@article{13216, keywords = {Physics and Astronomy (miscellaneous)}, author = {G. Cole and S. Ballmer and G. Billingsley and S. Cataño-Lopez and M. Fejer and P. Fritschel and A. Gretarsson and G. Harry and D. Kedar and T. Legero and C. Makarem and S. Penn and D. Reitze and J. Steinlechner and U. Sterr and S. Tanioka and G.-W. Truong and J. Ye and J. Yu}, title = {Substrate-transferred GaAs/AlGaAs crystalline coatings for gravitational-wave detectors}, abstract = { In this Perspective, we summarize the status of technological development for large-area and low-noise substrate-transferred GaAs/AlGaAs (AlGaAs) crystalline coatings for interferometric gravitational-wave (GW) detectors. These topics were originally presented as part of an AlGaAs Workshop held at American University, Washington, DC, from 15 August to 17 August 2022, bringing together members of the GW community from the laser interferometer gravitational-wave observatory (LIGO), Virgo, and KAGRA collaborations, along with scientists from the precision optical metrology community, and industry partners with extensive expertise in the manufacturing of said coatings. AlGaAs-based crystalline coatings present the possibility of GW observatories having significantly greater range than current systems employing ion-beam sputtered mirrors. Given the low thermal noise of AlGaAs at room temperature, GW detectors could realize these significant sensitivity gains while potentially avoiding cryogenic operation. However, the development of large-area AlGaAs coatings presents unique challenges. Herein, we describe recent research and development efforts relevant to crystalline coatings, covering characterization efforts on novel noise processes as well as optical metrology on large-area (∼10 cm diameter) mirrors. We further explore options to expand the maximum coating diameter to 20 cm and beyond, forging a path to produce low-noise mirrors amenable to future GW detector upgrades, while noting the unique requirements and prospective experimental testbeds for these semiconductor-based coatings. }, year = {2023}, journal = {Applied Physics Letters}, volume = {122}, pages = {110502}, month = {2023-02}, publisher = {AIP Publishing}, issn = {0003-6951, 1077-3118}, url = {https://aip.scitation.org/doi/10.1063/5.0140663}, doi = {10.1063/5.0140663}, }