Research Highlights

Displaying 161 - 180 of 469
Atomic & Molecular Physics | Quantum Information Science & Technology
The Beautiful Ballet of Quantum Baseball
Published: December 12, 2016

The Rey and Ye groups discovered the strange rules of quantum baseball earlier this year. But now, quantum baseball games happen faster, and players (dipolar particles) are no longer free to move or stand wherever they want. Players must not only be stronger to jump and catch the balls (photons), but also more organized. At the same time, they must be good spinners. And, only a small amount of disorder is tolerated! The fast spinning of the players and their fixed positions have made quantum baseball a whole new game!

Read More
PI(s):
Ana Maria Rey
Astrophysics
Dancing with the Stars
Published: November 22, 2016

Galaxy mergers routinely occur in our Universe. And, when they take place, it takes years for the supermassive black holes at their centers to merge into a new, bigger supermassive black hole. However, a very interesting thing can happen when two black holes get close enough to orbit each other every 3–4 months, something that happens just before the two black holes begin their final desperate plunge into each other. 

Read More
PI(s):
Mitch Begelman | Phil Armitage
Chemical Physics
Recreating Fuels from Waste Gas
Published: November 21, 2016

Graduate student Mike Thompson of the Weber group wants to understand the basic science of taking carbon dioxide (CO2) produced by burning fossil fuels and converting it back into useful fuels. People could then use these fuels to generate electricity, heat homes and office buildings, power automobiles and trains, fly airplanes, and drive the industrial processes of modern life.

Read More
PI(s):
J. Mathias Weber
Atomic & Molecular Physics
Going Viral: The Source of a Spin-Flip Epidemic
Published: November 11, 2016

For a long time, there’s been a mystery concerning how tiny interactions between individual atoms could lead to really big changes in a whole cloud of independent-minded particles. The reason this behavior is mysterious is that the atoms interact weakly, and only when they are very close to each other. Yet, the atoms clear across the cloud seem to know when it’s time to participate in some big-deal quantum behavior such as simultaneously all changing the direction of their spins.

Read More
PI(s):
Ana Maria Rey
Biophysics
The Red Light District
Published: October 31, 2016

Far-red fluorescent light emitted from proteins could one day illuminate the inner workings of life. But before that happens, scientists like Fellow Ralph Jimenez must figure out how fluorescent proteins’ light-emitting structures work. As part of this effort, Jimenez wants to answer a simple question: How do we design red fluorescent proteins to emit longer-wavelength, or redder, light?

Read More
PI(s):
Ralph Jimenez
Atomic & Molecular Physics | Chemical Physics | Laser Physics
The Radical Comb-Over
Published: October 27, 2016

Using frequency comb spectroscopy, the Ye group has directly observed transient intermediate steps in a chemical reaction that plays a key role in combustion, atmospheric chemistry, and chemistry in the interstellar medium. The group was able to make this first-ever measurement because frequency combs generate a wide range of laser wavelengths in ultrafast pulses. These pulses made it possible for the researchers to “see” every step in the chemical reaction of OH + CO → HOCO → CO2 + H.

Read More
PI(s):
Jun Ye
Chemical Physics
The Ultimate Radar Detector
Published: September 26, 2016

The Nesbitt group has invented a nifty technique for exploring the physics and chemistry of a gas interacting with molecules on the surface of a liquid. The group originally envisioned the technique because it’s impossible to overestimate the importance of understanding surface chemistry. For instance, ozone depletion in the atmosphere occurs because of chemical reactions of hydrochloric acid on the surface of ice crystals and aerosols in the upper atmosphere. Interstellar chemistry takes place on the surface of tiny grains of dust.

Read More
PI(s):
David Nesbitt
Laser Physics
A Quantum Metal Model System
Published: September 26, 2016

Exciting new theory from the Rey group reveals the profound effects of electron interactions on the flow of electric currents in metals. Controlling currents of strongly interacting electrons is critical to the development of tomorrow’s advanced microelectronics systems, including spintronics devices that will process data faster, use less power than today’s technology, and operate in conditions where quantum effects predominate.

Read More
PI(s):
Ana Maria Rey
Astrophysics
Black Hole Marvels
Published: August 11, 2016

Graduate student Greg Salvesen, JILA Collaborator Jake Simon (Southwest Research Institute), and Fellows Phil Armitage and Mitch Begelman decided they wanted to figure out why swirling disks of gas (accretion disks) around black holes often appear strongly magnetized. They also wanted to figure out the mechanism that allowed this magnetization to persist over time.

Read More
PI(s):
Mitch Begelman | Phil Armitage
Astrophysics
Black Holes Can Have Their Stars and Eat Them Too
Published: August 11, 2016

Fellow Mitch Begelman’s new theory says it’s possible to form stars while a supermassive black hole consumes massive amounts of stellar debris and other interstellar matter. What’s more, there’s evidence that this is exactly what happened around the black hole at the center of the Milky Way some 4–6 million years ago, according to Associate Fellow Ann-Marie Madigan.

