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Model

θ
θ’< θ

n=1 n’>1

normal refraction
(Snell’s law)
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Model

n=1 n’=-1

negative refraction
(Snell’s law)

θ θ’= -θ

“left-handed”: 
E, B, and k

Veselago (68), Pendry (90’s)
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Scientific American, July 2006

normal refraction negative refraction
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Origin of negative refraction

: electric permittivity

: magnetic permeability

resonance

1

With both, and     negative n negative



7

Applications and Definitions

• Applications: 
– perfect lens
– far apart superradiance
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Resolution:     2πkx
-1 ≥ λ !

negative refraction:

kz can be imaginary   kx > ω/c possible

Superlens

normal lens:

superlens:
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Applications and Definitions

• Applications: 
– perfect lens
– far apart superradiance

Re(n) < 0
E, B, and k are lefthanded
Turned polarization E-, 
B-cross coupled
man-made refraction

•Definitions:
–negative refraction
–left-handed materials
–chiral materials

–meta-materials
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Material examples

• μ-wave structures:
– Electric dipole
– Magnetic dipole

Choose such that they have the same 
resonance frequency!

Pendry Shalaev
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Photonic bandgap material

• Use band stucture of 
the photonic crystal to 
get a left-handed 
material (“flip over” k 
vector direction on 
Fermi surface)

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

1 μm

Notomi

• For certain frequency: negative refraction
• But: not “metamaterial”: No resolution beyond λ! 

( no superlensing!)
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Absorption

So far: refraction/absorption ≈ 1…5

Our case: Re(n)/Im(n) = 100
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Occurrence of negative refraction

• Why does negative index not occur in 
Nature?
—Absorption (Kramers-Kronig)
—Overlapping resonance of ε and μ needed          
–
for n<0:

Large χm very difficult to achieve!
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Optical frequencies

Magnitude of χm:

In optical frequencies: 
Inhomogenous broadening by far outweighs 

radiative (M1) linewidth

huge absorption 
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Chiral media (Pendry)

• Remember: 
• Chiral media: cross coupling between electric 

and magnetic fields

• Index of refraction 

with
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• Remember: 
• Chiral media: cross coupling between electric 

and magnetic fields

• Index of refraction 

with

If we choose 

Chiral media (Pendry)
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EIT based negative refraction

V-type system:

• E, B electric/ 
magnetic part of 
probe field

• Ω cross couples 
electric and 
magnetic transition

Chiral behavior

• γ0 « γ EIT
B E

Ω

|1

|2 |3
γ0 γ

absorption (χe”)

dispersion (χe’)
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EIT based negative refraction

V-type system:

B E

Ω

|1

|2 |3
γ0 γ

• Ω: dc-coupling 
phase of ξ not free to 
choose

• Ω dc-coupling: very 
weak Rabi frequency

• no EIT for 
inhomogeneously
broadened systems

• level scheme hard to 
find in real systems

Problems:
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Realistic schemes

B E

Ω

|1

|2 |3
γ0 γ

|4

|1

|5

|3

|2
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Realistic schemes
• Create dark 

state in 
superposition of 
|1 and |4

• Dark state acts 
like g.s. in 3-
level system|4

|1

|5

|3

|2

Ω1

Ω2
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Realistic schemes

|dark

|5

|3

|2

B

E

Advantages:
• Non-dc coupling 

field Ω
Choose phase

Ω



22

Realistic schemes

|5

|3

|2

B

E

Ω

Advantages:
• Non-dc coupling 

field Ω
Choose phase

|4

• States |2 and |4
can be chosen at 
similar energy

No Doppler 
broadening on 
sensitive Λ-type 
scheme (|4 , 
|2 , and |3 )

• Easier to realize
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Realistic schemes

|5

|3

|2

B

E

Ω

|4

γ = γ3

γ2
γ5

+ line broadening (inhomogeneous)
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Cross couplings

χmξbe

ξebχe

real part imaginary part

Inhomogeneous broadening ≈ decay rate γ
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Index of refraction

n

real part

imaginary part

density N = 5×1016 cm-3

detuning from resonance Δ/γ
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Local field corrections

re-calculate χ’s and ξ’s . . .
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Local field corrections

n

detuning from resonance Δ/γ

real part

imaginary part

density N = 5×1016 cm-3
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Density dependence

n

Logarithm of density 10x cm-3

real part

imaginary part 100

Re(n)/Im(n)

lo
g 1

0
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Fine tuning
n can be tuned by changing coupling field Rabi 
frequency Ω:

Application: e.g., for superlens, n=-1 is needed exactly!

n

real part

imaginary part

Logarithm of Rabi frequency Ω=10x γ
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Realization schemes

• Atoms: e.g. Neon

• Molecules: Use different rotational 
levels for different parities

• Bound excitons: use D0 states with 
different parities for lower, and D0X 
states with different parities for upper 
states.
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Outlook

• Materials:
– Problem of high-frequency M1 transitions in 

atoms and molecules
– Parity in solid state systems

• Dimension: 3D?
• Comparison with “traditional” method + 

gain
• Systems:

– Optimize level scheme 
– Utilize tensorial character of ε
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Conclusions

• Use of negative refraction:
– superlenses and others

• Metamaterials:
– chiral media for presence of cross coupling
– EIT for suppression of absorption
– energy and Rabi freq. of coupling fields for 

tuning
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Effects

Pendry, Smith, Sci. Am., 7/06

normal refraction negative refraction

phase velocity v ≈ c
Group velocity vgr < v

phase velocity v ≈ - c
group velocity vgr ≈ + c

Cerenkov radiation:
forward cone backward cone

Doppler effect:
approaching object
blue shifted red shifted
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Problem: absorption

Kramers - Kronig:
relationship between refraction/absorption

large χe’ (refraction) large χe” (absorption)
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Cross couplings

Solve for α  . . .

macroscopic picture:atomic picture:
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Different approach

• usual problem: μ (χm)
• Instead: leave μ and make ε into tensor 

(“geometric approach”)

S    Poynting vector

k   wave vector

0

normal
birefringent
“very birefringent”

Podolskiy, Narimanov, PRB R201101, (2005)

Disadvantage: works only in waveguide (i.e. 1D)



38

2p5 (2P1/2) 3d

2p5 (2P1/2) 4p

2p5 (2P1/2) 3s

2p5(2P3/2)3s

2p6

352 nm

5.4 μm

Neon

Thommen, Mandel, PRL 96, 053601 (2006)
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. . .

. . .

. . .

. . .

one even, one odd 
parity (e.g., even 
and odd rotational 
level) for |1 and 
|4

one even, two odd 
parity states 
(P(|2 )= P(|1 ))

ex
ci

te
d 

m
an

ifo
ld

gr
ou

nd
 s

ta
te

  
m

an
ifo

ld
Molecular or solid state levels

Ω

B
E

Ω1

Ω2
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Bound exciton

excited state (D0X)

ground state (D0)

momentum picture:

cb

vb

donorsinglet

quadruplet

exciton

(e.g., 5-electron atom
in a 4-valence electron
lattice)
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Bound exciton
momentum picture:

cb

vb

donorsinglet

quadruplet

exciton
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