far from the operation point expected from the theoretical model: namely,

Ωτ � π/2. Attempts to increase bias frequency Ω or the duration of the resonant delay τ (which
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Figure 5.11: Performance of the second-generation circulator (configured as a gyrator). (a) Mea-
surements of ∠S21 (color) as a function of frequency and the magnitude of AC gradiometric flux
Φg. The phase wrap from the two resonant delays is visible around 4.8 and 5.2 GHz, respectively.

An “edge” feature is also visible in the data when the gradiometric flux is around Φedge
g = 0.065Φ0.

(b) Heterodyne measurement of forward (red circles, dashed red line) and backward (yellow circles,
solid yellow line) transmission through the device. The two signals are π out of phase, as desired
for a gyrator. The maxima on the y-axis, however, indicate the received power has been attenuated
by 26 dB relative to the input.

may be tuned by increasing the degree to which the bridges are imbalanced), led to a breakdown in

the device, visible in the sudden disappearance of the resonant delay and any kind of non-reciprocal

transmission (e.g. the “edge” feature in Fig. 5.11a). In dedicated studies of this breakdown, we

observe that the location of the edge (in parameter space) depended on Ω and τ , but also on the

phase φ between the gradiometric flux drives.

Fig. 5.12 illustrates how such an angular dependence could arise, if the edge resulted from

the total bias flux (i.e. the interference between the two gradiometric flux lines) through a large
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loop in the circuit exceeding some critical value—for example, a value set by the SQUID critical

currents, in the manner discussed in Sec. 5.3.3. To see this, note that the flux Φbias through the

large loop in Fig. 5.12a can be expressed with a sum-to-product identity as

Φbias = MAIg [cos (Ωt)− cos (Ωt+ φ)]

= −2MAIg sin (φ/2) sin (Ωt+ φ/2). (5.7)

Eq. (5.7) predicts a half-angle scaling of the magnitude of the total bias flux with φ. To test that

prediction, we perform sweeps like that shown in Fig. 5.11a, with a variety of different phases φ

and bias frequencies Ω. For each sweep, we record the gradiometric flux Φedge
g at which the “edge”

feature appears.

If, as discussed in Sec. 5.3.3, the edge results from a changing flux through one of these large

loops inducing a current that exceeds some threshold value, then a plot of the inverse of Φedge
g as

a function of φ should exhibit the same half-angle dependence predicted in Eq. (5.7). Fig. 5.12b

shows that this is indeed the case. Each circle is a separate measurement of Φedge
g , and the different

traces correspond to bias frequencies between 2π × 20 MHz and 2π × 120 MHz. The solid lines

without circles are guides to the eye. They show the expected half-angle dependence sin(φ/2) for

three different magnitudes, and are included to facilitate comparison with the measured data. This

observation supports the conjecture that the edge was caused by induced currents in the microwave

circuit which exceeded the critical current of the SQUIDs.

5.4.3 Generation III.

To combat this failure-mode, in the third design cycle we implemented the quadrupole-

shielded bias lines discussed in Sec. 5.3.3. We also moved the normal metal inside the bridge

circuits, and switched from AuPd to Au, to decrease resistance of the normal metal inserts from

400 mOhm to 10 mOhm. Other than these changes, and the addition of low-pass filters in the

bias lines, the overall architecture was largely unchanged from generation two. Fig. 5.13 shows a

false-color optical micrograph of the third-generation circulator. Its principal design features and
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Figure 5.12: Angular dependence of the “edge” feature in the second-generation circulator. (a)
Schematic illustrating how flux driven through a large circuit loop (containing a SQUID) by the
two bias lines can interfere, to produce a total flux that scales as sin (φ/2). (b) Measurements
of the “edge” feature (like the one shown in Fig. 5.11), as a function φ. Circles are individual

measurements of Φedge
g , and solid lines are theory curves that scale as sin (φ/2). The different

traces correspond to repeated measurements with different bias frequencies Ω.

observed performance are summarized in Tab. 5.4.

Generation three also improved substantially on its predecessor. When configured as a gy-

rator, the circuit’s resonant frequencies were visible and stable under active modulation of the

gradiometric flux Φg (Fig. 5.14a), and the device exhibited the expected non-reciprocal transmis-

sion with -4 dB of insertion loss. Heartened by this performance, we also tested the device as a
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Table 5.4: Design features and performance of the third-generation circulator.

(New) design features Observed performance

• Used Au instead of AuPd to
break supercurrent loops

• Moved normal metal inside the
bridge circuit, to break all off
the circuit’s superconducting
loops

• Implemented the shielded bias
lines discussed in Sec. 5.3.3 by
running bias currents on the
secondary wiring layer (W1)

• Inserted simple low-pass filters
(20 nH spiral inductors) on the
bias lines to reduce the approx-
imately 3 dB of estimated mi-
crowave loss through this chan-
nel

• Resonant modes tune with
static flux, in quantitative
agreement with circuit model

• Resonant modes tune with dy-
namic flux modulation; reso-
nant frequencies are stable

• Gyration (π phase shift be-
tween forward and backward
transmission) with -4 dB inser-
tion loss

• 13 dB of isolation, 3 dB inser-
tion loss, when operated as an
isolator

• Linear in microwave power for
signals up to -86 dBm
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Figure 5.13: False-color optical micrograph of the third-generation circulator layout.

circulator. Fig. 5.14b shows transmission through the device from port 1 to 2 (dashed line) and port

2 to 1 (solid line), as a function of the bias phase φ. The approximately 10 dB of contrast between

the two traces reveals a violation of Lorentz reciprocity. The device’s dynamical reconfigurability

is also evident—operation points for both clockwise and counter-clockwise circulation are visible in

the sweeps. At these points, isolation exceeds -13 dB and insertion loss is less than 3 dB.

Nevertheless, the operation point where optimal performance was observed deviated from the

expected parameters for ideal operation—though the degree of deviation was far less than in the

second generation device. Hypothesizing that the performance breakdown discussed previously was

still a limiting factor, we attempted to further reduce the parasitic coupling between the bias lines

and larger circuit loops, by reducing the separation between the primary and current returning

microstrips of the bias lines from ε = 23 µm to ε = 17.5 µm (reducing the quadrupole moment of

the bias line). We also reduced the number of SQUIDs in each array to N = 12, to reduce the area

of the loops which couple to the bias lines. To maintain the inductance of the arrays at 1 nH, we

made a concomitant change in the junction critical current, reducing it from 3 µA to 1.92 µA.
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Figure 5.14: Performance of the third generation circulator. (a) The phase of transmission ∠S21

as a function of frequency and the magnitude of the AC gradiometric flux Φg. Unlike previous
generations, the resonant response is completely stable from scan to scan. (b) Transmission as a
function of phase φ, from the first port to the second port (dashed line) and the second port to the
first port (solid line). Two clear operation points are visible, where clockwise and counter-clockwise
circulation is realized.

