The 10th US-Japan Joint Seminar – Fundamental Issues and Applocations of Ultracold and Molecules -

Collision-induced processes with super-cooled excitons

Makoto Kuwata-Gonokami

Department of Applied Physics, University of Tokyo SORST, Japan Science and Technology Agency (JST)

http://www.gono.t.u-tokyo.ac.jp

Outline

1. Introduction

- Excitation and detection of cold excitons in Cu₂O Direct excitation of super-cooled excitons by pulsed two-photon resonant excitation of 1s-ortho excitons Collision induced ortho to para transformation
- Quasi-steady state excitonic Lyman spectroscopy
 Paraexcitons at quasi-equilibrium condition
 detected by CW excitonic Lyman spectroscopy with CO₂ laser
 Evaluation of density-dependent particle loss
- 4. Future Prospects

Coworkers

T. Tayagaki (Univ. Tokyo)

K. Yoshioka (Univ. Tokyo)

T. Ideguchi (Univ. Tokyo) M. Kubouchi (Univ. Tokyo)

Y. Svirko (Joensuu Univ. Finland)

R. Shimano (Univ. Tokyo)

Acknowledgement N. Naka (Univ. Tokyo)

A. Mysyrowicz (ENSTA, Ecole Polytechnique, France)

BEC of Excitons

$$T_c = \frac{2\pi\hbar^2}{mk_B} \left(\frac{n}{2.612}\right)^{2/3}$$

Excitons in Semiconductors

Small mass (less or comparable with the free electron) \rightarrow high T_c Density is easily controlled by light: boson-fermion crossover

	mass	n _c	Τ _c
87 Rb :	\sim 10 $^{5} imes$ m $_{e}$	$\sim \! 10^{12} \mathrm{cm}^{-3}$	10 ⁻⁷ K
Cu ₂ O 1s-exciton:	\sim 3 \times m _e	10 ¹⁷ cm ⁻³	1.9 K

4	History of exciton BEC
2000 —	
	E. Fortin, E. Benson, and A. Mysyrowicz, Phys. Rev. Lett. 70 , 3951 (1993).
	T. Fukuzawa, E. E. Merdez, and J. M. Hong, Phys. Rev. Lett. 64 , 3066 (1990). <i>Rb,Na BEC(95)</i> <i>Phase transition to ordered state of indirect excitons in coupled quantum well</i>
1990 —	D. W. Snoke, J. P. Wolfe, and A. Mysyrowicz, Phys. Rev. B 41 , 11171 (1990). BEC of Cu ₂ O paraexcitons
	Early Experiments on Cu ₂ O
	D. Snoke, J. P. Wolfe, and A. Mysyrowicz, Phys. Rev. Lett. 59, 827 (1987). <i>Quantum saturation of Cu₂O orthoexcitons</i>
1980 —	 D. Hulin, A. Mysyrowicz, and C. Benoît à la Guillaume, Phys. Rev. Lett. 45, 1970 (1980). Bose statistics of Cu₂O orthoexcitons
	biexciton BEC in CuCl
1970 —	
	I neoretical Prediction
	L. V. Keldysh and A. N. Kozlov, Sov. Phys. JETP 27 , 521 (1968).
	S. A. Moskalenko, Fiz. Trerd. Tela. 4 , 276 (1962) [Sov. Phys. Solid State 4 , 199 (1962)]. I. M. Blatt, K. W. Böer, and W. Brandt, Phys. Rev. 126 , 1691
1960 —	

Difficulties in Exciton BEC

excitation

Excitons in Cu₂O

1s-excitons: electric dipole transition forbidden

 ${}^{2}\Gamma_{6}^{+}x^{2}\Gamma_{7}^{+}x\Gamma_{1}^{+}={}^{3}\Gamma_{5}^{+}+\Gamma_{2}^{+}$

