Facebook Twitter Instagram YouTube

Experimental Demonstration of Shaken-Lattice Interferometry

TitleExperimental Demonstration of Shaken-Lattice Interferometry
Publication TypeJournal Article
Year of Publication2018
AuthorsWeidner, CA, Anderson, DZ
JournalPhys. Rev. Lett.
Date Published2018-06

We experimentally demonstrate a shaken-lattice interferometer. Atoms are trapped in the ground Bloch state of a red-detuned optical lattice. Using a closed-loop optimization protocol based on the dcrab algorithm, we phase-modulate (shake) the lattice to transform the atom momentum state. In this way, we implement an atom beam splitter and build five interferometers of varying interrogation times TI. The sensitivity of shaken-lattice interferometry is shown to scale as T2I, consistent with simulation (C. A. Weidner, H. Yu, R. Kosloff, and D. Z. Anderson, Phys. Rev. A 95, 043624 (2017).). Finally, we show that we can measure the sign of an applied signal and optimize the interferometer in the presence of a bias signal.


JILA follows the six University nodes' policies for ensuring harassment-free environments. For more detailed information regarding the University of Colorado policies, please read the Discrimination and Harassment Policy and Procedures.