5.4.4 Generation IV.

These changes are reflected in the layout of the fourth-generation device, depicted in Fig. 5.15

alongside the circulator’s lumped-element representation. They are also recorded in Tab. 5.5, with
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the device’s observed performance. As that performance is the subject of the following chapter, we

momentarily defer its discussion.
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Figure 5.15: Layout of the fourth generation circulator. (a) Lumped-element representation of the
circulator. (b) The lumped-element circulator representation in (a), rearranged to better match
the device’s layout. (c) False-color optical micrograph of the fourth-generation circulator layout.

An additional split was also designed for this wafer, which makes a more radical departure

from the layout in generation three. We call this device version b of the fourth-generation circulator.

An optical micrograph of a version b chip is shown in Fig. 5.16. Its design features and observed

performance are summarized in Tab. 5.6, and are discussed in more detail in the following chapter.
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Table 5.5: Design features and performance of the fourth-generation circulator.

(New) design features Observed performance

• Reduced junction critical cur-
rent from 3 µA to 1.92 µA and
number of SQUIDs in each ar-
ray from N = 20 to N = 12,
to keep arrays at 1 nH of in-
ductance while reducing circuit
footprint

• Moved bias lines to tertiary
wiring layer (W2) to tighten the
quadrupole layout (reduce ε, in
the language of Sec. 5.3.3)

• Resonant modes tune with
static flux, in quantitative
agreement with circuit model

• Resonant modes tune with dy-
namic flux modulation; reso-
nant frequencies are stable

• >40 dB of isolation, less than 1
dB insertion loss, at select fre-
quencies

• Tunable operation frequency
between 4 and 5.6 GHz

• Linear in microwave power for
signals up to -90 dBm

Table 5.6: Design features and performance of the fourth-generation circulator, version b.

(New) design features Observed performance

• Interdigitated capacitors

• Bias lines split off chip allow for
50% reduction in geometric in-
ductance

• Bias line “quadrupole” created
without any current division

• Optimal operation phases sepa-
rated by π

• Resonant modes tune with dy-
namic flux modulation; reso-
nant frequencies are stable

• >40 dB of isolation, less than 1
dB insertion loss, at select fre-
quencies

• Tunable operation frequency
between 4 and 5.6 GHz

• Linear in microwave power for
signals up to -90 dBm
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Chapter 6

Experimental results

In this chapter we describe the performance of the fourth-generation circulators. We begin

by describing the basic experimental setup. Next the tune-up procedure (that is, the process by

which the device’s control parameters are set) is discussed. Experimental results follow this, in-

cluding measurements of the circulator’s scattering matrix elements and a characterization of its

transmission spectrum and linearity. These measurements are performed over a range of different

operation frequencies and with the circulator configured for clockwise and counterclockwise circu-

lation, highlighting the device’s tunability and the capability to dynamically reconfigure its sense

of circulation in-situ. We conclude with a discussion of the measurements, including the device’s

current limitations, and scaling considerations.

6.1 Experimental setup

To measure the circulator, two of its four ports are terminated in 50 Ohm loads and the

circuit is mounted at the base of a 3He cryostat. A simplified schematic of the experimental setup

is shown in Fig. 6.1 (additional details are provided in App. C). Two switches and a directional

coupler allow for measurement of the four accessible scattering parameters with a network analyzer.

6.2 Tune-up procedure

Three straightforward steps are required to prepare the circulator for operation. First, the

frequency of the resonant delay ω0 is tuned to the desired operation frequency. Second, the duration
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Figure 6.1: Simplified experimental schematic for circulator measurements in a 3He cryostat (atten-
uation, filtering, and isolation omitted). Two switches and a directional coupler allow measurement
of four of the circulator’s scattering parameters.

of the resonant delay τ is set to π/2Ω. Finally, the phase difference φ between the gradiometric

flux control drives is set to ±π/2.

We illustrate the first two of these steps in Fig. 6.2, which shows in color the group delay τ

acquired during transmission through the device at different probe frequencies ωp, and for different

values of a static gradiometric flux Φg applied to all four of the inductive bridges. The measurement

is shown for three different values of the uniform flux Φu.

Two features are immediately evident in the data. First, the resonant nature of the delay is

clear: for fixed values of Φu and Φg, fields at most probe frequencies are off-resonance and their

group delays are less than 5 ns, as visible in the black background of the color plot. Against

this background, three arches are visible, which show the resonant delay tuning with Φg for the

three measurements at distinct Φu. The shapes of these arches are qualitatively captured by the

theoretical predictions in dashed gray lines, which are made with Eq. (4.7) and the relations that

map Φg & Φu to δ0 & l0 in Eq. (4.5) and Eq. (4.6).

Second, when |Φg| approaches 0, the group delay vanishes. A gradiometric bias with mag-

nitude much less than Φ0 = 2πϕ0 results in approximately balanced bridges (δ � 1). As the

external-coupling of the resonant mode depends on δ2 (Eq. (4.8)), balanced bridges result in under-

coupled resonant modes, which strongly attenuates transmission through the resonant differential
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Figure 6.2: Measurements of the circulator’s group delay τ (color, log scale) as a function of
the probe frequency and a static gradiometric flux Φu applied to all four of the bridge circuits.
The duration and center frequency of the resonant delay depend on the uniform and gradiometric
flux, allowing the circulator’s operation frequency to be tuned between 4 and 6 GHz. Dashed gray
lines are predictions of Eq. (4.7) which use the mapping in Eq. (4.5) and Eq. (4.6). To account
for geometric inductance in the circuit (which is not present in the model), the dashed lines are
calculated with effective uniform fluxes Φ̃u/Φ0 = 0.38, 0.33, and 0.28, chosen to match the frequency
of the measured and predicted delays when Φg = 0.

modes. (The internal quality factor of the circuit is estimated to be 400 when the resonant delay is

tuned to 5 GHz.) Power is still transmitted through the non-resonant common mode, but without

acquiring resonant delay.

As circulation bandwidth scales with the linewidth of the resonant delay, for the measure-

ments in this paper we operate the device with a relatively brief delay on the order of several

nanoseconds, with Ω = 2π × 120 MHz. This choice has the additional benefit of reducing the

influence of internal losses by keeping the circuit strongly over-coupled.

