TY - JOUR AU - Lucas Sletten AU - B. Moores AU - Jeremie Viennot AU - Konrad Lehnert AB - We resolve phonon number states in the spectrum of a superconducting qubit coupled to a multimode acoustic cavity. Crucial to this resolution is the sharp frequency dependence in the qubit-phonon interaction engineered by coupling the qubit to surface acoustic waves in two locations separated by ~40 acoustic wavelengths. In analogy to double-slit diffraction, the resulting interference generates high-contrast frequency structure in the qubit-phonon interaction. We observe this frequency structure both in the coupling rate to multiple cavity modes and in the qubit spontaneous emission rate into unconfined modes. We use this sharp frequency structure to resolve single phonons by tuning the qubit to a frequency of destructive interference where all acoustic interactions are dispersive. By exciting several detuned yet strongly coupled phononic modes and measuring the resulting qubit spectrum, we observe that, for two modes, the device enters the strong dispersive regime where single phonons are spectrally resolved. BT - Physical Review X DA - 2019-06 DO - 10.1103/PhysRevX.9.021056 N2 - We resolve phonon number states in the spectrum of a superconducting qubit coupled to a multimode acoustic cavity. Crucial to this resolution is the sharp frequency dependence in the qubit-phonon interaction engineered by coupling the qubit to surface acoustic waves in two locations separated by ~40 acoustic wavelengths. In analogy to double-slit diffraction, the resulting interference generates high-contrast frequency structure in the qubit-phonon interaction. We observe this frequency structure both in the coupling rate to multiple cavity modes and in the qubit spontaneous emission rate into unconfined modes. We use this sharp frequency structure to resolve single phonons by tuning the qubit to a frequency of destructive interference where all acoustic interactions are dispersive. By exciting several detuned yet strongly coupled phononic modes and measuring the resulting qubit spectrum, we observe that, for two modes, the device enters the strong dispersive regime where single phonons are spectrally resolved. PY - 2019 EP - 021056 T2 - Physical Review X TI - Resolving Phonon Fock States in a Multimode Cavity with a Double-Slit Qubit UR - https://journals.aps.org/prx/abstract/10.1103/PhysRevX.9.021056 VL - 9 ER -