 Γ_5^+ orthoexciton: electric quadrupole transition allowed Γ_2^+ paraexciton: pure spin-triplet \rightarrow optical transition is strictly forbidden,

extremely long life time

 $\tau = 10 n \sec(\tau_{rad} > 300 n \sec)$

 $\tau = 10 \mu sec$

Paraexcitons in Cu₂O

$$J=1: \text{ortho} \begin{pmatrix} \uparrow e \\ h \uparrow \end{pmatrix} (\Gamma_5^+)$$
$$J_z = 1: |\uparrow_e \uparrow_H \rangle$$
$$J_z = 0: \frac{1}{\sqrt{2}} (|\uparrow_e \downarrow_H \rangle + |\downarrow_e \uparrow_H \rangle)$$
$$J_z = -1: |\downarrow_e \downarrow_H \rangle$$

note;
$$|\uparrow_{\rm H}\rangle = -\frac{1}{\sqrt{3}} \left[(yz+izx) |\downarrow_{\rm h}\rangle + (xy) |\uparrow_{\rm h}\rangle \right]$$

 $|\downarrow_{\rm H}\rangle = -\frac{1}{\sqrt{3}} \left[(yz-izx) |\uparrow_{\rm h}\rangle - (xy) |\downarrow_{\rm h}\rangle \right]$

J=0: para
$$(\Gamma_2^+)$$
$$J_z = 0: \frac{1}{\sqrt{2}} (|\uparrow_e \downarrow_H \rangle - |\downarrow_e \uparrow_H \rangle)$$

$$|\uparrow_{e}\downarrow_{H}\rangle - |\downarrow_{e}\uparrow_{H}\rangle = -\frac{1}{\sqrt{3}} \Big[(yz - i zx) |\uparrow_{e}\uparrow_{h}\rangle - (yz + i zx) |\downarrow_{e}\downarrow_{h}\rangle - xy (|\uparrow_{e}\downarrow_{h}\rangle + |\downarrow_{e}\uparrow_{h}\rangle) \Big]$$

Para exciton state is purely spin-triplet state
-> no direct optical processes

Experiments in Cu₂O so far: luminescence spectrum analysis

Paraexciton BEC ?

How to detect optically forbidden paraexcitons?

E. Fortin, E. Benson, and A. Mysyrowicz, Thys. Rev. Lett. 70, 5951 (1995).

Objection to exciton BEC in Cu₂O

Quantitative analysis of luminescence measurement K. E. O'Hara and J. P. Wolfe, Phys. Rev. B 62, 12909 (2000).

1) Luminescence spectrum can be reproduced by MB distribution with spatial Orthoexcitons inhomogeneity : not BE statistics per cm² per meV

2) TA-phonon mediated ortho-para conversion rate: $\tau_{0-p} = 3 \text{ ns} (T = 2 \text{ K})$ Paraexcitons \rightarrow too slow conversion rate per cm² per meV to accumulate paraexcitons J. I. Jang et al. Phys. Rev. B 70, 195205 (2004). 1013 3) Large Auger recombination rate 1012 (nonradiative two-body decay) $A=10^{-16}$ cm³/ns : Excitons decay before reaching the critical density n_c=10¹⁷ cm⁻³

 $\frac{\mathrm{d}n}{-\!-\!An^2}$

No BEC of ortho nor paraexcitons!

Optical detection of paraexcitons by 1s-2p transition

Time resolved Excitonic Lyman Spectroscopy

J. Phys. Soc. Jpn. 73, 1065 (2004). Solid State Comm.134, 127 (2005). Phys. Rev. Lett. 94, 016403 (2005).

Evaluation of Exciton density from 1s-2p induced absorption

$$\left(\Re(E, N_{ex})\right)^{2} = \varepsilon_{b} + \Re(N_{ex}, E)$$
$$\Re(N_{ex}, E) = N_{ex} \cdot \frac{2E_{1s-2p}}{\varepsilon_{0}} \frac{\left|\mu_{1s-2p}\right|^{2}}{\left(E^{2} - E_{1s-2p}^{2} - i\Gamma E\right)}$$
$$\Delta\alpha(E) = \frac{E}{hc} \frac{1}{\sqrt{\varepsilon_{b}}} \operatorname{Im}\left\{\Re(N_{ex}, E)\right\}$$
$$S = \int \Delta\alpha(E) dE = N_{ex} \cdot \frac{\pi E_{1s-2p} \left|\mu_{1s-2p}\right|^{2}}{\hbar c \varepsilon_{0} \sqrt{\varepsilon_{b}}}$$

$$N_{ex} = \frac{\hbar c \varepsilon_0 \sqrt{\varepsilon_b}}{\pi E_{1s-2p} \left| \mu_{1s-2p} \right|^2} \cdot S$$

Sample

Cu₂O naturaly grown single crystal

 3×5 mm Thickness 200 μ m

Mid-infrared linear absorption spectrum

transparent window near 1s-2p transition!