The final step of the tune-up procedure involves selection of the relative phase φ between the

gradiometric flux controls. Fig. 6.3 shows a sweep of φ when the resonant delay ω0 is set near 2π×4

GHz and the duration of the delay τ is fixed at several ns with Ω = 2π× 120 MHz. The color scale

in Fig. 6.3a shows the magnitude of S21 as a function of this phase and the probe frequency: S12 is

shown in Fig. 6.3b. (Calibration of network parameter measurements is discussed in Appendix D.)
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Figure 6.3: Measurements of a dynamically reconfigurable circulator. The phase φ between the
gradiometric flux lines determines the direction of circulation. (a)-(b) S12 and S21 a function of
the probe frequency and the phase φ. Horizontal and vertical lines indicate the location of linecuts
plotted in (c) and Fig. 6.4(a). (c) Linecuts of S21 (dashed) and S12 (solid) at probe frequency
ωp = 2π × 4.044 GHz.

The color plots in Fig. 6.3 reveal two regions of parameter space in which operating points

can be chosen. At these phases, the insertion loss is less than 1 dB and the isolation exceeds 30
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dB. They can therefore be interpreted as the phases which realize a clockwise or counterclockwise

circulator. To illustrate this, Fig. 6.3c shows frequency linecuts at 4.044 GHz from both transmis-

sion measurements. Importantly, the linecuts show that high transmission in the counterclockwise

(clockwise) direction is accompanied by strong isolation in the clockwise (counterclockwise) direc-

tion. They also illustrate how toggling the phase φ allows dynamical reconfiguration of the device’s

sense of circulation. Interestingly, one can see that the strongest non-reciprocity is observed at

phases near but distinct from the expected operating points at π/2 and 3π/2. Sec. 6.4 describes

how geometric inductance in the circuit causes this discrepancy.

6.3 Performance

The frequency-dependence of the non-reciprocity is visible in linecuts of Fig. 6.3a, b, taken

at the two optimal operating phases. These linecuts are shown alongside reflection measurements

in Fig. 6.4a, and characterize four of the device’s sixteen scattering parameters. Different ports

were probed in a separate cooldown, with similar results (presented momentarily).

In the transmission measurements (top right and bottom left plots), high transmission (> −1

dB) and robust isolation (> 20 dB) are observed in a 50 MHz window around 4.044 GHz. These

features are approximately coincident with −11 dB dips in the reflection measurements (top left

and bottom right plots). Together, power collected in the transmission and reflection measurements

account for 90% of the injected signal power.

To determine if the remaining power is dissipated or scattered to other frequencies, a spectrum

analyzer is used to measure the transmission of the circulator at frequencies ωp ±mΩ which are

detuned from the input frequency by integer multiples of the modulation rate Ω. Fig. 6.4b shows

the power of these spectral components, relative to the transmitted spectral component at ωp. The

device suppresses spurious sidebands by more than 20 dB. The spectral purity of the output—in

particular, the suppression of spectral components at ωp ± 2Ω—is a testament to the high-degree

of symmetry in the circuit. From this measurement, we conclude that the remaining 10% of input

power is dissipated into heat or other radiation modes.
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Figure 6.4: Performance of an on-chip superconducting circulator tuned to operate near 4 GHz.
(a) Frequency dependence of four of the circulator’s 16 scattering parameters, when configured as a
counterclockwise circulator (blue traces) and a clockwise circulator (orange traces). (b) Transmis-
sion spectrum of the circulator at ωp = 2π × 4.044 GHz, measured at frequencies ωp ±mΩ with m
a positive integer. Spectral components are normalized by the power transmitted at ωp. Spurious
sidebands are suppressed by approximately 20 dB. (c) Transmission as a function of probe power,
with probe frequency fixed at ωp = 2π × 4.044 GHz. 1 dB compression occurs around 1 pW.

Finally, Fig. 6.4c displays the dependence of clockwise and counterclockwise transmission on

the power of the probe signal. Fixing the probe frequency at ωp = 2π×4.044 GHz, the measurement
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is repeated for both clockwise and counterclockwise operation. In both cases, 1 dB compression of

the transmitted signal occurs at input powers around 1 pW. As the input power approaches this

value, we also observe a degradation in the circulator’s isolation, which drops below 20 dB at a

power again roughly equal to 1 pW. In analogy with the 1 dB compression point, we refer to this

power as the 20 dB expansion point of the circulator. Expressed in terms of photon number, this

linearity allows the circulator to process over 103 photons per inverse of its bandwidth.

For reference, the typical power in a microwave tone used for dispersive readout [59] of a

superconducting qubit is between 100 and 1000 aW (few photon level) [150]. The three orders of

magnitude that separate this power scale from the 1 dB compression and 20 dB expansion points

of the device are critical for one attractive application of a monolithic superconducting circulator:

on-chip integration with a quantum-limited reflection amplifier, such as a Josephson parametric

amplifier. The high power handling of the circulator allows it to route qubit readout tones even

after they reflect off a Josephson parametric amplifier and are amplified by 20 dB.

To demonstrate the circulator’s tunability, we operate the device at a variety of frequencies

between 4 and 6 GHz and repeat the measurements shown in Fig. 6.4. Fig. 6.5 summarizes the

performance of the device across this band. Insertion loss is shown in Fig. 6.5a. Transmission

is greatest at the lowest frequency, and decreases with frequency until it approaches -3 dB. We

attribute this trend to the geometric inductance present in the circuit, which limits the degree to

which the bridges can be imbalanced. This inhibits impedance matching and reduces the degree

to which the resonant differential modes are over-coupled. At lower operation frequencies, the

Josephson inductance comprises a greater fraction of the bridge’s total inductance, mitigating this

effect.

This interpretation is supported by the power dissipation that we estimate at each operation

frequency (Fig. 6.5b), computed as the sum of the reflection R and transmission T coefficients

−10 log10

(
R2 + T 2

)
. (Power transmitted to sidebands of the modulation frequency is suppressed

by over 20 dB, and is therefore neglected in this accounting). Reflections, visible in the discrepancy

between insertion loss and transmission, are larger at higher frequencies, where the role of geometric
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Figure 6.5: Performance of a widely tunable on-chip circulator. The minimum insertion loss (a),
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(20 dB expansion) point.
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inductance is more pronounced. Dissipation is also greater at higher operation frequencies, where

the external coupling of the resonant mode is lower. We believe the dominant source of dissipation

in the circuit is the dielectric loss of SiO2.

