Facebook Twitter Instagram YouTube

From simple to complex atoms for atomic qubits and scalable quantum computing

Event Details

Event Dates: 

Wednesday, December 6, 2017 - 4:00pm

Seminar Location: 

  • Duane Physics Room G1B20

Speaker Name(s): 

Mark Saffman

Speaker Affiliation(s): 

University of Wisconsin
Seminar Type/Subject

Scientific Seminar Type: 

  • Physics Department Colloquium

Event Details & Abstract: 

Quantum computing is a few decades old and is currently an area where there is great excitement and rapid developments. A handful of distinct approaches have shown the capability of on-demand generation of entanglement and execution of basic quantum algorithms.
One of the daunting challenges in developing a quantum computer is the need for a very large number of qubits. Neutral atoms are one of the most promising approaches for meeting this challenge. I will give a snapshot of the current status of atomic quantum computing, describe the physics underlying neutral atom qubits and quantum gates, and show how one of the most complicated atoms in the periodic table may lead to some simple solutions to hard problems.   

Bio: Mark Saffman is an experimental physicist working in the areas of atomic physics, quantum and nonlinear optics, and quantum information processing. He has made significant contributions to the physics of optical solitons, pattern formation, sources of entangled light, and quantum computing. His current research effort is devoted to the development of neutral atom based quantum computing devices. His research team was the first to demonstrate a quantum CNOT gate between two trapped neutral atoms, and the deterministic entanglement of a pair of neutral atoms. This was done using dipole mediated interactions between highly excited Rydberg atoms. He is currently developing scalable neutral atom platforms using arrays of trapped atoms.  
He is a Professor of Physics at the University of Wisconsin-Madison, and a fellow of the American Physical Society and the Optical Society of America. He has been recognized with the Alfred P. Sloan Fellowship and a University of Wisconsin Vilas Associate Award. He also serves as an Associate Editor for Physical Review A.