Macroscopic Quantum Tunneling and Entangled States in Bose-Einstein Condensates

Lincoln D. Carr

Physics Department Colorado School of Mines

in collaboration with Dimitri Dounas-Frazer and Ann Hermundstad

Overview: Macroscopic Quantum Tunneling and Entangled States in Bose-Einstein Condensates

- Introduction
- BEC in a double well
 - **4** Two mode approximation
 - Potential decoherence
 - Tunneling resonances
 - Four mode approximation
 - Role of higher levels in each well
- Macroscopic Quantum Tunneling

4 Quantum sloshing in a tilted double well

Conclusions and Outlook

Bose-Einstein Condensation in Optical Lattices

- Combine Bose-Einstein condensate (BEC)
 - JILA: 10⁶ gaseous
 ⁸⁷Rb atoms in a harmonic trap
 - Nobel prize, 2001
- With a light crystal formed by laser standing waves in 2D/3D

Lattice of Double Wells

• With two frequencies, we obtain

Lattice of *Tilted* Double Wells

• With more experimental cleverness, one obtains

Motivation

- Quantum many body theory of the tilted double well
 - Controlled 2-qubit gates for quantum computing
 - **4** Gravitometry, atom laser
 - **BEC** in a double well
 - Many-body entangled states
 - Macrosopic quantum tunneling
 - Push the limits of quantum mechanics

Sketch of Hamiltonian

Fundamental Equations I: Two mode Hamiltonian

- 1. Second quantized continuum field theory for weakly interacting gas in s-wave limit
- 2. Construct localized states and discretize
- 3. Obtain Bose-Hubbard-like Hamiltonian

Typical solutions

• 2 sites, 1 band, no external potential, Fock states

All eigenstates of two-mode Hamiltonian

Probability density

Ratio of Hopping/Interaction

Response to Tilt: N=10

Tunneling resonances

- Entangled states are fragile with respect to *potential decoherence*
- Reappear when

 $\Delta V = \Delta V_n^m \equiv 2n U^{mm}, \ n = 1, 2, \ldots, N^m - 1$

- Width of reappearance
 - = width of avoided crossing
 - = energy difference ΔE between symmetric/antisymmetric pairs of states

$$\Delta V_{\rm crit}^m \equiv \frac{2\Delta E_{n_L}^m}{N^m - 2n_L^m}, \ \ 0 \le n_L^m < N^m/2$$

Fundamental Equations II: Four mode Hamiltonian

 Two-mode Hamiltonian for ground and first excited levels plus coupling terms

$$\begin{split} \hat{H} &= \sum_{m} \hat{H}^{m} + E_{\ell} \hat{N}^{1} \longleftarrow \text{Level energy difference} \\ &+ U^{01} \sum_{j,m \neq m'} \begin{bmatrix} 2\hat{n}_{j}^{m} \hat{n}_{j}^{m'} + \hat{b}_{j}^{m\dagger} \hat{b}_{j}^{m\dagger} \hat{b}_{j}^{m'} \hat{b}_{j}^{m'} \end{bmatrix} \\ & & & & & & & \\ \hline \text{Inter-level} \\ & & & & & & & & \\ \text{Inter-level pair} \\ & & & & & & & & \\ \text{hopping} \end{split}$$

• Fock state Hilbert space

$$|\Psi\rangle = \sum_{n} c_n |n\rangle, \ |n\rangle = |n_L^0, n_R^0\rangle \otimes |n_L^1, n_R^1\rangle$$

Four-mode Model Stationary States I

Four-mode Model Stationary States II

Four-mode Model Stationary States III

Bounds on Use of Two-mode Approximation

Sloshing in a Tilted Double Well: The Basic Idea

- Build up a picture of MQT particle by particle
- Tune towards Mott border (raise lattice barrier height)
- Observable in experiments

Dynamics: Non-interacting (U=0)

• Average number and average normalized variance

Weak Interactions:Long Time Oscillations

•
$$\langle \hat{n}_R \rangle = N \left(1 + \cos(2Jt/\hbar) \cos(Ut/\hbar)^{N-1} \right)$$

\downarrow Tunneling **\rightarrow** carrier frequency

 \blacksquare Interactions \rightarrow envelope frequency

Tunneling Resonances

• Tilt 2Uk \rightarrow N-k particles slosh

Conclusions

- Higher mode effects cannot be neglected in many experiments
- Entangled states are fragile to potential decoherence

4 Reappear for tilt proportional to interaction strength

 MQT tunneling times exponential in number of particles in high barrier limit