Read More
PI(s):
Mitch Begelman
Physics Education
Modeling Lessons
Published: July 28, 2016

Physics education researchers from the University of Colorado Boulder and the University of Maine recently showed that students troubleshooting a malfunctioning electric circuit successfully tackled the problem by using models of how the circuit ought to work. The researchers confirmed this approach by analyzing videotapes of eight pairs of students talking aloud about their efforts to diagnose and repair a malfunctioning electric circuit. The circuits had not just one, but two problems. Both problems had to be corrected for the circuit to work properly.

Read More
PI(s):
Heather Lewandowski
Atomic & Molecular Physics
All Dressed Up and Ready to Probe
Published: July 28, 2016

Newly minted Ph.D. Ming-Guang Hu and his colleagues in the Jin and Cornell groups recently investigated immersing an impurity in a quantum bath consisting of a Bose-Einstein condensate, or BEC. The researchers expected the strong impurity-boson interactions to “dress” the impurity, i.e., cause it to get bigger and heavier. In the experiment, dressing the impurity resulted in it becoming a quasi particle called a Bose polaron.

Read More
PI(s):
Deborah Jin | Eric Cornell
Astrophysics
Some Assembly Required
Published: July 27, 2016

Fellow Phil Armitage and group collaborator Jacob Simon of the Southwest Research Institute are leading work to answer a central question about planet formation: How do pea- and pebble-sized objects orbiting within a protoplanetary disk evolve into asteroid-sized objects tens to hundreds of kilometers in size? This is an important question to answer because the eventual formation of planets around a star is mainly governed by the gravitational interactions of these primordial asteroids.

Read More
PI(s):
Phil Armitage
Nanoscience
A New Electron Movie, Thanks to the Tip
Published: July 21, 2016

The Raschke group has created an ultrafast optical nanoscope based on a unique way of “nano” focusing the light to image the behavior of electrons on a thin gold film. The nanoscope is 1,000 times more powerful than conventional optical microscopes. It allows the researchers to investigate matter on its natural time and length scales, which are measured in femtoseconds and nanometers, respectively. This new technique may find application to studies of photosynthesis, solar cells, energy conversion and use, and other phenomena based on the transfer of electrons from molecule to molecule.

Read More
PI(s):
Markus Raschke
Nanoscience | Precision Measurement | Quantum Information Science & Technology
How Cold Can a Tiny Drum Get?
Published: July 20, 2016

Bob Peterson and his colleagues in the Lehnert-Regal lab recently set out to try something that had never been done before: use laser cooling to systematically reduce the temperature of a tiny drum made of silicon nitride as low as allowed by the laws of quantum mechanics. Although laser cooling has become commonplace for atoms, researchers have only recently used lasers to cool tiny silicon nitride drums, stretched over a silicon frame, to their quantum ground state. Peterson and his team decided to see just how cold their drum could get via laser cooling.

Read More
PI(s):
Cindy Regal | Konrad Lehnert
Precision Measurement
A Wrinkle in Time
Published: June 28, 2016

Fellow Judah Levine recently presented a discussion of our understanding of time from antiquity to the present day in an insightful paper published in the April 2016 issue of the European Physical Journal H.

Read More
PI(s):
Judah Levine
Laser Physics | Nanoscience
The Great Escape
Published: June 02, 2016

The Kapteyn/Murnane group has measured how long it takes an electron born into an excited state inside a piece of nickel to escape from its birthplace. The electron’s escape is related to the structure of the metal. The escape is the fastest material process that has been measured before in the laboratory––on a time scale of a few hundred attoseconds, or 10-18 s. This groundbreaking experiment was reported online in Scienceon June 2, 2016. Also in Science on July 1, 2016, Uwe Bovensiepen and Manuel Ligges offered important insights into the unusual significance of this work. 

Read More
PI(s):
Henry Kapteyn | Margaret Murnane | Murray Holland
Atomic & Molecular Physics
Stalking the Wild Molecules
Published: May 04, 2016

The Ye group just solved a major problem for using molecular fingerprinting techniques to identify large, complex molecules: The researchers used an infrared (IR) frequency comb laser to identify four different large or complicated molecules. The IR laser-light absorption technique worked well for the first time with these larger molecules because the group combined it with buffer gas cooling, which precooled their samples to just a few degrees above absolute zero. 

Read More
PI(s):
Jun Ye
Atomic & Molecular Physics
Talking Atoms & Collective Laser Supercooling
Published: April 21, 2016

Move over, single-atom laser cooling! The Holland theory group has just come up with a stunning idea for a new kind of laser cooling for use with ensembles of atoms that all “talk” to each other. In other words, the theory looks at laser cooling not from the perspective of cooling a single atom, but rather from the perspective of many atoms working together to rapidly cool themselves to a miniscule fraction of a degree above absolute zero.

Read More
PI(s):
John (Jinx) Cooper | Murray Holland
Atomic & Molecular Physics
The Ultramodern Molecule Factory: I. Doublons
Published: April 20, 2016

The old JILA molecule factory (built in 2002) produced the world’s first ultracold polar molecules [potassium-rubidium (KRb)] in 2008. The old factory has been used since then for ultracold chemistry investigations and studies of the quantum behavior of ultracold molecules and the atoms that form them. The Jin-Ye group, which runs the molecule factory, is now wrapping up operations in the old factory with experiments designed to improve operations in the ultramodern factory, which is close to completion.

Read More
PI(s):
Ana Maria Rey | Deborah Jin | Jun Ye