MURI: Wiring Quantum Networks with Mechanical Transducers

Objective: Develop quantum coherent interfaces that allow the transfer of information between superconducting qubits, propagating light fields, and trapped ion qubits, to enable the development of quantum networks and distributed quantum information processors.

Approach: Create a synthetic interaction between superconducting qubits and light fields and between trapped ion qubits and light fields by coupling qubits to mechanical oscillators that are highly compliant or piezoelectric.

Investigators: Konrad Lehnert, Cindy Regal (Colorado), Robert Schoelkopf, Liang Jiang (Yale), Christopher Monroe (Maryland), Oskar Painter (Caltech)

Publications: 

 

  1. Reconfigurable re-entrant cavity for wireless coupling to an electro-optomechanical device,” Tim Menke, Peter S. Burns, Andrew P. Higginbotham, Nir S. Kampel, Robert W. Peterson, Katarina Cicak, Raymond W. Simmonds, Cindy A. Regal, Konrad W. Lehnert Review of Scientific Instruments 88, 094701 (2017).
  2. Faithful conversion of propagating quantum bits to mechanical motion,” A. P. Reed, K. H. Mayer, J. D. Teufel, M. Reagor, L. Burkhart, W. Pfaff, R. J. Schoelkopf, and K. W. Lehnert, Nature Phys., 13, 1163–1167 (2017).
  3. Schrödinger's catapult: Launching multiphoton quantum states from a microwave cavity memory”, Wolfgang Pfaff, Christopher J. Axline,Luke D. Burkhart, Uri Vool, Philip C. Reinhold, Luigi Frunzio, Liang Jiang, Michel H. Devoret, and Robert J. Schoelkopf, Nature Phys. (in press)  arXiv:1612.05238 (2017).
  4. Implementing a Universal Gate Set on a Logical Qubit Encoded in an Oscillator”, R. Heeres, P. Reinhold, N. Ofek, L. Frunzio, L. Jiang, M. Devoret, R. Schoelkopf, Nature Comm., (in press) arXiv:1608.02430 (2017).
  5. "Intracity quantum communication via thermal microwave networks," Z.-L. Xiang, M. Zhang, L. Jiang and P. Rabl, Phys. Rev. X 7, 011035. (2017).
  6. Quantum Channel Construction with Circuit Quantum Electrodynamics”, C. Shen, K. Noh, V. V. Albert, S. Krastanov, M. H. Devoret, R. J. Schoelkopf, S. M. Girvin, and L. Jiang. Phys. Rev. B, 95, 134501 (2017).
  7. Improving broadband displacement detection with quantum correlations,” N. S. Kampel, R. W. Peterson, R. Fischer, P.-L. Yu, K. Cicak, R. W. Simmonds, K. W. Lehnert, C. A. Regal, Phys. Rev. X, 7, 021008 (2017).
  8. Geometry and response of Lindbladians,” V. V. Albert, B. Bradlyn, M. Fraas and L. Jiang. Phys. Rev. X 6, 031006 (2016).
  9. "Quantum electromechanics on silicon nitride nanomembranes," Johannes M. Fink, Mahmoud Kalaee, Alessandro Pitanti, Richard Norte, Lukas Heinzle, Marcelo Davanco, Kartik Srinivasan, and Oskar Painter, Nature Comm. 7, 12396 (2016).
  10. "Superconducting Cavity Electromechanics on a Silicon-on-Insulator Platform," Paul B. Dieterle, Mahmoud Kalaee, Johannes Fink, and Oskar Painter, Phys. Rev. Applied 6, 014013 (2016). 
  11.  “Implementing and Characterizing Precise Multiqubit Measurements”, J. Z. Blumoff, K. Chou, C. Shen, M. Reagor, C. Axline, R. T. Brierley, M. P. Silveri, C. Wang, B. Vlastakis, S. E. Nigg, L. Frunzio, M. H. Devoret, L. Jiang, S. M. Girvin and R. J. Schoelkopf, Phys. Rev. X, 6, 031041. (2016).
  12. Holonomic Quantum Control with Continuous Variable Systems," Victor V. Albert, Chi Shu, Stefan Krastanov, Chao Shen, Ren-Bao Liu, Zhen-Biao Yang, Robert J. Schoelkopf, Mazyar Mirrahimi, Michel H. Devoret, and Liang Jiang, Phys. Rev. Lett. 116, 140502. (2016).
  13. "New Class of Quantum Error-Correcting Codes for a Bosonic Mode," Marios H. Michael, Matti Silveri, R. T. Brierley, Victor V. Albert, Juha Salmilehto, Liang Jiang, and S. M. Girvin, Phys. Rev. X, 6, 031006 (2016).
  14. "Filtration and extraction of quantum states from classical inputs," C.-L. Zou, L. Jiang, X.-B. Zou and G.-C. Guo, Phys. Rev. A 94, 013841 (2016).
  15. Laser Cooling of a Micromechanical Membrane to the Quantum Backaction Limit” R. W. Peterson, T. P. Purdy, N. S. Kampel, R. W. Andrews, P.-L. Yu, K. W. Lehnert, and C. A. Regal, Phys. Rev. Lett., 116, 063601 (2016).
  16. Concurrent remote entanglement with quantum error correction against photon losses”, A. Roy, A. D. Stone and L. Jiang, Physical Review A, 94, 032333, (2016).
  17. Demonstration of a small programmable quantum computer with atomic qubits,” S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman, K. Wright, and C. Monroe, Nature 536, 63 (2016).
  18. Quantum Connections and the Modular Quantum Computer,” C. Monroe, R. J. Schoelkopf, and M. D. Lukin, Scientific American, p. 50 (May, 2016).
  19. Optimized Tomography of Continuous Variable Systems Using Excitation Counting”, C. Shen, R. W. Heeres, P. Reinhold, L. Jiang, Y-K Liu, R. J. Schoelkopf, L. Jiang. Phys. Rev. A, 94, 052327 (2016).
  20. "Phonon-induced spin squeezing based on geometric phase," Yan-Lei Zhang, Chang-Ling Zou, Xu-Bo Zou, Liang Jiang, and Guang-Can Guo, Phys. Rev. A, 92, 013825 (2015).
  21. "Cavity State Manipulation Using Photon-Number Selective Phase Gates," R. W. Heeres, B. Vlastakis, E. Holland, S. Krastanov, V. V. Albert, L. Frunzio, L. Jiang and R. J. Schoelkopf, Phys. Rev. Lett., 115, 137002 (2015).
  22. Universal control of an oscillator with dispersive coupling to a qubit," S. Krastanov, V. V. Albert, C. Shen, C.-L. Zou, R. W. Heeres, B. Vlastakis, R. J. Schoelkopf and L. Jiang, Phys. Rev. A, 92, 040303 (2015).
  23. "Quantum-enabled temporal and spectral mode conversion of microwave signals," R. W. Andrews, A. P. Reed, K. Cicak, J. D. Teufel, and K. W. Lehnert, Nature Comm. 6, 10021 (2015).
  24. "Modeling of On-Chip Optical Nonreciprocity with an Active Microcavity," J. Wen, X. Jiang, M. Zhang, L. Jiang, S. Hua, H. Wu, C. Yang and M. Xiao, Photonics 2015, 2, 498-508 (2015).
  25. Modular Entanglement of Atomic Qubits using both Photons and Phonons,” D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe, Nature Physics, 11, 37 (2015).
  26. Entanglement of distinguishable quantum memories,” G. Vittorini, D. Hucul, I.V. Inlek, C. Crocker, and C. Monroe, Phys. Rev. A 90, 040302(R) (2014).
  27. Quantum gates with phase stability over space and time,” I.V. Inlek, G. Vittorini, D. Hucul, C. Crocker, and C. Monroe, Phys. Rev. A 90, 042316 (2014).