Experimental setup : mid-infrared pump-probe spectroscopy

Induced absorption spectra by one-photon (orthoexciton-phonon-sideband) excitation

- 1) Strong signal at para exciton resonance.
- 2) Spectrum narrowing with time.
- 3) Red shift of the absorption maximum.

Direct excitation of cold orthoexcitons by TPA

Two-photon electric dipole transition of orthoexcitons is allowed.

 $k_{0} \sim 0$

$$\Gamma_4^{-} x \Gamma_4^{-} = \Gamma_1^{+} + \Gamma_3^{+} + \Gamma_4^{+} + \Gamma_5^{+}$$

orthoexcitons

Phase space compression of laser photons by resonant two-photon excitation \Rightarrow

Instantaneous preparation of Quantum degenerate orthoexcitons

M. Kuwata-Gonokami, et al., J. Phys. Soc. Jpn., 71, (2002) 1257 Large phase space density of photons in ML-fs laser

76MHz repetition, $\delta\lambda$ 2nm, 1mW Photon number per mode; $n_{\nu} = 500$

Resonant two-photon excitation of orthoexciton

Observation of Excitonic Lyman series

Thermalization dynamics of super-cooled 1s orthoexciton (4.2K)

Line shape analysis:

$$\Delta E_{1s-4p}^{2} (\gamma_{4p}^{2})^{2} + ((m_{1s}^{2}/m_{4p}^{2}-1)f_{1s}^{2})^{2}$$

Extraction of ortho-para conversion

Temporal evolution of excitons ; High density excitation

Collision induced ortho-para conversion

G. M. Kavoulakis and A. Mysyrowicz, Phys. Rev. B 61, 16619 (2000).

$$\frac{\mathrm{d}n}{\mathrm{d}t} = -Cn^2$$

$$C \approx 5 \times 10^{-16} \, cm^3 \, / \, ns$$

Temporal evolution of northo, npara, ntotal

Model:

$$\frac{d}{dt}n_t = -An_t^2 \quad n(t) = \frac{n_0}{1 + An_0 t}$$

$$\begin{pmatrix} \frac{d}{dt}n_{o} = -\Gamma_{o-p}n_{o} - 2An_{o}n_{t} + \frac{3}{4}An_{t}^{2} - Cn_{o}^{2} \\ \frac{d}{dt}n_{p} = \Gamma_{o-p}n_{o} - 2An_{p}n_{t} + \frac{1}{4}An_{t}^{2} + Cn_{o}^{2} \\ (n_{t} = n_{o} + n_{p}) \\ \begin{pmatrix} R_{t} = n_{o} + n_{p} \end{pmatrix} \\ \end{pmatrix}$$
A: Dissociation process
C: Spin-flip process

If C >> A, we can accumulate paraexcitons before we lose excitons by Auger recombination.

Extraction of collision-induced spin-flip process

C > A

C=2.6x10⁻¹⁶ cm³/ns

Kaovulakis *et al.* PRB 61, 16619 (2000). C= 5×10^{-16} cm³/ns Enhanced collision induced spin conversion of excitons : Virtual biexciton mediated resonant scattering ?

Paraexcitons generated via TPA of orthoexcitons

Summary of femtosecond experiments

We obtain paraexciton density of 10^{15} cm⁻³ under orhtoexciton excitation of $4x10^{15}$ cm⁻³ T_{para}< 20K C ~ 2.6x 10⁻¹⁶ cm³/nsec

Questions:

Mechanism of giant collision cross-section ? Why did we obtain cold paraexcitons ?

We need to

- Accumulate paraexcitons with continuous feeding at low lattice temperature.

- Precisely estimate

Auger rate and paraexciton life time

CW based experiment

Excitonic 1*s*-*np* transitions and CO₂ laser lines

Quasi-steady state measurements for long lived paraexcitons

Accidental coincidence – Single mode tunable CO₂ laser to probe 1*s* paraexcitons

Experimental Set-up: Steady-state excitonic Lyman spectroscopy

1s-2p absorption spectra of quasi-steady state paraexcitons

Temperature dependence of differential transmission spectra at 1*s*-2*p* paraexciton resonance

Exactly match theoretical curves assuming Maxwell-Boltzmann distribution functions

We successfully detected 1*s* paraexcitons in a steady state regime!