The circulator’s maximum isolation is plotted in Fig. 6.5c. Below 5.5 GHz, isolation exceeds

35 dB for both device configurations. Critically, isolation is achieved over a bandwidth of several

tens of MHz, much greater than the bandwidths typical for strongly-coupled cavity ports in dis-

persive qubit readout, which range up to several MHz [46, 47, 151]. Fig. 6.5d shows the frequency

interval over which the isolation exceeds 20 dB.

It should be noted this isolation is achieved concurrent with the performance shown in the rest

of Fig. 6.5: all specifications are measured at two fixed operation phases, which realize clockwise and

counterclockwise circulation. To select these operation phases in a quantitative manner, we write a

cost function to simultaneously balance the benefits of low insertion loss, high isolation, and broad

bandwidth, for both clockwise and counterclockwise operation. Ultimately, different applications

will prioritize the relative importance of these specifications in different ways, allowing trade-offs

in performance specifications, for example, between insertion loss and isolation. Similarly, if the

device’s reconfigurability is not needed, performance will generally exceed that shown in Fig. 6.5.

Fig. 6.5e characterizes the spectral purity of transmitted fields at each operation frequency.

It shows the size of the largest spurious sideband, (relative to the power transmitted at the probe

frequency), which we call the sideband suppression. Harmonics of the modulation frequency Ω are

strongly suppressed across the operation band, typically by about 20 dB.

Lastly, Fig. 6.5f shows how the power-handling of the circulator depends on the operation

frequency. Frequencies between 4 and 5 GHz have 1 dB compression points and 20 dB expansion

points around 1 pW, roughly three orders of magnitude above the power level used for dispersive

readout of a superconducting qubit.
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6.4 Discussion

Applications and prospectives for an on-chip superconducting circulator are discussed in the

final chapter of this thesis. Here we comment on issues currently limiting device performance, and

on the attenuation and filtering considerations relevant to scalability.

6.4.1 Device limitations and deviation from theoretical models

In this section we discuss non-idealities observed in the circulator, in which the network pa-

rameter measurements depart from the theoretical predictions of the scattering matrix, obtained

with the analytical model in Ref. [115]. The reference predicts the dependence of S on the pa-

rameters l0, δ, and Ω. Using the relations in Eq. (4.5) and Eq. (4.6), l0 and δ can be mapped to

the flux controls Φu and Φg. To facilitate this comparison, Fig. 6.6 shows measured and predicted

transmission parameters, as a function of the probe frequency and the gradiometric flux Φg.

Qualitatively, the experiment and model agree fairly well: all four plots show a pair of resonant

modes split by twice the modulation rate Ω/2π, in analogy with a Sagnac interferometer [128]. As

Φg increases, these modes shift down in frequency and broaden. Furthermore, the device’s non-

reciprocity is evident in both the model and in experiments: at the lower frequency mode, S21 is

large in magnitude at the same frequency and gradiometric flux that S12 is small.

One can also see aspects of the experimental data which are not captured in the model. For

example, as Φg approaches 0 the resonant modes become increasingly difficult to perceive in the

experimental data. In the model, though, the modes become narrower as Φg decreases, but remain

well distinguished from the off-resonant transmission. This discrepancy is a result of the fact that

internal losses are not included in the theoretical model. In the measurement, the presence of loss

means that for small enough Φg, the modes become under-coupled and are difficult to detect.

Another discrepancy is the slight splitting (2g ≈ 2 × 2π × 17 MHz) of each resonant mode,

visible in the experimental plots (Fig. 6.6a and b). We attribute this splitting to a hybridization

of the circuit’s two degenerate resonant modes, which is not included in the model.
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Figure 6.6: Measurements (a,b) and theoretical predictions (c,d) of |S21| and |S12|, as a function of
probe frequency and amplitude of the oscillatory gradiometric flux, when the device is configured as
a counterclockwise circulator. Theoretical predictions are made with the expressions in Ref. [115]
and the mapping in Eq. (4.5) and Eq. (4.6). Circuit parameters are fixed at their design targets
(l0 = 1 nH, c = 1 pF) and the flux controls are set to match the measurements in (a) and (b):
Ω = 2π × 120 MHz, Φu = 0.38Φ0.

The sharp “edge” visible at large Φg/Φ0 ≈ 0.15 in the measurements is an additional differ-

ence between the model and experiments. As discussed in Ch. 5, this edge feature is likely caused

by induced currents in the microwave circuit which exceed the critical current of the SQUIDs. Re-

finements in the layout can reduce these induced currents, though device operation would still be

limited in the amplitude of the applied gradiometric flux; the application of a total external flux

Φu±Φg with magnitude greater than Φ0/2 causes a deviation from the simple flux tuning described
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in Fig. 4.2. When the total flux exceeds this threshold, further increase in Φg serves to balance

the inductive bridges, rather than imbalance them, and a departure from the model is expected in

this regime.

A final difference between the model and experiments is visible in the scaling of the resonant

modes with the gradiometric flux. The modes in the theory plots are more sensitive to Φg, bending

down to lower frequencies than the measured modes. They also broaden and merge, to a degree

which is not apparent in the measurements. We attribute this discrepancy to geometric inductance

in the circuit which reduces the tunability of the resonant delay and restricts the modal linewidth.

This interpretation is supported by our observation of optimal circulator performance at

drive phases φ distinct from the theoretically expected values at π/2 and 3π/2. When geometric

inductance restricts the linewidths of the circulator’s resonant modes, it prevents the creation of

the brief (2 ns) resonant delay needed to satisfy the convert-delay operation condition: Ωτ = π/2.

The condition can be met with reduction of Ω, but this is undesirable for two reasons: first,

the circulator’s bandwidth is proportional to Ω; second, device performance requires that the

modulation rate Ω exceed the internal splitting g of the hybridized resonant modes: Ω� g.

A simple extension of the theory discussed in Sec. 4.1 shows how the circulator’s transmission

depends on φ and Ωτ in the general case when Ωτ takes values other than π/2:

S21 ∝ 1

2

(
1− cos (Ωτ + φ)

)
(6.1)

S12 ∝ 1

2

(
1− cos(Ωτ − φ)

)
.

From these expressions, it is clear that if Ωτ is forced to take values greater than π/2, improved

counterclockwise (clockwise) circulation can be obtained with phases greater (less) than π/2 (3π/2).

Our observation of optimal control phases at ≈ 2π/3 and 4π/3 corresponds to a minimum achievable

delay of about 3 ns.
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6.4.2 Comparison with the fourth-generation, version b device

The performance of the fourth generation version b chip is also consistent with this argument.

