

Precision measurement with ultracold atoms & molecules

Jun Ye

JILA, National Institute of Standards and Technology and Department of Physics, University of Colorado at Boulder

http://jilawww.colorado.edu/YeLabs

US – Japan Seminar, Breckenridge, August 23, 2006

§ Funding \$

NIST, ONR, NSF, AFOSR, NASA, DOE

Ultracold molecules: Test fundamental principles

First, let there be light

- **Continuous wave laser:** < 1 Hz stability and accuracy
- **Ultrafast pulse:**

< 1 fs generation and control

Figure of merit: 10⁻¹⁵ Phase coherence after 10¹⁵ optical cycles

Precision spectroscopy and quantum control at highest resolution over widest optical bandwidth

Frequency comb: state-of-the-art

Thorpe *et al.*, Science 311, 1595 (2006).

Stowe *et al.*, PRL 96, 153001(2006). Jones *et al*. PRL 94, 193201 (2005). C. Gohle et al., Nature 436, 234 (2005).

Optical coherence > 1 s, across entire visible

Control of matter

Long - term quantum coherence:

Clean separation between internal & external degrees of freedom

Both in well defined quantum states

Magic wavelength dipole trap

Trapping of Single Atoms in Cavity QED

Ye, Vernooy & Kimble, Phys. Rev. Lett. 83, 4987 (1999).

that a judicious choice of λ_{FORT} can eliminate both of these problems by making $\Delta_{\text{FORT}}^{e}(\vec{r}) = \Delta_{\text{FORT}}^{g}(\vec{r}) < 0$, and hence $\Delta_{\text{FORT}}(\vec{r}) = 0$ [24]. Alternatively, even for the

the capabilities presented in this Letter should allow us to achieve atomic confinement in the Lamb-Dicke regime (i.e., $\eta_x = 2\pi\Delta x/\lambda \ll 1$) in a setting for which the trapping potential for the atomic center-of-mass motion is independent of internal atomic state, as has been so powerfully exploited with trapped ions [25]. Generally

For clocks:

Katori *et al.*, Katori et al., J. Phys. Soc. Jpn 68, 2429 (1999) 6th Symp. Freq. Standards & Metrology (2002); Phys. Rev. Lett. 91, 173005 (2003).

Cool Alkaline Earth – Strontium

JILA work: Phys.Rev.Lett. <u>90</u>, 193002 (2003); Phys.Rev.Lett. <u>93</u>, 073003 (2004); Phys.Rev.Lett. <u>94</u>, 153001 (2005); Phys.Rev.Lett. <u>94</u>, 173002 (2005); Phys.Rev.Lett. <u>96</u>, 033003 (2006); Phys.Rev.Lett. <u>96</u>, 203201 (2006). T ~ 0.5

T ~ 0.5 photon recoil ~ 220 nK

Spectroscopy at the magic wavelength

Zoom into the carrier of 87 Sr ${}^{1}S_0 - {}^{3}P_0$

Zoom into the carrier of 87 Sr ${}^{1}S_0 - {}^{3}P_0$

Differential g-factor – Tensor polarizability

Santra *et al.*, Phys. Rev. Lett. 94, 173002 (2005). Hong *et al.*, Phys. Rev. Lett. 94, 050801 (2005). Barber *et al.*, Phys. Rev. Lett. 96, 083002 (2006).

- ${}^{3}P_{0}$ g-factor different than ${}^{1}S_{0}$ due to HFI
- Shift of ~110 x m_F Hz/Gauss for $\Delta m_F = 0$
- State preparation, field control
- HF structure introduces slight lattice polarization sensitivity

Optical Measurement of Nuclear g-factor

No net electronic angular momentum $\Delta g = -108.5(4) \text{ Hz/(G m}_{\text{F}})$ ³P₀ lifetime 140(40) s

<u>Coherent</u> spectroscopy $Q \sim 3 \times 10^{14}$

Ultracold Sr₂ molecules via narrow-line Photoassociation

Zelevinsky et al., Phys. Rev. Lett. 96, 203201 (2006).

Narrow-line Photo-association Spectroscopy Theory: Paul Julienne

• New Territory for PAS

All bound states are resolved by the narrow line

• Interesting regime, $C_3 \rightarrow C_6$ crossover

 $\frac{C_3}{R^3} \approx \frac{C_6}{R^6} \quad \text{at } \Delta \sim 500 \text{ MHz}$

- $^{3}P_{1}$ (5s5p)
- Ground/Excited state similar for large detunings
- Hyperfine-free for bosonic isotopes
- Useful for precision tests
- Optical control of cold collisions with low loss

Photoassociation inside a Magic wavelength lattice

Doppler- and recoil-free

Photoassociation: Experiment vs. theory 10⁻⁵ agreement for near detuning, 0.1-1% agreement deeper in the potential curve

Nine least bound states measured

Ground State Molecules

Similar excited and ground state wavefunctions ~90% of molecules in 8.4 GHz state decay to single g.s.

Should be possible to drive Molecules to deepest g.s.

Magic wavelength trap for molecules? Theory: P. Julienne and A. Derevianko

Time-variation of electron-proton mass ratio? D. DeMille, private communications (2005). Chin and Flambaum, Phys. Rev. Lett. 96, 230801 (2006).

