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Overview: Macroscopic Quantum Tunneling
and Entangled States in Bose-Einstein
Condensates

@ Introduction

@ BEC in a double well

4 Two0 mode approximation
 Potential decoherence
e Tunneling resonances

4 Four mode approximation
e Role of higher levels in each well

@ Macroscopic Quantum Tunneling
4 Quantum sloshing in a tilted double well

@ Conclusions and Outlook



Bose-Einstein Condensation in Optical
Lattices

@ Combine Bose-
Einstein condensate
(BEC)

+ JILA: 10° gaseous

8’Rb atoms in a
harmonic trap

@ With a light crystal
formed by laser
standing waves In
2D/3D




Lattice of Double Wells

@ With two frequencies, we obtain

First Excited
state
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Lattice of Tilted Double Wells

@ With more experimental cleverness, one obtains

First Excited
state
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NIST: J. Sebby-Strabley, M.
Anderlini, P.S. Jessen, and J.
V. Porto, PRA in press (2006)



Motivation

@ Quantum many body theory of the tilted double
well

+ Controlled 2-qubit gates for qguantum computing
+ Gravitometry, atom laser

+ BEC In a double well
* Many-body entangled states

#+ Macrosopic quantum tunneling
e Push the limits of qguantum mechanics



Sketch of Hamiltonian



Fundamental Equations I: Two mode
Hamiltonian

@ 1. Second quantized continuum field theory for
weakly interacting gas in s-wave limit

@ 2. Construct localized states and discretize
@ 3. Obtain Bose-Hubbard-like Hamiltonian
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Typical solutions

@ 2 sites, 1 band, no external potential, Fock states
‘W(k)> = Zcr(mli) n.,N-n)
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All eigenstates of two-mode Hamiltonian

@ Probability density
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Ratio of Hopping/Interaction

@ Probability Density
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Response to Tilt: N=10
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Tunneling resonances

@ Entangled states are fragile with respect to
potential decoherence

@ Reappear when
AV = AV =2nU™™ n=1,2,..., N —1

@ Width of reappearance
= width of avoided crossing
= energy difference AE between symmetric/anti-
symmetric pairs of states
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Fundamental Equations Il: Four mode
Hamiltonian

@ Two-mode Hamiltonian for ground and first
excited levels plus coupling terms
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eigenstate k
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Four-mode Model Stationary States 11|

eigenstate k
p— —_ D -2 )
- LN = LN =

N
T

<

numberstate index n



Bounds on Use of Two-mode Approximation
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Sloshing in a Tilted Double Well:
The Basic ldea

@ Build up a picture of MQT particle by particle

@ Tune towards Mott border (raise lattice barrier
height)

@ Observable in experiments



Dynamics: Non-interacting (U=0)

@ Average number and average normalized variance
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Weak Interactions (J/NU >> 1),
Short Time Oscillations

n
1} | | |
10 20 30
time t
AfANAAAAATTERT
1IO 2|0 3|0

time t




Weak Interactions:Long Time Oscillations

o (np) =N (1 + cos(2Jt/h) (:(:)S(Ut/ﬁ)*w_l)
+ Tunneling =» carrier frequency
+ Interactions =» envelope frequency
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Strong Interactions/High Barrier (J/NU << 1)
o (nrp) =N (14 cos(AENt/h))

+ AE, Is the splitting between antisymmetric and
symmetric extreme cat states |0, N) & |N, 0)
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Tunneling Resonances

@ Tilt 2Uk =» N-k particles slosh

particles tunneling

tlt AV/U



Conclusions

@ Higher mode effects cannot be neglected in many
experiments

@ Entangled states are fragile to potential
decoherence

+ Reappear for tilt proportional to interaction strength

@ MQT tunneling times exponential in number of
particles in high barrier limit
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