In that device, geometric inductance was reduced by approximately 50% (see Fig. 5.16 for an optical

micrograph) by dividing the sine and cosine bias lines off-chip, allowing the bridge circuits to be

imbalanced to a greater degree.

Fig. 6.7 shows its scattering matrix when the device was configured as an isolator. Over

40 dB of contrast may be observed between the forward transmission and reverse isolation at the

center of the device’s bandwidth. Importantly, the difference between the optimal clockwise and

counterclockwise operation phases for this device is 0.9972π ≈ π. In sum, we expect shorter delays

to be possible with this device, and observe no deviation in the operation phases from theoretical

expectations.
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Figure 6.7: Scattering parameters of the fourth-generation circulator, version b, tuned to operatre
near 5.9 GHz. Frequency dependence of four of the circulator’s 16 scattering parameters, when
configured as a counterclockwise circulator (blue traces) and a clockwise circulator (orange traces).

Fig. 6.8 shows the performance of this circulator over a wide operation band, between 4 and

7 GHz. Insertion loss and dissipation are plotted in Fig. 6.8a, the maximum isolation is plotted in

Fig. 6.8b, and the bandwidth over which isolation exceeds 20 dB is plotted in Fig. 6.8c.



90

0

2

4

6

0

35

70

0

100

200

m
a

x
. 
is

o
. 
[d

B
]

is
o

. 
B

W
 [
M

H
z
]

frequency [GHz]

insertion loss [dB]
(a)

(b)

(c)

dissipation [dB]

1

2

50

50

1

2

50

50

lo
s
s
 [
d

B
]

5 6 74

Figure 6.8: Performance of the fourth-generation circulator, version b. Insertion loss (a, solid
lines) and dissipation (a, dashed lines), maximum isolation (b), and isolation bandwidth (c), as a
function of operation frequency. Isolation bandwidth is defined as the frequency interval over which
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In many ways, its performance is comparable to the other generation-four design (discussed

in Sec. 6.3). The predominant difference is a slight increase in the reflection coefficient of the version

b device, which results in greater insertion loss. (Version b exhibits insertion losses between 2 and

6 dB, compared to 0.8 to 3 dB insertion losses in the other device).

The discrepancy is especially apparent at low operation frequencies. One explanation for this

observation is the difference in capacitance values for the two designs (0.96 pF in the first device

and 0.6 pF in the version b design). The smaller capacitance in the version b device allows it to

operate up to 7 GHz, and necessitates the application of a large uniform flux to shift the circuit’s

resonant frequency down to 4 GHz. At this frequency, the SQUID arrays have a reactance of about

100 Ohms, which leads to a total breakdown of the expansion in Ch. 4 in the parameter ωl/Z0.
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In other words, as the two devices have different maximum operation frequencies, a comparison

at 4 GHz may not be a direct comparison: the device with the greater operation frequency must

be tuned to a greater degree to reach 4 GHz, which can cause a breakdown of a needed high-Q

approximation. Nevertheless, even near its maximum operation frequency the version b device is

not as well matched to 50 Ohms.

One surprising similarity in the performance of the two devices is that their measured dissi-

pation is quite similar. Measurements with test resonators (SQUID array bridge circuits shunted

by parallel-plate capacitors) indicate an internal Q between 300 and 400, which was assumed to be

limited by dielectric loss in the silicon oxide. Given the external coupling rate of the circulator’s

resonant modes, this would lead to approximately 0.5 dB of insertion loss. Unexpectedly, the ver-

sion b device (which uses interdigitated capacitors) shows no reduction in dissipation. A detailed

explanation for the insertion loss in the two devices remains an open question.

6.4.3 Filtering, attenuation, and power-consumption considerations, in the context

of scaling

One of the costs associated with replacing passive ferrite circulators with active on-chip

circulators is the power consumption of the control tones, and the heat loads this creates in a

dilution refrigerator. Estimating that power consumption requires a discussion of the attenuation

and filtering of the control lines.

To determine the attenuation required to keep the added noise below half a photon, the added

noise is estimated as a function of the temperature T to which the control lines are thermalized.

Scaling and filtering considerations are then discussed, in light of this result.

For simplicity, consider the noise added by the circulator during transmission from its first

port to its second port. Fluctuations of the bias current amplitude and relative phase between the

two bias signals will modulate a transmitted tone, thus creating noisy modulation sidebands of the

tone. The sideband noise powers caused by amplitude fluctuations SAN
I and phase fluctuations SPN

I
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are (at most)

SAN
I =

(
∂S21

∂Ig
I1dB

)2

SI ,

SPN
I =

(
∂S21

∂φ

I1dB

Ig

)2

SI . (6.2)

Here, I1dB is the signal current in the device at its 1 dB compression point and SI = 4kBT/Z0 is

the current spectral density of the Johnson noise (in the bias lines) at a temperature T [152, 14].

We say the sideband noise powers are bounded above by the relations in Eq. (6.2) because these

noise powers are multiplicative, and it is reasonable to assume the microwave signal power incident

on the device (during normal operation) is at most I1dB.

Because we operate near a maximum in |S21|, the dominant effect of noise in both the

amplitude and phase of the bias currents is the phase modulation of the transmitted tone; i.e.,

both SAN
I and SPN

I are predominantly phase noise in the transmitted tone.

The partial derivatives in Eq. (6.2) can be calculated directly from measurements of the

scattering parameters, made as a function of the bias current amplitude Ig and the phase between

the bias lines φ (shown, for example, in Fig. 6.6 and Fig. 6.3). After these numerical derivatives

are calculated, the sideband noise powers may be divided by 2~ωp/Z0 to convert them to photon

numbers. In our measurements, where the bias lines are thermalized to T ≈ 300 K, this results in

n = 14 photons of added noise, with SAN
I accounting for 95% of the noise.

Positioning 40 dB of attenuation at room temperature and 20 dB at the four Kelvin stage

of a dilution refrigerator would result in a noise temperature of T ≈ 7 K, or in units of photons,

n = 0.3. This level of attenuation is reasonable for modern dilution refrigerators, as the circulator

operates with gradiometric currents Ig on the scale of 100 µA: the heat load caused by a 20 dB

attenuator at the four-K stage is 50 µW, which is much less than the Watt-scale cooling power

available at that stage.

With superconducting twisted-pairs to carry the bias currents from the four-K stage to the

mixing chamber plate, and a contact resistance of 10 mOhm at the chip interface, the heat load

on the mixing chamber plate is 100 pW. This load is also much less than the roughly 50 µW of
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available cooling power on a 50 mK mixing chamber plate. These considerations are summarized

in Tab. (6.1), which presents a power budget for an active circulator with control lines thermalized

as described above.