Impact Test of fundamental constants

α : fine structure constant

•Modern epoch

• Atomic clock measurements are consistent with zero $\Delta \alpha / \alpha < 10^{-15} / yr$

• Early universe

• Not so clear...

Webb *et al.*, PRL 87, 091301 (2001). Astron. Astrophys. 415, L7 (2004).

– Conflicting results

Cold OH molecules to constrain $\dot{\alpha}$

Multiple transitions from the same gas cloud (different dependences on α) (Self check on systematics) Current uncertainly in laboratory based experiments is 100 Hz, leading to $\Delta \alpha / \alpha \sim 10^{-5}$

ter Meulen & Dymanus, Astrophys. J. 172, L21(1972).

Stark Decelerator

G. Meijer

OH after the Stark-decelerator

Bochinski et al., Phys. Rev. Lett. 91, 243001 (2003); PRA 70, 043410 (2004).

Cold molecule based precision spectroscopy

- Rabi or Ramsey interrogation on slowed OH beam
- High resolution and precision
- Systematic checks on beam (velocity) effects

Precision measurement of OH structure

Hudson et al., Phys. Rev. Lett. 96, 143004 (2006).

Measurement

$\Delta \alpha / \alpha$ measurement status

• $\Delta \alpha / \alpha = 1$ ppm (and better) is now possible to measure over ~10 Gyr. Linear drift model $\rightarrow 10^{-16}/yr$.

- Astrophysical measurements later this year plan better than 100 Hz accuracy.
- Deep surveys of OH megamasers are active from the local Universe to red shift z ~ 4.
- Optical clock comparisons ongoing, but test only modern epoch.
- Tests on Δ(m_e/m_p) / (m_e/m_p) is possible (W. Ubach, PRL <u>92</u>, 101302 (2004); PRL <u>96</u>, 151101 (2006).)

Special thanks

http://jilawww.colorado.edu/YeLabs

Ultracold Sr & Sr₂

M. Boyd A. Ludlow S. Blatt Dr. T. Zelevinsky Dr. T. Zanon Dr. T. Ido (NICT, Tokyo) **Cold Polar Molecules**

B. SawyerB. StuhlDr. B. LevE. Hudson (Yale)

Femtosecond comb & cold atoms

S. Foreman
M. Thorpe
D. Hudson
M. Stowe
Dr. A. Pe'er
Dr. R. J. Jones (Arizona)
Dr. K. Moll (Precision Ph)

Collaborators

J. Bohn, S. Cundiff, C. Greene, J. Hall (JILA) P. Julienne, S. Diddams, J. Bergquist, L. Hollberg, T. Parker (NIST) E. Eyler (UConn), F. Krausz (MPQ)

Problems in the neutral atom land

The Solution: Match the AC Stark shift between |e> and |g>

Kimble et al. ICOLS 99

Reproducibility

Global Sr Clock Comparison

Takamoto et al., Nature 435, 321 (2005). Ludlow *et al.*, Phys. Rev. Lett. <u>96</u>, 033003

How Magic is the wavelength?

Ludlow *et al.*, Phys. Rev. Lett. <u>96</u>, 033003 Brusch *et al.*, Phys. Rev. Lett. <u>96</u>, 103003 (2006).

1 MHz error in lattice wavelength \rightarrow 5 x 10⁻¹⁸ clock inaccuracy

Understanding systematics: Magnetic sensitivities

Total uncertainty ~0.5 Hz \rightarrow 1 x 10⁻¹⁵

Trapped ion optical frequency standardsHelen MargolisNIST Hg+ systematic uncertaintyPatrick Gill, et al., NPL< atomic fountain clock</td>(Bergquist et al., 2006)

Optical clocks – future redefinition of the second? Fundamental constants and tests of physics Future satellite navigation and ranging? Ion traps: Clean separation between the internal and external degrees of freedom

The point: Long coherence time in quantum measurement

Precision Measurement/Standards: NIST, NPL, PTB, NRC, JPL, ... Innsbruck, Harvard, MPQ, Dusseldorf, ...

Quantum Information science: NIST, Innsbruck, Michigan, Oxford, MIT, Ulm, ... Precision spectroscopy of H_2 and a possible variation of m_p/m_e over cosmological time

PRL <u>96</u>, 151101 (2006).

Wim Ubachs

Dimensionless constants of nature:

 $1/\alpha = 137.03599911(46)$

 μ = M_p/m_e = 1836.152 672 61 (85)

various g - factors

Fundamental constants?

Just empirical or deeper theory?

Molecular structure and possibility of lif

Constant or slightly varying?

Matching the polarizabilities

Optical Measurement of Nuclear g-factor

Magic wavelength trap for molecules? Theory: P. Julienne and A. Derevianko

New era for optical atomic clocks

NIST, JILA, PTB, NPL, SYRTE, ...

Possible systematics in space

Electro-Magnetic field in space

Different velocities for different lines

Solutions:

OH sum rule

Main lines versus satellite lines

Emission and conjugate absorption

Kanekar et al., Phys. Rev. Lett. 93, 051302 (2004).