Manuscripts in review:

  1. "Superconducting qubits on silicon substrates for quantum device integration," Andrew J. Keller, Paul B. Dieterle, Michael T. Fang, Brett Berger, Johannes M. Fink, and Oskar Painter, (submitted) arXiv:1703.1019, (2017).
  2. Multi-Species Trapped Ion Node for Quantum Networking,” I. V. Inlek, C. Crocker, M. Lichtman, K. Sosnova, and C. Monroe, (submitted); arXiv: 1702.01062 (2017).
  3. "Cat codes with optimal decoherence suppression for a lossy bosonic channel," L. Li, C.-l. Zou, V. V. Albert, S. Muralidharan, S. Girvin and L. Jiang, arXiv:1609.06386 (2016).

Conferences proceedings:

  1. Photon Efficient Electro-Optic Conversion via a Micromechanical Oscillator,” K. W. Lehnert, C. A. Regal, R. W. Peterson, N. S. Kampel, P. S. Burns, and A. P. Higginbotham, in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016).
  2. Connecting microwave and optical frequencies with a vibrational degree of freedom,” R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, K. W. Lehnert, Proc. SPIE 9343, Laser Resonators, Microresonators, and Beam Control XVII, 934309 (2015).
  3. Progress towards quantum state transfer between microwave and optical light using an electro-optomechanical resonator,” R. Peterson, P. S. Burns, R. Andrews, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper FM3A.8 (2015).

Reports and presentations