Table 6.1: Power budget for an active circulator with control lines thermalized to T ≈ 7 K as
described in the text. In this configuration, the circulator adds 0.3 photons of noise. A contact
resistance of 10 mOhm is assumed at the chip interface. Cited cooling powers are for an Oxford
cryogen-free dilution refrigerator, and are approximate.

T [K] Ig [A] heat load [W] cooling power [W]

300 10−1 5× 10−1 n/a

4 10−3 5× 10−5 7.5× 10−1

0.05 10−4 10−10 5× 10−5

This analysis indicates the feasibility of operating 103 on-chip circulators in a single dilution

refrigerator, each with less than half a photon of added noise. We emphasize that this is one of

many possible design choices and it is possible to reduce the added noise and dissipated power in

several different ways. For example, the bias lines could be filtered to reject the noise below 50

MHz, which adds noise in the circulator’s band, while still passing 100 MHz bias tones.



Chapter 7

Conclusion and Outlook

In this thesis we realize the on-chip superconducting circulator proposed in Ref. [115]. Lorentz

reciprocity is broken in the circuit with sequential translations in frequency and time, which we show

with a standard circuit analysis and with a simple model system composed of just two components:

multiplying elements and delays. We describe how both of these elements can be created in a

cryogenic microwave environment, and then characterize the performance of a circulator built from

these components. We observe low insertion loss and over 20 dB of isolation over a bandwidth of

approximately 50 MHz. The device is linear with respect to input power for fields up to 1 pW

in power, and its transmission spectrum is spectrally pure, in the sense that spurious harmonics

created by the device’s RF control tones are suppressed by more than 20 dB. Finally, we demonstrate

that all of these performance specifications can be achieved over a frequency range in excess of 1

GHz, and in clockwise or counterclockwise configurations. This ability to dynamically reconfigure

the sense of circulation is a feature unavailable in commercial ferrite circulators which are typically

constructed with permanent magnets, and enables new possibilities for the connectivity of advanced

networks.

As the device requires no microwave frequency control tones, and as it is orders of magnitude

more compact than commercial ferrite circulators, this superconducting circulator is a scalable al-

ternative to signal routing with ferrite junction circulators. We estimate that with superconducting

twisted pairs carrying the low-frequency control tones, 103 of these circulators could be operated

in a single dilution refrigerator.
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From a technological perspective, the superconducting circulator constructed for this thesis

represents a new level of complexity for analog integrated circuits in the niobium trilayer process. It

also provides a demonstration of a general-purpose prescription for circulation [115], which need not

be implemented with superconducting materials. For example, in room temperature applications

where tunable capacitors are a widely available component, the dual of this circuit can be used

to realize a scalable, on-chip circulator. Transmission and reception of signals in the antennas of

cellular phones and cellular base stations is currently multiplexed in frequency, due to the need

for high channel isolation and the dearth of compact, integrated, non-reciprocal components at

microwave frequencies. Duplexing with a circulator would obviate the need for this multiplexing,

doubling the effective bandwidth of the antenna. Such an adaptation of the circulator technology

could be lucrative, as 5G telecommunication technologies are likely to gain mass-market coverage

by 2020, with a projected $250 billion USD market size [153].

Looking forward, the work suggests several immediate extensions. In a future design, layout

changes could improve device performance: dielectric loss can be reduced with the use of low-loss

dielectrics like amorphous silicon [100], or with interdigitated capacitors. Similarly, dividing the

power in the gradiometric flux lines off-chip and delivering the control tones with four dedicated

on-chip bias lines removes layout constraints, and enables the design of a circuit with approximately

half the geometric inductance.

Even with the device’s existing performance, another obvious extension is on-chip integra-

tion of the circulator with a quantum-limited amplifier. This further miniaturizes the amplification

chain, and removes unwanted sources of loss from normal-metal connections between the supercon-

ducting reflection amplifier and circulator.

Finally, the essential concept of frequency conversion and delay can be adapted to a lossless

and broadband design, using non-resonant delays, as suggested in Ref. [116]. Fig. 7.1a illustrates

one possible design for such a broadband, lossless circuit. The device uses the same bridge-circuit

multipliers as the circulator discussed in the previous chapter, but requires only two of the bridges.

The element Zm is an impedance included to impedance match the bridge circuits, needed because



96

of the finite-tunability of the SQUID-array inductors. As the Bode-Fano criterion [154, 155] is

relatively lenient for low quality-factor circuits, we estimate that appropriate choice of Zm would

allow reflections to be limited to less than -20 dB over a bandwidth of 8 GHz (see supplementary

information in Ref. [132]).

The delays, rather than realized with a resonant mode, are transmission lines connecting the

two bridges. A final difference is that the bias signals are square wave, rather than sinusoidal.

Biased in this way, the impedance-matched bridge circuits function as cross-over switches.
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Figure 7.1: Lossless, broadband circulation. (a) Schematic for a lossless, broadband, and supercon-
ducting circulator, inspired by ideas in Refs. [116, 156, 120]. Circulation arises from interference
between the reciprocal even-mode and the gyrating odd-mode of the circuit. (b)-(g) Describe how
non-reciprocity arises in the odd-mode. (b) Modulation profiles of the two square-wave biased
bridge circuits when the delay separating the bridges is τ = 0. (c) Product of the modulation
profiles in (b). Transmission is reciprocal, and power is scattered into modulation sidebands. (d)
Modulation profile for a signal exciting the differential mode of the upper port (odd excitation of
ports 1 & 3) when the delay separating the bridges is a quarter of the modulation period, τ = T/4.
(Graphically, this shifts the orange trace back by a quarter-period.) (e) The product of the modu-
lation profiles in (d). As the product is 1 for the entire modulation period, the signal is effectively
unmodulated. (f) Modulation profile for a signal exciting the differential mode of the lower port
(odd excitation of ports 2 & 4) when the delay separating the bridges is a quarter of the modulation
period, τ = T/4. (Graphically, this shifts the blue trace back by a quarter-period.) (e) The product
of the modulation profiles in (d). The product is constant in time, as in (e), but the minus sign
imparts a π phase shift on the incident signal. The odd-mode of the circuit therefore realizes a
gyrator.
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As in the analysis of Ch. 4, the circuit’s operation is greatly simplified by transforming to a

basis of even and odd excitations of the top (ports 1 & 3) and bottom (ports 2 & 4) ports. Viewed

