

Fundamental Issues and Applications of Ultracold Atoms and Molecules

Experimental study of atomic Bose-Einstein condensates with internal degrees of freedom

Department of Physics, Gakushuin University

Takuya Hirano

Topics

- <u>BEC of Rb atoms</u>
- Contineous-variable (CV) quantum information using pulsed light Quantum cryptography using pulsed homodyne detection

"Plug & play" and free-space implementation at telecommunication. wavelength CV quantum entanglement with pulsed light Pulsed squeezing at telecomm. wavelength

Experimental Quantum Optics Group at Gakushuin Univ.

Outline

- 1. Motivation
- 2. Experimental apparatus

- 3. Atomic BEC with internal degrees of freedom
 - Dynamical Properties of ⁸⁷Rb Spin-2 BEC
 - Optical Confinement of Binary BEC: simultaneous trap of F=1 and F=2
 - Vortex Formation via magnetic field reversal

Thanks to former members: T. Kuwamoto, H. Usuda, K. Hamazaki, Y. Nara

4. Summary

Manipulation of Spin States of F=2, ⁸⁷Rb BEC in an Optical Trap

Motivations

Spin degrees of freedom F=2 spinor condensate

- Is ground state of ⁸⁷Rb ferro, anti-ferro, or cyclic states?
- Mixture of F=1 & F=2 spinor BEC
- Vortex states in spinor BEC
- etc...

Novel Physics in Quantum Fluids with spin Degree of Freedom

Experimental setup (1)

Atoms in an optical trap

Optical trap potential

$$U = -\frac{1}{2}\alpha \cdot |E|^2$$
$$\propto -\frac{P}{\Delta}$$

- α : polarizability, E :electric field
- P : laser power
- Δ : detuning (f_{laser}-f_{resonace})

Spin degrees of freedom are liberated in an optical trap.

First success in Jan. 2000

Setup of Optical Trap

Lifetime of BEC in Optical Trap - Stretched State (F=2, m_F=-2) -

absorption image of the BEC in the optical trap

Manipulation of Spin States

Creation of BEC in $m_F = 0$ state

We could prepare highly polarized (almost pure) $m_F=0$ BEC. Transfer rate > 90%

Decay of F=2, $m_F=0$ BEC in OT at B = 1.5G

Atoms in BEC initially polarized in F=2, $m_F=0$ state.

$m_F = \pm 1$ components appeared during decay process.

Magnetic field dependence of spin-mixing dynamics

Relative Populations of Each Component after 70-ms Evolution - Magnetic Field Dependence -

If the $F = 2^{87}$ Rb BEC has <u>anti-ferromagnetic properties</u>, the mixture of $m_F = -2$ and $m_F = +2$ is one of the ground states at a zero magnetic field. [M.Ueda & M.Koashi, PRA, 65, 063602 (2002)]

indicates anti-ferromagnetic, but small popuration in $m_F = \pm 1...$

Optical Trap of F=1 and F=2 Bose-Einstein Condensates

Simultaneous trap of F=1 and F=2 Rb BEC

JILA : magnetic trap capable of trapping only weak field seeking states

Our experiment : optical trap capable of trapping any states, even for anti-parallel magnetic moment Control of magnetic field

Microwave transition

Experimental setup

Time evolution for $N_{F=1} \cong N_{F=2}$ (without Stern-Gerlach)

Center of mass movement of F=2 component

Experimental procedure

Topological Vortex Nucleation in Bose-Einstein Condensates

Observation of vortex

Experimental procedure

- 1. Create BEC in a magnetic trap
- 2. Invert the magnetic field
- 3. Absoption imaging

Trap time : 5ms

Simultaneous imaging from two directions

Invering time : 3~13ms

• No trapping potential along z axis after inverting the bias field

• We cloud observe vortex up to 10ms trap-time

TOF: 19ms, Inverting time: 5ms

Summary

- Ground state of ⁸⁷Rb Spin-2 BEC
 - For $m_F=0$ initial state, decay at various magnetic field strengths
 - \rightarrow Spin relaxation, population oscillation
 - For $m_F{=}{\pm}2$ initial state, atoms remain in $m_F{=}{\pm}2$
 - ➡ Antiferromagnetic
- Optical Confinement of Binary BEC: F=1 and F=2 Spatial separation, center of mass movement,
 - domain structure were observed.
- Vortex Formation via magnetic field reversal Charge 4 vortex, simultaneous imaging from two directions up to 10 msec in magnetic trap, up to ~20 msec in optical trap.