Due to the relative stability of the probe light, we are currently able to detect a transmission variation as small as 0.001 % (corresponds to <10¹² cm⁻³)

Life time measurement of paraexcitons

Reported value of paraexciton lifetime: Several hundred nanoseconds to milliseconds with luminescence measurements*

Lifetime measurement of 1s paraexcitons by CW Lyman spectroscopy

We measure the probe pulse transmission and evaluate the induced transmission change.

*S. Denev et al., Phys. Rev. B 65, 085211 (2002).
A. Jolk *et al.*, Phys. Rev. B 65, 245209 (2002).
J. P. Wolfe *et al.*, Solid State Commun. 134, 143 (2005).

Excitation intensity dependence of paraexciton density

Sublinear dependence on excitation intensity

Auger effect is also observed in this steady-state regime

* T. Tayagaki *et al.*, J. Phys. Soc. Jpn. <u>74</u>, 1423 (2005).

Temperature dependence of Auger recombination rate

*Collision-induced spin-frip processes are not included

Conclusion

- We proposed and demonstrated a scheme to detect paraexcitons by using the 1s-2p transition of excitons.
 This allows us to quantitatively study the temporal and spatial behavior of paraexcitons.
- Excitonic Lyman series of super-cooled orthoexciton was observed.
 We found that high density cold paraexcitons are efficiently created by resonant two-photon excitation of orthoexcitons.
- 3) To examine the dynamics of long lived paraexcitons, we developed CW CO₂ laser-based Lyman spectroscopy. We measured a paraexciton lifetime longer than 20 micro seconds. We also obtained information on the collision-induced loss of paraexcitons under quasi-equilibrium condition.

Optical Trapping with Resonant Dressed Field

Exciton gas can be trapped by the Stark potential .

$$\delta E = \frac{1}{2} \left(\sqrt{\Delta^2 + (\mu_{1s-2p} E)^2} - \Delta \right)$$
$$\approx \frac{1}{2\Delta} (\mu_{1s-2p} E)^2 \propto I$$

 $\begin{array}{ll} \mu_{1s\text{-}2p} & (\text{transition dipole moment}) &= 4.2 \ \text{e} \text{\AA} \\ \Delta & (\text{detuning}) &= 1 \ \text{meV} \\ \text{I} & (\text{Intensity}) &= 20 \text{MW/cm}^2 \end{array}$

→ δE = 0.8 meV (corresponds to 2K)

Sympathetic cooling under high-density excitation

How to cool paraexcitons ?

Energy to be extracted from excitons $(10^{16} \text{ cm}^{-3})$ at T=2 K in a $(100 \ \mu\text{m})^3$ box to cool down to T=1 K: $4.12 \times 10^{-13} \text{ J}$	$(100 \ \mu m)^{3}$ $10^{16} \ cm^{-3}$ $T=2 \ K$ $4.12 \times 10^{-13} \ J$ $T=1 \ K$
 Sympathetic cooling with super cooled orthoexcitor 10¹⁶ excitons in V=(100 μm) ³ T=0 K → T=1 k *classical gas 	n gas Specific heat 3k _B /2 N _{ex}
• Heat exchange with the lattice V=(100 μ m) ³ lattice T=0.98 K \longrightarrow T=1 k	Specific heat * $36T^3$ Jm ⁻³ K ⁻⁴

Heat capacity of a phonon field is two-orders of magnitude larger than that of a cold exciton gas

We need to cool down the crystal.

*L. V. Gregor, J. Phys. Chem. 66, 1645 (1962)., K. E. O'Hara and J. P. Wolfe, Phys. Rev. B 62, 12909 (2000).

How to reach excitonic BEC phase ?

CREST-JST: Oct. 2006~ created by spatial-temporal controlled optical pulses

Next:

Confinement of paraexcitons:

Optical Trap by MIR field (1s-2p resonant exciton transition) Accumulation of para-excitons below 1K region; Cooling of para-excitons with super cooled ortho-excitons;

.... Sympathetic cooling of excitons

CW –based Experiment: poster by Kousuke Yoshioka