in that light, circulation again arises from a “virtual” Hogan construction, e.g. the interference of

a reciprocal common mode and a gyrating differential mode. To show how non-reciprocity arises

in the differential mode, the square-wave modulation of transmission realized by the two bridge

circuits is plotted in Fig. 7.1b. If no delay is included between them, a differential signal on the

upper (odd excitation of ports 1 & 3) or lower (odd excitation of ports 2 & 4) is modulated in

time according to Fig. 7.1c, and the network is reciprocal (and scatters the incident signal into

sidebands spaced by odd multiples of the modulation rate Ω). If, however, a delay τ of one-quarter

the modulation period T/4 = π/(2Ω) is inserted between the two bridge circuits, reciprocity is

broken, and the incident signal’s frequency is unchanged. A signal incident on the upper port is

modulated by (Fig. 7.1d and Fig. 7.1e)

sign(cos[Ωt])× sign(sin[Ωt+ π/4]) = 1, (7.1)

whereas a signal incident on the lower port is modulated by (Fig. 7.1f and Fig. 7.1g)

sign(sin[Ωt])× sign(cos[Ωt+ π/4]) = −1. (7.2)

The circuit’s odd-mode therefore realizes a gyrator.

Prospects for such a device are extremely attractive given the high power-handling of these

SQUID-array based devices, as their integration with a broadband low-noise amplifier [157] could

enable scalable frequency-domain multiplexing of many-qubit systems with near-unit measurement

efficiency. Given the current state of quantum error-correction and architectures for quantum

information processing with superconducting circuits, such signal-processing innovations will almost

certainly be necessary for construction of any superconducting quantum computer intended to be

more than a proof-of-principle.
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Appendix A

Graph theory eigenfrequency analysis for a half-circulator

Consider the network in Fig. A.1a. Its resonant frequencies may be calculated with a graph-

theoretical approach [134, 135], in which each element in the network is designated as a (tree)

branch or a chord. Together, the branches form a tree—an object which encloses no circuit loops,

but which creates a loop with the addition of any chord. Note that for networks of non-trivial size,

there are multiple ways to define a tree.

We choose a tree with five branches (black circuit elements in Fig. A.1b) and four chords (gray

circuit elements in Fig. A.1b). Each circuit element is labeled with an integer, to allow indexing

of the voltage across (or current through) the element. Arrows indicate the defined direction of

positive current flow.

Each chord completes a circuit loop, and Kirchoff’s voltage law thus associates an equation

with each of the chords. Take, for example, the chord associated with current I6. Addition of this

chord to the tree creates a loop, with associated equation

V3 + V6 − V1 − V2 = 0. (A.1)

It is helpful to collect the equations for each chord in a matrix notation, writing

FTVb = Vc, (A.2)

where the vectors Vb and Vc are the voltages of the branches and chords. For the network in



111
(a)

�1

�1

�2

�2

�1

�1

�2

�2

(b)

(c)

I1

I6

I3

I2

I4

I9

I5

I8

I7

�1

�1

�2

�2

�1

�1

�2

�2

  

!

!

Figure A.1: (a) General form of the circuit depicted in Fig. 4.2b, isolated from any transmission
lines (or equivalently, terminated in transmission lines of very large characteristic impedance). (b)
The circuit in (a), with currents at each chord and branch labelled. Arrows indicate the (arbitrary)
choice of direction for which current flow is positive. (c) The circuit in (a), connected to transmission
lines of characteristic impedance r, as indicated by resistor symbols.

Fig. A.1b,

Vb =



V1

V2

V3

V4

V5


, (A.3)

Vc =



V6

V7

V8

V9


, (A.4)
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and

Ft =



1 1 −1 0 0

1 1 0 0 0

1 1 0 −1 0

1 1 0 0 −1


. (A.5)

This is convenient, as the deliberate manner in which the equations in Eq. (A.2) were collected

ensures that the currents in the branches and chords satisfy a complementary equation,

FIc = −Ib. (A.6)

The next step is to relate the currents and voltages of the chords (branches) in the Laplace

domain:

Vb = ZbIb, (A.7)

Vc = ZcIc.

In this example,

Zb = s



l1 0 0 0 0

0 l2 0 0 0

0 0 l2 0 0

0 0 0 l1 0

0 0 0 0 l2


,Zc =



sl1 0 0 0 0

0 1/cs 0 0 0

0 0 sl2 0 0

0 0 0 sl1 0


. (A.8)

Eqs. A.2, A.6, and A.8 may now be combined into a single matrix equation:

FIc = −Ib, (A.9)

FZc
−1Vc = −Zb−1Vb,

FZc
−1FTVb = −Zb−1Vb,(

FZc
−1FTVb + Zb

−1
)
Vb = 0,(

FZc
−1FTVbZb + 1

)
Vb = 0.
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Here, 1 is the identity matrix and the superscripts denote matrix inversion. By the invertible

matrix theorem, the determinant of the matrix on the left-hand side must vanish for a non-trivial

solution. The requirement that,

Det[FZc
−1FTVbZb + 1] = 0. (A.10)

yields a characteristic equation in s, the roots of which are the eigenfrequencies of the network. In

this example, those frequencies are

s1 = i

√
2 (1− δ2)

lc
, (A.11)

s2 = s1
∗.

when the inductances l1 and l2 are parametrized according to Eq. (4.2). Here the ∗ indicates

complex conjugation.

If the same process is repeated for the network in Fig. A.1c, and an expansion is performed

to second order in δ and first order in 1/r, the resulting eigenfrequencies are

s1 = −r
l
, (A.12)

s2 = −r
l

+
2δ2

rc
,

s3 = −δ
2

rc
+ i

√
2

lc

(
1− δ2

2

)
,

s4 = s3
∗.

The real and imaginary components of these eigenfrequencies indicate the dissipation and oscillation

rates of the eigenmodes. Their quality factors are therefore the ratio of their imaginary and real

parts. While the modes associated with s1 and s2 are purely dissipative, modes 3 and 4 have a

linewidth that scales with the square of the imbalance in the bridges. Comparison with Eq. (A.11)

shows that the imaginary components of the eigenfrequencies are Taylor expansions of the resistor-

less network’s eigenfrequencies, to second order in δ.
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Comparison with the group delay plotted in Fig. 4.2d can now be made. With c = 1 pF,

l0 = 1 pH, and δ = 0.2, mode s3 is resonant at 6.97 GHz and has an inverse linewidth of 1.25 ns,

in agreement with the simulation.



Appendix B

Design rules of the NIST Nb trilayer process

Further details on the design space and design rules for the trilayer process are catalogued

in Tab. B.1.

Table B.1: Layer names, abbreviations and associated design

rules for the NIST niobium trilayer process.

layer notes design rules

CE minimum width is 2.5 µm

minimum space (from other CE fea-

tures) is 2 µm

must be overlapped by BE by 1.25 µm

must be overlapped by AL by 1 µm

must be overlapped by CEO by 0.5 µm

CEO minimum width is 3 µm

AL Thickness ranges from 6 to 10 nm. minimum width is 4 µm

must be overlapped by BE by 0.25 µm

must be overlapped by ALO by 0.5 µm
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ALO minimum width is 4.5 µm

BE 200 nm thick. minimum width is 2 µm

minimum space (from other BE fea-

tures) is 1 µm

R1 Thickness ranges between 135 and 225

nm, allowing sheet resistances between

2 and 1.2 Ohms/square (AuPd) and

100 and 60 mOhms/square (Au). Au

has stronger temperature dependence

than AuPd—if this is an issue, and

resistor footprint is not a constraint,

interdigitation of AuPd resistors al-

lows for fabrication of low-resistance,

temperature-independent resistors.

minimum width is 2 µm

minimum space (from other R1 fea-

tures) is 4 µm

minimum overlap with BE is 1 µm
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I1 Thickness ranges from 300 to 500 nm.

Relative dielectric constant of SiO2 is

εr = 3.9. Loss tangent is temperature

and power dependent [144]. With

high-power measurements of test res-

onators at 300 mK we estimate it to

be 3 × 10−3. SiN [144] and amorphous

silicon [100] are reported to have lower

loss tangents, though amorphous silicon

has poor etch selectivity with Nb. This

was only recently overcome [100].

must overlap with BE, CE, or W1

minimum width is 0.8 µm in junctions

minimum width is 1 µm otherwise

must be overlapped by CE by 0.75 µm

must be overlapped by BE by 1 µm

must be overlapped by W1 by 1 µm

W1 When possible use BE for wiring, as the

Nb in that layer is higher quality.

minimum width is 2 µm in junctions

minimum space (from W1 features) is

1.5 µm

minimum space (from BE edges) is 0.3

µm

I2 or I1X 400 nm thick. In practice, this is the

layer that covers W1.

W2 When possible use BE for wiring, as

the Nb in that layer is higher quality.

350 nm thick.

minimum width is 2 µm in junctions

minimum space (from W2 features) is

1.5 µm

minimum space (from BE edges) is 0.3

µm
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I2X This is the layer that covers W2.



Appendix C

Measurement details

A detailed schematic of the experimental setup is shown in Fig. C.1. A single-pull double-

throw switch, a cross-over switch (Pasternack PE7152), and a directional coupler (MAC C3205-20)

allow for measurement of the four accessible scattering parameters with an Agilent ENA5071C net-

work analyzer. For measurements of the transmission spectrum, a Tektronix RSA6100A spectrum

analyzer serves as the microwave detector.

50

VNA

Φgcos(Ω")
Φu

300 K
4 K

300 mK

Φgcos(Ω"+$)

50

RSA

Figure C.1: Detailed experimental schematic for the measurements discussed in Ch. 5 and Ch. 6.

A Yokogawa 7651 current source provides the current for an off-chip, home-wound electro-

magnet, which creates the uniform flux Φu. A two-channel arbitrary waveform generator (Agilent

33500A), creates a pair of radio-frequency bias signals at frequency Ω, with phase difference φ,

providing the gradiometric flux Φg.
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Both (transmission and reflection) input lines are attenuated by 20 dB at the 4K plate, and

an additional 20 dB at the 300 mK base plate of the 3He cryostat, allowing for a noise temperature

Tn as low as

Tn > 300 K× 10−4 + 4 K× (1− 10−2)× 10−2 + 300 mK× (1− 10−2)

≈ 370 mK

(C.1)

The probe signals are then routed to the microwave receiver, where they propagate through an isola-

tor (Raditek RADC-4-8-Cryo-(30mK-4K)-S23-1WR-MS-b) and are amplified by a Caltech HEMT

amplifier (CRYO 4-12) at 4 K and a room temperature amplifier (Miteq AMF-3F-04000800-07-

10P). Bias lines are filtered with 350 MHz low-pass powder filters, and have a noise temperature

of roughly 300 K.



Appendix D

Calibration of network parameter measurements

In this appendix we describe the calibration procedures used for analysis of the network

parameter measurements described in Ch. 6.

D.1 Transmission calibration

To remove the gain of the measurement chain in transmission measurements, a bypass switch

(formed from two Radiall 570443000 single-pull double-throw switches) is mounted at the base of

the cryostat, which routes fields through a 5 cm SMA cable instead of the circulator. We also

use dedicated through measurements, (made in a separate cooldown) in which the circulator chip

is exchanged for a like-sized circuit board traversed by a single 50 Ohm transmission line. Using

these techniques, the reference plane for transmission measurements is moved (approximately) to

the edge of the chip.

D.2 Reflection calibration

To remove the gain G from reflection measurements, we measure the reflection Rbal off the

circulator when no bias current is applied to the on-chip bias lines. In this unbiased state, all four

inductor bridges are balanced, and the reflection coefficient Γbal is the diagonal entry in each row

of the balanced scattering matrix Sbal. The matrix Sbal may be calculated by setting δ0 = 0 in

Eq. (4.11) and substituting the resulting admittance matrix into Eq. (4.23). This procedure yields
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Γbal =
iωl + 2Z0

iωl − 4Z0
. (D.1)

As

Rbal = GΓbal, (D.2)

and the gain G of the reflection measurement chain is assumed to be independent of the circulator’s

state, the reflection coefficient Γop at arbitrary operation points is related to the measured reflection

Rop by

Γop =
Rop

G
= Γbal

Rop

Rbal
. (D.3)

To account for geometric inductance in the bridges, the inductance l in Eq. (D.1) is estimated

using measurements of the unbalanced circuit’s resonant frequency, the capacitance design value of

1 pF, and Eq. (4.7).

D.3 Calibration of group delay

Preparing the circulator for operation requires correctly setting the duration τ of the resonant

delay. Measurements of the circulator’s group delay are used for this purpose. To separate the non-

resonant delays of the finite-length measurement chain from the resonant delay τ , we multiply the

measured transmission data by eiωτd , where τd = 62 ns is the time required for an off-resonant

microwave field to propagate through the measurement chain. In the absence of circuit resonances,

this multiplication makes the phase of the transmission flat as a function of frequency, zeroing the

group delay.
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